
1

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.1https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The Micro Development Process (by Grady Booch) (*)

1. Identifying Elements (Classes and Objects)

• Abstractions that form the vocabulary of the problem domain are discovered:

What is and what is not of interest?

• Product: Dictionary (list of things) consisting of all significant classes and
objects, using meaningful names that imply their semantics.

As development proceeds, the dictionary grows.

2. Defining Element Collaborations and Responsibilities

• The purpose is to describe how the identified elements work together to
provide the system’s behavioral requirements.

• We refine the identified elements through the distribution of responsibilities.

• Assignment of responsibilities, separation of concerns

The following four steps start with analysis and continue with the design.

(*) Grady Booch, Robert A. Maksimchuk, Michael W. Engle, "Object-oriented analysis and
design with applications", (3rd Edition), Addison-Wesley, 2007.

Design: Assigning Responsibilities to Objects
Use-Case Realization

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.2https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

3. Defining Element Relationships

• The associations among classes and objects (including specific inheritance
(is-a) and aggregation (has-a) relationships are specified.

• Defining the element relationships establishes the shape of the solution.

4. Detailing Element Semantics

• The detailed internal structure of the elements

• Attributes and algorithms that provide the semantics (responsibilities) of
the elements (classes and objects) we identified earlier.

In this course we focus on the Micro Development Process.

The overall software development lifecycle, the controlling framework for the
micro process.

Activities of the entire development team on the scale of weeks to months.

• Requirements
• Analysis and design
• Implementation
• Test
• Deployment

The Macro Development Process (by Grady Booch)

2

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.3https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

1. Identify responsibilities from use cases (and operation contracts).

2. Search for proper classes to assign the responsibilities.

First search in the set of previously designed software classes.

If there is no proper software class, search in the domain model.

Take a conceptual class from the domain model (real-world), then create a
software class with the same name and assign responsibility to this class.

3. Use design principles and patterns to make your decisions.

4. Express your design using UML class diagrams and interaction (sequence,
communication) diagrams.

Responsibilities of objects: knowing and doing

Doing responsibilities:
• doing something by itself, such as creating an object or doing a calculation
• initiating action in other objects
• controlling and coordinating activities in other objects
Knowing the responsibilities of an object include:
• knowing about private encapsulated data
• knowing about related objects
• knowing about things it can derive or calculate

Steps of Design (See the Figure in 4.4)

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.4https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Use cases

Design:
Assignment of
responsibilities

Software class
diagrams

Sequence
diagrams

Communication
diagrams

source of
classes

Principles and
Patterns

decisions

Responsibilities

"5. System calculates…"

Postconditions

Components of the design:

Design
Model

Contracts

Application Domain
Model

Class names
Associations
Attributes

Conceptual
Classes

3

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.5https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design Principles and Design Patterns

Design principles and software design patterns are used as guidelines for making
decisions at the design level.

Design principles are basic advice about object-oriented design.

For example;

"Model-view separation",
"Favor composition over inheritance",
"Assign responsibilities so that coupling remains low".

A software design pattern is a named and well-known problem/solution pair that
can be applied in new contexts.

Patterns describe solutions discovered by experienced software developers for
common problems in software design.

In this course, first, we will see GRASP patterns, which are proposed by Larman.

After GRASP, we will discuss popular GoF (Gang of Four) design patterns, which
are widely used.

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.6https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

GRASP (General Responsibility Assignment Software Patterns) is a collection of
some principles and basic patterns.

It is composed by Craig Larman * as a learning aid.

However, they also form a good starting point for industrial software projects.

There are 9 GRASP patterns:

1. Controller

2. Creator

3. Information Expert

4. Low Coupling

5. High Cohesion

6. Polymorphism

7. Pure Fabrication

8. Indirection

9. Protected Variations

Design with GRASP

* Craig Larman, Applying UML and Patterns , An Introduction to OOA/D and Iterative
Development, 3/e, 2005.

4

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.7https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Controller (GRASP)

The Controller pattern depends on the Model-View Separation Principle.

Model-View Separation Principle:

• Do not connect or couple non-UI objects (business layer objects) directly to UI
(user interface) objects.

• Do not put application logic (such as a tax calculation) in the UI object methods.

UI objects should only initialize UI elements, receive UI events (such as a
mouse click on a button), and delegate requests for application logic to non-UI
objects (such as domain objects).

The motivation for Model-View Separation includes:

• To allow separate development of the model and user interface layers.

• To minimize the impact of requirements changes in the interface upon the
domain layer.

• To allow multiple simultaneous views on the same model object.

