
1

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

OBJECT-ORIENTED PROGRAMMING

IN C++

Feza BUZLUCA

Istanbul Technical University

Computer Engineering Department

http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

This work is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License. (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.2

Main Objectives of the Course :

• To introduce Object-Oriented Programming and Generic Programming

• To show how to use these programming schemes with the C++ programming
language to build “good” (high-quality) programs.

INTRODUCTION

Need for high-quality design and good programming methods:

Problems:

• Software project costs (especially maintenance costs) are getting higher, while
hardware costs are going down.

• Software errors are getting more frequent as hardware errors become almost
non-existent.

The software crisis report by Standish Group in 2015:
• Only 29% of all projects succeeding by delivered on time, on budget, with

required features and functions (with a satisfactory result).
• 52% of software projects were late, over budget, and/or with less than the

required features and functions.
• 19% of projects were failed and were cancelled prior to completion, or

delivered and never used.

2

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.3

The ability to deliver a software system

1. that meets quality needs of different stakeholders (user, developer,
customer …)

o Functionality
o Performance (speed, accuracy, etc.)
o Efficiency (processor, memory, network etc.)
o Reliability (error free)
o Security (access control)
o Maintainability (modify, extend, reuse)
o …

2. on time,

3. within budget.

Goal of a software development Project:

Some of the
software quality
attributes

Just writing a code that runs somehow is not sufficient!

You should consider the quality needs and expectations of the stakeholders of
the system.

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Expectations of different stakeholders (Quality needs):

Source: D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making techniques
for software architecture design,” ACM Computing Surveys, vol. 43, pp. 1-28, Oct. 2011. 1.4

3

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

ISO (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) prepared standards for quality models.

You may find definitions of the quality attributes of a software system in the
following standard.

ISO/IEC 25010: Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models

This standard includes 2 quality models.
A) Quality in use model:

This is the external quality of the system; impact on stakeholders (customer,
direct and indirect users etc.) in specific contexts of use.
B) Product Quality:

These characteristics relate to the software development team.

Details of the quality models are out of scope of this course.

They will be covered in "Object-Oriented Modeling and Design" (8th semester),
and "Software Design Quality " (graduate) courses.

In this course we will give only a brief insight about the quality attributes of a
software system that must be always considered during software development.

Quality characteristics of a software system

1.5

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.6

Internal

Software developer

External

User

• A program must do its job correctly (effectiveness).
• A program must perform as fast as necessary (Time constraints).

• It must not waste system resources (processor time, memory, disk capacity, network
capacity) too much (efficiency).

• It must be reliable (trustful).
• It must be useful, usable and include sufficient documentation (easy to learn and use)
• It must be easy to update the program (flexibility).

• It must be functionally complete and correct.
• It must be efficient (time behavior, resource utilization, capacity).
• Source code must be readable and understandable (comments, documentation).
• It must be easy to extend and update (change) the program according to new

requirements.

• It must be easy to test the program, to find and correct errors.
• Modules of the program must be reusable in further projects.

Quality Attributes of a Software (External and Internal)

While designing and coding a program (and learning a programming language),
these quality attributes must be always kept in mind.

4

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.7

Why Object-Oriented Technology?

Expectations are,

• Reducing the effort, complexity, and cost of development.

• Reducing the cost of the maintenance (finding bugs, correcting them,
improving the system).

• Reducing the cost of extending the system (adding new features).

• Reducing the effort to adapt an existing system (quicker reaction to
changes in the business environment) (Flexibility).

• Reducing the effort to use existing models in a new project (reusability).

• Increasing the reliability of the system (Fewer failures.)

Object-oriented programming technique enables programmers to build high-
quality programs.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Object-Orientation

C++

Task/Problem/Need

Analysis/Planning

Design/Modeling

Implementation
(Coding)

Evaluation Product

Documentation

Software Development Process

1.8

5

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.9

• Analysis: Gaining a clear understanding of the problem. (Role: Analyst)
Understanding requirements. Understanding what the user wants. Requirements
may change during (or after) development of the system!
Understanding the system (the problem). What should the system do?

