
1

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.1

Object-Oriented Analysis, The Domain Model

Unlike other engineers, software engineers work in different areas, with various
needs and business rules.

For example, they develop software for airline companies, banks, and embedded
systems like car engines.

Therefore, it is not sufficient to know about the software domain; a software
engineer also needs to know about the problem domain.

A domain model illustrates concepts in a problem domain (real world).

UML class diagrams are used to present domain models.

It may show three items:

1. Domain objects or conceptual classes

2. Associations between conceptual classes

3. Attributes of conceptual classes

Benefits of the domain model:

1. It helps us to understand the (real-world) system.

2. It acts as a source when we define software classes at the design level.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.2

Sales
LineItem

quantity

Sale

date
time

Payment

amount

Item

Store

address
name

Register

Contained-in

Paid-by

Records-sale-of

Stocked-in

Houses

Captured-on

1..*

1

1

1

10..1

1

*

1..*

1

1

0..1

Attributes

Association

Conceptual class
(Concept or

Domain object)

Multiplicity

Example: A Partial Domain Model

This is a snapshot of the real world.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.3

Domain model: real-situation conceptual classes, not software classes

Sale

date

time

Real-world concept: Student

name
OK for domain model

Software artifacts are not a part of domain model.

SalesDatabase Avoid. Software artifact. It may be included in the design
model.

Sale

date

time

print()

Student

name

getAverage()

Avoid. Software classes.
Responsibilities will be assigned in the design
step.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.4

Lower representational gap between real-world and software system

Names and responsibilities of software classes at the design level are inspired
by the conceptual classes in the domain model.

Student

name

Course

CRN

takes* *
Domain model
Conceptual classes:

Design model
Software classes:

inspires names, relation and
behavior

Student

Name: String

getAverage():double

Course

CRN: String

getGrade():double

myCourses5..* *
{List}

The domain (analysis) model and software (design) model will not always be the
same, but they will be similar (low representational gap).

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.5

How to Create the Domain Model?

1. Find the conceptual classes.

2. Add associations and attributes.

3. Draw them as classes in a UML class diagram.

How to Find Conceptual Classes?

Three strategies to find conceptual classes:

1. Reuse or modify existing models.

If there is an existing model from a previous project, it can be modified.

There are also published domain models for many common domains, such as
inventory, finance, health, etc.

2. Use a category list.

You can define conceptual classes in your application domain using the list
containing many common categories.

3. Identify noun phrases in the use cases.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.6

Finding Conceptual Classes with Noun Phrase Identification

Identify the nouns and noun phrases in textual descriptions of a domain (use
cases), and consider them as candidate conceptual classes or attributes.

Main Success Scenario (or Basic Flow):

1. Customer arrives at a POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total. Price
calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information to the external

Accounting system (for accounting and commissions) and Inventory system (to update
inventory).

9. System presents receipt.

10.Customer leaves with receipt and goods (if any).

Extensions:

7a. Paying by cash:

1. Cashier enters the cash amount tendered.

2. System presents the balance due.

¨¨¨

2

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.7

Eliminating unnecessary noun phrases

All noun phrases in use cases do not represent conceptual classes.

The following noun phrases should be eliminated:

1. Different noun phrases may represent the same conceptual class.

For example, the customer and user are redundant. Use "customer" because
it is more descriptive.

2. Some noun phrases may refer to conceptual classes that are ignored in this
iteration (for example, "accounting" and "commissions").

3. Some noun phrases may refer to attributes. Attributes should be basic data
types such as numbers and text.

This method can be used in combination with the "Conceptual Class Category
List" technique.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.8

The Mapmaker Approach

A domain model is a kind of map of concepts or things in an application domain.

Make a domain model in the spirit of how a cartographer or mapmaker works:

• Use the existing names in the territory.

Mapmakers do not change the names of cities on a map.

Use the vocabulary of the domain when naming conceptual classes and
attributes.

• Exclude irrelevant features.

For example, on a physical map, the borders of cities are not shown.

Do not put classes or attributes on the model if they do not have any obvious
noteworthy role—for example, the keyboard and the age of the cashier.

• Do not add things that are not there.

A mapmaker does not show things that are not there, such as a mountain

that does not exist.

Similarly, the domain model should exclude things not in the problem domain
under consideration—for example, the owner of the store.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.9

Example:
Conceptual classes of NextGen POS system for the firs iteration

– Register
– Item
– Store
– Sale
– Sales Line Item
– Cashier
– Customer
– Ledger
– Payment
– Product Catalog (next slide)
– Product Specification (next slide)

Register

Item

Store

Sale Sales Line Item

Cashier

CustomerLedgerPayment

Product
Catalog

Product
Specification

The class "Ledger" can be discovered in this step because of the statement in
the use case: "System logs completed sale."

