
22.02.2023

1

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.1

The Unified (Software Development) Process - UP
The Unified Process is a popular iterative software development process for
building object-oriented systems. It promotes several best practices.

• Iterative: Development is organized into a series of short, fixed-length (for
example, three-week) mini-projects called iterations;
The outcome of each iteration is a tested, integrated, and executable partial
system.
Each iteration includes requirements analysis, design, implementation, and
testing activities.

• Incremental, evolutionary: The system grows incrementally.

• Risk-driven:
Requirements

Analysis

Design

Implement.

Test

Product
An iteration step
4 weeks for example

Requirements

Analysis

Design

Implement

Test

Product

Iterations are
fixed in length.

The system
grows

incrementally

Time

Risky parts
first

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.2

Benefits of the UP
• Early feedback and user engagement. It leads to a refined system that

more closely meets the real needs of the stakeholders.

• Managed complexity. The team is not lost in a big Project.

• Early rather than late mitigation of high risks

• Early visible progress. It improves the motivation of the team.

• The learning within an iteration. It can be methodically used to improve the
development process itself, iteration by iteration.

• Fixed iteration length between two and six weeks: Small steps, rapid
feedback, and adaptation.

• Handle high-risk and high-value issues in early iterations.

• Build a cohesive core architecture in early iterations.

• Continuously engage stakeholders for evaluation, feedback, and requirements.

• Continuously verify quality (measurement and assessment); test early, often,
and realistically.

• Do some visual modeling (with the UML).

• Benefit from the experience from earlier iterations.

Suggestions:

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.3

UP Phases

1. Inception: Approximate vision, business case, scope, vague estimates,
feasibility. Continue or stop?

2. Elaboration: Refined vision, iterative implementation of the core
architecture, resolution of high risks, identification of most requirements and
scope, and more realistic estimates.

3. Construction: Iterative implementation of the remaining lower-risk and
easier elements and preparation for deployment

4. Transition: Beta tests, deployment.

Inc. Elaboration Construction Transition

Phase

iteration

release Product/final releaseMile stone

A software development project consists of 4 phases, each including some
iterations.

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.4

Defining Requirements, Use-Case Model

Use cases are text stories (collections of
scenarios) used to discover and record
requirements.

They are written with the stakeholders (user,
customer) of the software system.

Use cases are not just documents.

They ensure

1. The understanding of the requirements, the
cooperation with the customer (before
development),

2. Verification of the system (after development).

Without use cases, we cannot know what the
system should do.

Originated by Ivar Jacobson (1939-), Swedish engineer.

He is also known as major contributor to UML, Rational Unified Process and
aspect-oriented programming.

https://usecase.ivarjacobson.com/

Use case 1

Use case 2

System

Actor 1

Actor 2

Scenarios describe
these interactions.

Black box

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.5

Scenario:

A scenario is a specific sequence of actions and interactions between actors and
the system.

Each scenario is only one particular story of using a system.

There can be many possible scenarios in a system.

For example, in a ticket-selling system, one scenario can consist of steps of
successfully buying a ticket; and another scenario can describe steps of failing
to find a seat at a concert.

A use case is a collection of related success and failure scenarios that describe
an actor using a system to support a goal.

Definitions
Use Case:

•“A use case specifies a sequence of actions, including variants, that a system
performs and that yields an observable result of value to a particular actor.”

(Three amigos: Jacobson, Booch, Rumbaugh 1999)

• “A use case is a collection of possible sequences of interactions between the
system under discussion and its external actors related to a particular goal.”

(Cockburn 2000)

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.6

Use case for withdrawing money from a bank account using
the ATM.

One of the possible scenarios (basic flow):

1. Customer inserts the Bank Card.

2. The system prompts for a PIN.

3. Customer enters the PIN.

4. System validates the PIN.

5. System displays different transaction alternatives.

6. Customer selects money withdrawal.

7. System prompts for amount.

8. Customer enters the amount.

9. Customer selects money withdrawal.

10. System dispenses money and receipt.

11. System updates the account.

12. System returns the Bank Card.

This is only one of the possible scenarios.

Withdrawing
money

Depositing
money

Banking System

Customer

<<Actor>>

Black box

Use cases

Another scenario may be performed if the PIN of the customer is not valid or if
the customer has not a sufficient amount of money.

Example:

22.02.2023

2

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.7

There are three kinds of external actors related to the system under discussion.

• Primary actor is the main user with goals fulfilled through using services of
the system under discussion.

For example, the cashier in the POS system.

• Supporting actor provides a service (for example, information) to the system.

The credit card authorization service is an example. Often a computer
system, but it could be an organization or person.