• To allow execution of the model layer independent of the user interface layer,
such as in a message-processing or batch-mode system.

• To allow easy porting of the model layer to another user interface framework.

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.8https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Problem: What first object beyond the UI layer receives and coordinates
("controls") a system operation? (See 4.9)

Solution: (advice)

Place a controller object between two layers.

This object will receive messages from one layer and delegate them to a proper
object in the other layer.

Assign the responsibility to an object representing one of these choices:

a. Facade Controller: Represents the overall "system," a "root object," a
device that the software is running within, or a major subsystem (these are
all variations of a facade controller).

b. Session Controller: Represents a use case scenario within which the system
operation occurs (a use case or session controller).

Controller Pattern:

5

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.9https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

User Interface
Layer

: Cashier

presses button

actionPerformed(actionEvent)

:SaleJFrame System operation

message

: ???
Business (Domain)
Layer

Which class of object is

responsible for receiving this

system event message?

enterItem(itemID, qty)

Problem: What first object beyond the UI layer receives and coordinates
("controls") a system operation?

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.10https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

The controller can be a real-world object (low representational gap) or
an artificial object.

Note that in the domain of POS, a Register (called a POS Terminal) receives all
system inputs from the cashier.

An object of a Register can be the controller in our system.

: Register

Interface Layer

: Cashier

presses button

:Sale
1.1:makeLineItem(itemID,qty)

actionPerformed(actionEvent)

:SaleJFrame

1: enterItem(itemID, qty)

System operation

message

Business (Domain)
Layer

Controller

The controller is a kind of "facade" on the domain layer from the UI layer.

The controller does not perform the operation; it only delegates it.

Solution: Controller

6

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.11https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Facade Controller:

All system operations are
assigned to one controller.

Session Controller:

There is a separate
controller for each use
case.

Choosing a use case controller
is suitable when we have many
system operations and wish to
distribute responsibilities to
keep each controller class
lightweight and focused.

Register

...

endSale()

enterItem()
makeNewSale()

makePayment()

makeNewReturn()
enterReturnItem()
. . .

System

endSale()

enterItem()
makeNewSale()

makePayment()

makeNewReturn()
enterReturnItem()
. . .

ProcessSale
Handler

...

endSale()

enterItem()
makeNewSale()

makePayment()

System

endSale()

enterItem()
makeNewSale()

makePayment()

enterReturnItem()
makeNewReturn()
. . .

HandleReturns
Handler

...

enterReturnItem()

makeNewReturn()

. . .

Two types of controllers:

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.12https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Creator (GRASP)

One of the first problems you will face in OO design is: Who creates object X?

The creation of objects is one of the most common activities in an object-
oriented system.

If the responsibility is assigned well, the design can support low coupling,
increased clarity, encapsulation, and reusability.

Creator pattern:

Problem:
Who should be responsible for creating a new instance (object) of some class?

Solution:
Assign class B the responsibility to create an instance of class A if one of
these is true:
• B "contains" or compositely aggregates A.
• B records A.
• B closely uses A.
• B has the initializing data for A that will be passed to A when it is created.

Later, we will see the Factory (GoF) pattern that provides a detailed solution to
the problem of creating objects.

7

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.13https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design Example: Starting a new sale, makeNewSale

Assume that we have written an operation contract for the makeNewSale operation.

Actually, "make a new sale" (or "start a new sale") is a simple operation and
responsibilities regarding this operation can also be defined without contracts.

However, to be familiar with responsibilities, we make our first designs using
operation contracts.

Contract CO1: makeNewSale
Operation: makeNewSale()
Cross References: Use Cases: Process Sale
Preconditions: none

Postconditions: - A Sale instance s was created (instance creation).
- s was associated with the Register (association formed).
- Attributes of s were initialized (attribute modification).

1. Finding responsibilities:

Postconditions give us the responsibilities.
• Who will create the object s of class Sale?
• Who will associate s with Register?
• Who will initialize s?
• If we haven't chosen the controller yet, we must decide "who will get the
makenewSale operation and delegate it".

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.14https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

2. Assigning responsibilities:

To assign these responsibilities, we will first search in the set of design
(software) classes.

Assume that we are at the beginning of the design; therefore, there is no
software class.

In this case, we will look at the domain model.

• Controller:

When we analyze our POS system, we see that all system operations are entered
via the POS terminal (register).

Therefore, choosing a real-world, device-object facade controller like Register is
satisfactory if there are only a few system operations and the facade controller
is not taking on too many responsibilities.

• Creating the Sale and associating it with the Register:

The Domain Model shows that a Register records a Sale;

Thus, Register is a reasonable candidate for creating a Sale.