If we did not think of a Ledger during analysis, we would discover it when we
designed the operation about logging a completed sale (slide 5.11).

There is no such thing as a "correct" list.
However, by following the identification strategies, different modelers will
produce similar lists.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.10

In some systems, description (or specification) classes should take place in the
domain model, even though they are not mentioned in the use cases.

Example:

Assume that information about physical items in a store is written on these items,
such as serial number and price.

It seems logical because these data are attributes of these items.

However, some data may be lost when all items are sold out.

Another problem arises when we want to change properties, such as the price of
products. In such a case, we must update all items (objects).

In such systems, it is necessary to keep these data in separate description
classes.

Description objects are stored in a catalog.

Need for description (specification) classes

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.11

Add a description class (for example, ProductSpecification) when:

• We need the description of an item even though the examples of this item
currently do not exist in the system.

• Deleting instances of things they describe (e.g., Item) results in a loss of
information that needs to be maintained.

• It reduces redundant or duplicated information.

Need for description (specification) classes (cont'd)

Item

description
price
serial number
itemID

Worse

ProductSpecification

description
price
itemID

Item

serial number

Describes
Better

1 *

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.12

Associations

An association is a relationship between classes that indicates some meaningful
connection .

Register Sale
0..11

Records-current

Association name

Multiplicity

• Because the domain model displays conceptual classes in the real world,
associations also refer to real situations.

• Associations are not function calls between software classes.

• Associations in the domain model are mostly bidirectional.

Example: Register records current the Sale (from left to right).

The current Sale is recorded by Register (from right to left).

3

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.13

Multiplicity

Multiplicity defines how many instances (objects) of class A can be associated
simultaneously (at a particular moment) with one instance of class B.

Left to the right: One student takes at least one or more courses.

Right to the left: One course is taken at least by five or more students.

Multiplicity numbers are obtained from the requirements of the stakeholders.

zero or more;
"many"

T
*

one or moreT
1..*

one to 40T
1..40

exactly 5T
5

T
3, 5, 8

exactly 3, 5, or 8

Student Course
1..*

Takes

*
5..

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.14

Finding Associations

Associations can be defined
1. by using the common associations list
2. by using verbs in use cases

Examples:

Person

Airline

Employs
1..*

Flight
Assigned-to

Plane
*

3Assigned-to

*

Supervises

*

1

1
1..* 1

Store

Contains

SaleRegister
Captures

0..1

1..*

Payment
Paid-by

1

1

1 1

Reading
direction

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.15

Register

ItemStore

Sale

Payment

Sales
LineItem

CashierCustomer

Product
Catalog

Product
Specification

Stocks

*

Houses
1..*

Used-by
*

Contains

1..*

Describes
*

Captured-on

Contained-in

1.. *

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

3
Works-on

1

1

1

1

1

1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

11
1

Example:
Conceptual classes
and associations of
NextGen POS
system

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.16

Attributes

Identify attributes of conceptual classes (real-world attributes, not software
data).

Include attributes that the requirements (for example, use cases) suggest or
imply a need to remember information.

For example, the register number of a student and the date and time of a sale.

Attribute types should be "primitive" data types, such as numbers, characters,
and booleans.

The type of an attribute should not normally be a complex domain concept.

Student

number

Course

CRN

Takes
Better

1..* *

Student

number
course

Worse

Not a simple attribute

If a concept has properties and behavior, it is not a simple attribute but
a separate conceptual class.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.17

Register

ItemStore

Sale

Payment

Sales
LineItem

CashierCustomer

Product
Catalog

Product
Specification

Stocks

*

Houses
1..*

Used-by
*

Contains

1..*

Describes
*

Captured-on

Contained-in
1.. *

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

3
Works-on

1

1

1

1

1

1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

11
1

quantity

date
time
/ total

amount

id

name
address

itemID
description
price

id

Example:
Domain model of
the NextGen POS
system

This is a snapshot of the
real world (requirements).

It does not reflect our
design decisions.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.18

Operation Contracts
Use cases and domain models are usually sufficient to understand the
requirements of the stakeholders and the expected features of the system under
discussion.

Now, it is possible to start with design.

However, for complex system operations (statements in a use case), a more
detailed or precise description of system behavior may be necessary.