• Offstage actor has an interest in the behavior of the use case but is not
primary or supporting.

For example, a government tax agency.

Actor:

An actor is anything with behavior, such as

• a person (identified by role),

• computer system, or

• organization

that interacts with the system under discussion.

Definitions (cont'd)

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.8

Case Study: The NextGen POS System

Most examples in this course are given on a case study
about a point of sale (POS) system named “NextGen.”

A POS system is a computerized application used to
record sales and handle payments, typically used in a
retail store.

It includes a keyboard, a barcode scanner, and a printer.

It interfaces to various service applications, such as a
third-party tax calculator, inventory control, and credit
card authorization center. Photo: http://www.asterpos.com.au/

The case study is from the book:

Craig Larman, Applying UML and Patterns , An Introduction to OOA/D and
Iterative Development, 3/e, 2005.

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.9

User Interface

Sale Payment

Log PersistenceFacade

Application logic

and domain object
layer

Technical services
layer

Minor focus
explore how to connect
to other layers

primary focus of
case study
explore how to
design objects.

Secondary focus
explore how to design
objects

A typical object-oriented information system is designed in terms of several
architectural layers or subsystems.

Here we have three layers.

Case Study: The NextGen POS System (cont'd)

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.10

Use Case Format

Use case number and name

Preface

Primary Actor: The principal actor

Stakeholders and Interests: The use case must include all and only the
behaviors related to satisfying the stakeholders' interests.

Preconditions: What must always be confirmed before a scenario has begun.

Success Guarantee (or Postconditions): What must be valid after the use case
has been successfully completed?
The guarantee should meet all the needs of all stakeholders.

Main Success Scenario (or Basic Flow): It describes a typical success path (if
everything runs normally) that satisfies the interests of the stakeholders.

Extensions (or Alternative Flows): Extensions indicate all the other scenarios
or branches, both success and failure.

Special Requirements

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.11

Use Case Example: Process Sale of NextGen POS system (From Craig Larman)

Use Case UC1: Process Sale

Scope: NextGen POS application

Primary Actor: Cashier

Stakeholders and Interests:

- Cashier: Wants accurate, fast entry and no payment errors.

- Salesperson: Wants sales commissions updated.

- Customer: Wants purchase and fast service with minimal effort.

- Company: Wants to record transactions accurately and satisfy customer interests.

- Manager: Wants to be able to perform override operations quickly and debug Cashier
problems easily.

- Government Tax Agencies: Want to collect tax from every sale. Multiple agencies may

exist, such as national, state, and county.

- Payment Authorization Service: Wants to receive digital authorization requests in the

correct format and protocol. Wants to account for their payables to the store accurately.

Preconditions: The cashier is identified and authenticated.

Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. The receipt is generated.
Payment authorization approvals are recorded.

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.12

Use Case Example Process Sale (cont'd):

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running
total. Price is calculated from a set of price rules.

The cashier repeats steps 3-4 until it indicates done.

5. System presents the total with taxes calculated.

6. Cashier tells the Customer the total and asks for payment.

7. Customer pays, and System handles the payment.

8. System logs completed the sale and sends sale and payment information to the
external Accounting system (for accounting and commissions) and Inventory
system (to update inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

22.02.2023

3

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.13

Use Case Example Process Sale (cont'd):

Extensions (or Alternative Flows):

*a. At any time, the Manager requests an override operation:
1. System enters Manager-authorized mode.

2. Manager or Cashier performs one Manager-mode operation. E.g., cash balance
change, resume a suspended sale on another register, void a sale, etc.

3. System reverts to Cashier-authorized mode.

3a. Invalid item ID (not found in the system):
1. System signals an error and rejects entry.

2. Cashier responds to the error:

2a. There is a human-readable item ID (e.g., a numeric UPC):

1. Cashier manually enters the item ID.

2. System displays description and price.

2b. There is no item ID, but there is a price on the tag:

1. …
3b. There are multiple of the same item category, and tracking unique item identity is not
necessary (e.g., five packages of chocolates):

1. Cashier can enter the item category identifier and the quantity.

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.14

Use Case Example Process Sale (cont'd):

Extensions (or Alternative Flows):

3-6. The customer tells Cashier to cancel sale:

1. Cashier cancels sale on System.

7a. Paying by cash:

1. Cashier enters the cash amount tendered.

2. System presents the balance due and releases the cash drawer.

3. Cashier deposits cash tendered and returns balance in cash to Customer.

4. System records the cash payment.

7b. Paying by credit:

1. …

9c. Printer out of paper.