By having the Register create the Sale, we can easily associate the Register
because the Register will have a reference to the current Sale instance.

Example: makeNewSale (cont'd)

8

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.15https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• Initializing the Sale:

When the Sale is created, it must create an empty collection (such as a List) to
record all the future SalesLineItem instances that will be added.

Example: makeNewSale (cont'd)

create()

Creator

:Sale

:Register

makeNewSale()

Controller

create() lineItems:
List<SalesLineItem>

Creator

Constructor of Sale
An empty list of objects

Design: makeNewSale

Empty list contradicts

the domain model (1..*)

3. Visualizing the design as UML class and interaction diagrams:

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.16https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Information Expert (or Expert) (GRASP)

Problem:
What is the general principle of assigning responsibilities to objects?

Solution:
Assign responsibility to the information expert, the class, with the
information necessary to fulfill the responsibility.

It is a fundamental guiding principle of object design.
It expresses the common "intuition" that objects do things related to the
information they have.

Design Example: Calculating the grand total of a sale

From the use case "UC1 Process Sale":

5. System presents the total with taxes calculated.

Because of the Model-View Separation principle, we are not concerned with how
the sale total will be displayed (UI), but we must ensure that the total is known.

Besides, we do not consider the calculation of taxes in this iteration.

The responsibility:

Who should be responsible for knowing the grand total of a sale?

9

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.17https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Where to find software classes?

Remember: Firstly, look at the Design Model; assign the responsibility if there is a
relevant software class.

Otherwise, look at the Domain Model and use it to inspire the creation of
corresponding design (software) classes.

In this example, we assume that we are just starting design work, and there is no,
or a minimal, Design Model.

Therefore, we look directly to the Domain Model (3.17) for information experts.

Solution: Who should be responsible for knowing the grand total of a sale?

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.18https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Sales
LineItem

quantity

Sale

date
time

Product
Specification

description
price
itemID

Contains
1..*

1

Described-by

1*

Application Domain Model

Conceptual Class

We need to know about all the SalesLineItem instances of a sale and the sum of
their subtotals.

As per the Domain Model (3.17), A Sale instance contains them.

Following the Information Expert guideline, Sale is an appropriate class for this
responsibility.

:Sale
t := getTotal()

Sale

date
time

getTotal()

Software (Design)
class

Real world Software system

Solution: Calculating the grand total of a sale (contd)

Design Model

10

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.19https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Sale cannot calculate the total by itself.

We need to determine the subtotal of SalesLineItems.

• The SalesLineItem knows its quantity and its associated ProductDescription;
therefore, by Expert, SalesLineItem should determine the subtotal;

• The ProductDescription is an information expert on answering its price;
therefore, SalesLineItem sends it a message asking for the product price.

Design: Calculating the total of the Sale

Sale

date
time

getTotal()

Product
Specification

description
price
itemID

getPrice()

New methods

SalesLineItem

quantity

getSubtotal()

:Sale
t := getTotal() lineItems[i]:

SalesLineItem

1 *: st := getSubtotal()

:Product
Specification

1.1: p := getPrice()

Use the expert principle
carefully.
Sometimes, it can contradict
"Low Coupling" and "High
Cohesion" principles.

Delegation of responsibilities to other classes:

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.20https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Low Coupling (GRASP)

Coupling is a measure of how strongly one element is connected to, has
knowledge of, or relies on other elements.

An element with low (or weak) coupling is not dependent on many other elements.

Forms of coupling from class X to class Y :

• X has an attribute (reference or instance variable) of type Y.

• An X object calls on services (methods) of a Y object.

• X has a method that references an instance of Y. It means a method of X
includes a parameter, local variable, or return value of type Y.

• X is a direct or indirect subclass of Y.

• Y is an interface, and X implements that interface (Java).

A class with high (or strong) coupling is not desirable because

• Changes in other classes (Y) affect the class (X),

• Harder to understand (X) in isolation,

• Harder to reuse (X) because its use requires the additional presence of the
classes on which it depends (Y).

X Y

11

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.21https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Low Coupling pattern:

Problem:
How to support low dependency, low change impact, and increased reuse?

Solution:
Assign a responsibility so that coupling remains low. Use this principle to
evaluate alternatives.

Design Example: Making the Payment, makePayement operation

What class should be responsible for creating a Payment instance and associating
it with the Sale?

Solution 1 (coupling is high):

Since a Register "records" a Payment in the real-world domain, the Creator (and
also Expert) pattern suggests Register as a candidate for creating the Payment.