An operation contract is written for each complex system operation (statement)
in the use cases to describe its details.

Examples of system operations: "Make a new sale", "Enter Item ID", and "End
sale".

An operation contract describes changes in the state of objects in the domain
model when the related operation (e.g., Make a new sale) has finished.

In other words, it describes what happened to the objects in the system during
the execution of the related operation (e.g., Make a new sale).

Remember, we are still in the real world (application domain), not talking about
software objects or attributes.

Operation contracts help us to find the responsibilities of the system.

4

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.19

Format of an operation contract

Contract number and name

Operation: Name and parameters (signature)

Reference: The related use case

Preconditions: What must be true to run this operation.

Postconditions: Changes in the state of objects in the domain model.

The postconditions describe changes in the state of objects in the domain model
when the related operation has finished.

Postconditions are divided into three categories:
1. Instance (object) creation and deletion.
2. Attribute change of value.
3. Associations (links, connections) formed and broken.

Remember: we are looking for the answer to "what".
How these operations are performed is an issue that we deal with in the design
step.

Postconditions give us the responsibilities we must assign to the objects in the
design.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.20

: Cashier :System

enterItem(itemID, quantity)

endSale()

makePayment(amount)

description, total

total with taxes

change due, receipt

[more items]

makeNewSale()

loop

Examples: The given examples are related to the Use Case UC1: Process Sale of
NextGen POS.

System Sequence Diagram of the Use case UC1 Process Sale :

System operations.

We can write contracts for these
operations if necessary.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.21

How to write postconditions?

Postconditions are not actions to be performed during the operation;

instead, they are observations about the domain model objects that are true when
the operation has finished.

What happened to the objects in the system (real world) after the operation?

We are still interested in what happened, not how it is performed.

How these contracts are realized is the issue of the design level.

Express postconditions in the past tense to emphasize that they are observations
about state changes.

Analogy: The Stage of a Theater (Taken from Larman)

The system and its objects are presented on a theatre stage.

1. Before the operation, take a picture of the stage.

2. Close the curtains on the stage and apply the system operation (background
noise of clanging, screams, and screeches…).

3. Open the curtains and take a second picture.

4. Compare the before and after pictures and express as postconditions the
changes in the state of the stage (A SalesLineItem was created…).

Now we know the changes, but not how (by whom) they are made.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.22

Contract CO2: enterItem

Operation:

enterItem(itemID: ItemID, quantity: integer)
Reference: Use Cases: Process Sale

PreCond.: There is a sale underway

PostConditions:

- A SalesLineItem instance sli was created
(instance creation)

- sli was associated with the current Sale
(association formed)

- sli.quantity became quantity (attribute
modification)

- sli was associated with a Product Spec.
based on itemID match (association formed)

All objects and classes (for example, sli,

Sale, Product Spec.) mentioned in contracts
are related to the domain model (3.17).
We are not writing the program.

: Cashier :System

enterItem(itemID, quantity)

description, total

[more items]

makeNewSale()

loop

. . .

Example: enterItem

The statement in the use case "Cashier enters item identifier." seems to be simple.

However, associated operations can be complicated.

Therefore we write a contract for this operation.

©2012 - 2022 Feza BUZLUCAhttps://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object Oriented Modeling and Design

3.23

Example: endSale

Assume that in the NextGen POS system, completed sales are not deleted; they
are only marked as "completed" and logged in the system.

Contract CO3: endSale
Operation: endSale()
Cross References: Use Cases: Process Sale
PreConditions: There is a sale underway

PostConditions: - Sale.isComplete became true (attribute modification)

Sale

isComplete: Boolean
date

time

This attribute was not in
the domain model.

We discovered it while
writing the contract.

: System

enterItem
(id, quantity)

endSale()

makePayment
(amount)

Process Sale

1. Customer
arrives ...
2. ...
3. Cashier
enters item
identifier.
4....

Use Cases System Sequence Diagrams

Operation: enterItem

Post-conditions:
- A SalesLineItem instance
sli was created
- . . .

Operation: makeNewSale

Post-conditions:
- . . .

Contracts

make
NewSale()

: Cashier

Sale

date
. . .

Sales
LineItem

quantity

1.. *1 . . .

. . .

domain objects

system
events

system
operations

the domain objects, attributes, and
associations that undergo state changes

Domain Model

Use-Case Model

some ideas and inspiration for the post-
conditions derive from the use cases

Design Model

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

. . .

in addition to the use cases,
requirements that must be
satisfied by the design of the
software

requirements that
must be satisfied by
the design of the
software

3.24