1. If the System can detect the fault, it will signal the problem.

2. Cashier replaces paper.

2. Cashier requests another receipt.

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.15

Use Case Example Process Sale (cont'd):

Special Requirements:

- Touch screen UI on a large flat panel monitor. The text must be visible from 1 meter.

- Credit authorization response within 30 seconds 90% of the time.

- …

Technology and Data Variations List:

*a. Manager override is entered by swiping an override card through a card reader or
entering an authorization code via the keyboard.

3a. Item identifier entered by bar code laser scanner (if bar code is present) or keyboard.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information is entered by a card reader or keyboard.

…

Open Issues:

- What are the tax law variations?

- Explore the remote service recovery issue.

…

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.16

Primary Actor:

It is the principal actor who calls upon system services to fulfill a goal.

Stakeholders and Interests List

This list is essential and practical because it suggests and bounds what the system
must do.

The use case must include all and only the behaviors related to satisfying the
stakeholders' interests.

By starting with the stakeholders and their interests before writing the
remainder of the use case, we have a method to remind us what the more detailed
responsibilities of the system should be.

For example, if we had not listed the salesperson as a stakeholder, we might not
have written statements in the use case about the commission handling of the
salesperson.

Explanation of the Use Case

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.17

Preconditions:

Preconditions state what must always be confirmed before a scenario has begun.

Preconditions are not tested within the use case; they are assumed to be true.

For example, the cashier is logged in.

Success guarantees (postconditions):

Postconditions state what must be valid upon completing the use case (the main
success scenario or some alternate path).

The guarantee should meet all the needs of all stakeholders.

There must exist appropriate paths in the use case to satisfy these conditions.

Main Success Scenario (or Basic Flow)

This has also been called the "happy path" scenario, "Basic Flow," or "Typical Flow."

It describes a typical success path (if everything runs normally) that satisfies the
interests of the stakeholders.

Note that it often does not include any conditions or branching.

Defer all conditional and branching statements to the Extensions section.

Explanation of the Use Case (cont'd)

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.18

Extensions (or Alternate Flows)

Extensions indicate all the other scenarios or branches, both success, and
failure.

Extension scenarios are branches from the main success scenario and can be
notated with respect to its steps 1…N.

For example, there may be an invalid item identifier in Step 3 of the main
success scenario.

An extension is labeled "3a"; it first identifies the condition and then states
the response.

3a. Invalid item ID (not found in the system):
1. System signals an error and rejects entry.

Explanation of the Use Case (cont'd)

22.02.2023

4

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.19

How to write use case, Guidelines

• Write use cases with the customer (user) of the software system.

Write requirements focusing on the users or actors of a system, asking about
their goals and typical situations.

Sometimes software companies start projects without having a specific
customer. In this case, the company must play both roles, customer and
developer.

• Write black-box use cases.

By defining system responsibilities with black-box use cases, one can specify
what the system must do (the behavior or functional requirements) without
deciding how it will do it (the design).

During the analysis of requirements, avoid making "how" decisions, and specify
the external behavior of the system as a black box.

Remember;

Analysis: Understanding. What? Design: Solution. How?

Black-box style (right): The system records the sale. √
Wrong: The system writes the sale to a database. X

Wrong: The system puts the sale in a double-linked list. X

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.20

How to write use case, Guidelines (cont'd)

• Use active sentences.

In statements of scenarios, it must be clear who does what.

Passive sentences may be ambiguous.

Wrong: The salary of the worker is calculated. (Who? Actor, system?)

• It is not possible (and not recommended) to write all use cases at the
beginning of the Project (iterative development).

According to statistics, 25% of requirements change during the project's
lifetime.

The design and implementation of a use case can continue more than one
iteration.

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.21

We can express use cases also as UML
interaction diagrams.

However, writing use cases as text is
preferable.

UML Interaction Diagrams

: Cashier :System

enterItem(itemID, quantity)

endSale()

makePayment(amount)

item description, total

total with taxes

Change due, receipt

[more items]

MakeNewSale ()

loop

Actor Black-box

©2012 - 2017 Feza BUZLUCAhttp://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

2.22

Benefits of Use Cases

• Easy to understand. Customers can contribute to their definitions and review.

• They lower the risk of missing some features of the system.

• Without use cases, we cannot know what to design and program.

• They can be used to assign jobs to team members or groups.

• They help to monitor the progress of the project.

• They also provide test cases (verification scenarios, acceptance tests).

After the software has been completed, it can be verified by playing scenarios
of the use cases.

• Use cases are not object-oriented.

However, they provide a good starting point for object-oriented analysis and
design, as seen in the following chapters.