:Register
makePayment(cash)

p : Payment
1: create(cash)

:Sale
2: addPayment(p)

This assignment of responsibilities couples the
Register class with the Payment class.

Payment

Sale

Register

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.22https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Solution 2 (coupling is lower) Making the Payment :

:Register
makePayment(cash)

: Payment

1.1: create(cash)

:Sale1:makePayment(cash)

With this assignment, the coupling is lower than the first solution.

There is no coupling between Register and Payment.

According to the low coupling pattern, Solution 2 is better than Solution 1.

• Sale creates the Payment.

Sale

Payment

Register

12

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.23https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

High Cohesion (GRASP)
Cohesion (more specifically, functional cohesion) is a measure of how strongly
related and focused the responsibilities of a class are.

A class with high cohesion
• has a relatively small number of methods,
• with highly related functionality,
• and does not do too much work.

If the task is large, it collaborates with other objects to share the effort.

A class with low cohesion does many unrelated things or too much work. Such
classes (with low cohesion) are not desirable because
• hard to understand,
• hard to reuse,
• hard to maintain,
• affected by many changes.

High Cohesion pattern:

Problem:
How to keep objects focused, understandable, and manageable?

Solution:
Assign a responsibility so that cohesion remains high. Use this principle to
evaluate alternatives.

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.24https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Design Example 1: Making the Payment, makePayement operation

We look at the example used in the "Low Coupling" pattern.

What class should be responsible for creating and associating a Payment instance
with the Sale?

Solution 1:

Since a Register "records" a Payment in the real-world domain, the Creator (and
also Expert) pattern suggests Register as a candidate for creating the Payment.

: Register : Sale

addPayment(p)

p : Payment
create(...)

makePayment(...)

In this isolated example, this assignment may be reasonable.
However, since the Register class is a controller, it will become increasingly
incohesive if we continue to make it responsible for doing most of the work related
to system operations.

13

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.25https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Solution 2:

The single "Payment creation" task does not make the Register incohesive.

However, if there are, for example, fifty system operations, all received by
Register, and if Register did the work related to each, it would become a "bloated"
incohesive object.

So, it must delegate some of the work.

As a result, the Sale creates the Payment.

: Register : Sale

makePayment(...)

: Payment
create(...)

makePayment(...)

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.26https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Conclusion:

A real-world analogy: It is a common observation that if a person takes on too many
unrelated responsibilities, especially ones that should properly be delegated to
others, then this person is ineffective.

Like Low Coupling, High Cohesion is a principle to remember during all design
decisions; it is an underlying goal to consider continually.

A highly cohesive class is advantageous because it is relatively easy to maintain,
understand, and reuse.

The reusability of fine-grained, highly related functionality increases because a
cohesive class can fit into various systems.

Design Example 2: Storing a sale into a database

Who is responsible for writing data of a Sale into the database?

Since Sale is the information expert, we may put methods in this class to handle
database operations.

This decision violates "high cohesion" and "separation of concerns" principles.

The Sale class is responsible for the financial operations of a sale.

Database operations should be delegated to another class.

14

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.27https://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design Principles so far:

• Low Representational Gap (between real-world and software)

This is the main idea in object orientation.

We take inspiration from the application (real-world) domain in creating
software classes.

Software classes have the same (similar) names as domain classes.

Software classes have domain-familiar information and responsibilities.

The aim is to improve the understandability of software.

• Separation of concerns: Concerns are related to features of the software.

For example, UI, data, and business models are different concerns.

Calculating the total of a sale, credit card operations, and inventory operations
are different concerns.

Do not insert responsibilities about different concerns into the same class.

The class Sale should not contain methods about UI, database, or inventory.

• Model-View separation:

This principle is a particular case of the "separation of concerns" principle.

Do not directly connect non-UI objects (business layer objects) to UI objects.

Do not put application logic (such as a tax calculation) in the UI object methods.

©2012-2024 Feza BUZLUCA

Object Oriented Modeling and Design

4.28https://www.akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

• Controller (GRASP): Put a controller object between two layers.

• Creator (GRASP): The answer to "Who creates the object X ?".

• Information expert (GRASP): Assign responsibility to the class with the
information necessary to fulfill the responsibility.

• Low Coupling (GRASP): Assign a responsibility so that coupling remains low.

• High cohesion (GRASP): A class with high cohesion has a relatively small
number of methods with highly related functionality and does not do too
much work.

• Modular Design: Modularity is the property of a system that has been
decomposed into a set of cohesive and loosely coupled modules.

Design Principles so far: (cont'd)