• Design: Identifying the concepts (entities) and their relations involved in a
solution. (Role: Software architect, designer)
Here, our design style is object-oriented. So entities are objects (classes).
This stage has a strong effect on the quality of the software.

• Implementation (Coding): The solution (model) is expressed in a program. (Role:
Developer)
Coding is connected with the programming language. In this course we will use
C++.

• Documentation: Each phase of a software project must be clearly explained.

• Evaluation: Testing, measurement, performance analysis, quality assessment.
The behavior of each object and of the whole program for possible different
cases must be examined. (Role: Quality assurance, Tester)

Details of the software development process are covered in the "Software
Engineering" course.

Basic steps of the software development process

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.10

The Unified (Software Development) Process - UP
A software development process describes an approach to building, deploying, and
possibly maintaining software.
The Unified Process is a popular iterative software development process for
building object-oriented systems. It promotes several best practices.
• Iterative: Development is organized into a series of short, fixed-length (for
example, three-week) mini-projects called iterations; the outcome of each is a
tested, integrated, and executable partial system. Each iteration includes its own
requirements analysis, design, implementation, and testing activities.
• Incremental, evolutionary
• Risk-driven

Requirements

Analysis

Design

Implement.

Test

Prod.

An iteration step
4 weeks for example

Requirements

Analysis

Design

Implement

Test

Product

Iterations are
Fixed in length.

The system
grows

incrementally

Time

6

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.11

Like any human language, a programming language provides a way to express
concepts.
Program development involves creating models of real world situations and building
computer programs based on these models.
Computer programs may contain computer world representations of the things
(objects) that constitute the solutions of real world problems.

What is programming? Steps of software development

Analyst/ Software Architect / Developer
(Software Engineer)

Programming Language

Real World

Problem
Domain

Abstraction
Modeling

Design
Implementation

Design PatternsDesign Principles
Use cases, Analysis

Program

Solution World

Software
Domain

Problem Scenarios Domain model Design model Program (code) Software
(product)

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.12

Learning a Programming Language

• Knowledge about grammar rules (syntax) of a programming language is not
enough to write “good” programs.

• The most important thing to do when learning programming is to focus on
concepts (design and programming techniques) and not get lost in language-
technical details.

• Rather than the rules of the programming language, the programming scheme
must be understood.
Understanding of design techniques comes with time and practice.

• Always consider quality characteristics (understandability, flexibility, …).

Which Compiler?
Be aware of programming standards and use compilers that support the most
current one.
The current C++ standard is ISO/IEC 14882:2017 (C++17).
C++20 is in progress.

You can get the standard in İTÜ campus from the web site of the British
Standards Online: http://bsol.bsigroup.com/

Information about C++ standards: https://isocpp.org/std/the-standard

7

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

The main objective of this course is not to teach a programming language,
however examples are given in C++.

Properties of the C++ programming language:

• C++ supports object-orientation and generic programming.

• Performance (especially speed) of programs written with C++ is high.

• It is useful in the low-level programming environments, where direct control
of hardware is necessary.

Embedded systems and compiler are created with the help of C++.

• C++ gives the user control over memory management (also increases the
responsibility of the programmer “with authority comes responsibility").

• C++ is used by hundreds of thousands of programmers in every application
domain.

- This use is supported by hundreds of libraries,

- hundreds of textbooks, several technical journals, many conferences.

• C++ programmers can easily adapt to other object-oriented programming
languages such as Java or C#.

1.13

Why C++?

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Application domain of C++:

- Systems programming: Operating systems, device drivers. Here, direct
manipulation of hardware under real-time constraints are important.

- Banking, trading, insurance: Maintainability, ease of extension, reliability.
- Graphics and user interface programs
- Computer Communication Programs

Why C++? (cont'd)

Examples of applications written in C++:

Apple's Mac OS X,

Adobe Systems,

Backend services of Facebook,

Google's Chrome browser,

Microsoft Windows operating systems, MS Office, Visual Studio, Internet
Explorer,

Mozilla Firefox, Thunderbird,

MySQL

are written in part or in their entirety with C++.

1.14

8

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.15

An Obsolete Technique: Imperative/Procedural Programming Technique

• Pascal, C, BASIC, Fortran, and similar traditional programming languages are
imperative languages. That is, each statement (command) in the language tells
the computer to do something.

• In a imperative/ procedural language, the emphasis is on doing things
(functions/procedures).

SHARED

(GLOBAL)

DATA

Main program Functions
• A program is divided into functions

(procedures) and—ideally, at least—
each function has a clearly defined
purpose and a clearly defined
interface to the other functions in
the program.

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.16

Problems with the Imperative/Procedural Programming

• Procedural programs (functions and data structures) do not model the real
world very well.

The real world does not consist of only functions. The real world consists of
objects.

• Data is undervalued, emphasis is on functions.

• Data is, after all, the reason for a program’s existence.

The important parts of a program about a school for example, are not functions
that display the data or functions that checks for correct input; important
parts are student, teacher, course data.

• Data items and related functions are scattered around the program (they are
not in the same module like objects).

• Global data can be corrupted by functions that have no business changing it.

• Creating new (user-defined) data types is difficult.

It is also possible to write good programs by using procedural programming (C
programs).

However, object-oriented programming offers programmers many advantages, to
enable them to write high-quality programs.

9

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.17

The Object-Oriented Approach
The fundamental idea behind object-oriented programming is:

The real world (problem) consists of objects.

Computer programs may contain computer world representations of the things
(objects) that constitute the solutions of real world problems.

The software system (solution) consists of objects.

Thinking in terms of objects: To solve a programming problem in an object-
oriented language, the programmer asks how it will be divided into objects.

Low representational gap: Close match between objects in the programming
sense and objects in the real world increases the quality of the design.

What kinds of things become objects in object-oriented programs?

• Human entities: Employees, customers, salespeople, worker, manager
• Graphics program: Point, line, square, circle, ...
• Mathematics: Complex numbers, matrix, vector
• Computer user environment: Windows, menus, buttons
• Data-storage constructs: Customized arrays, stacks, linked lists

Real world objects

and relations

Software objects

and relations

Low representational gap

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Example:

If you take a look at a university system there are many functions and a big
amount of complexity.
• Students have IDs, they attend to courses, they take grades, their GPAs are

calculated.
• Instructors give courses, they perform some industrial and scientific projects,

they have administrative duties, their salaries are calculated each month.
• Courses are given in specific time slots in a classroom. They have a plan, they

have a list of students.

Considered this way, looking at every element at once, and focusing on functions, a
university system becomes very complex.

Object-oriented modeling:

If you wrap what you see in the problem up into objects, the system is easier to
understand and handle.

There are students, instructors, courses, class rooms and relations between them.

Students take courses; courses are give in class rooms…

Internal mechanisms and various parts that work together are wrapped up into an
object (class).

The Object-Oriented Approach (cont'd)

1.18

10

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Real-world objects have two parts:
1. Attributes (property or state: characteristics that can change),
2. Behavior (or abilities: things they can do, or responsibilities).

Examples:

• Object: Student
Attributes: ID, Name, Birthdate, List of taken courses, …
Behavior (responsibilities): Calculating her GPA, listing the course names

• Object: Class room
Attributes: Capacity, time table
Behavior (responsibilities): Entering date to the time table, showing the time table

Software objects (classes) have also two parts like real-world objects:
1. Data represent attributes,
2. Functions (methods) represent behavior.

The Object-Oriented Approach (cont'd)

1.19

Data

Functions (methods)
Software
object

Attributes

Behavior

Real-world
object

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Encapsulation: To create software models of real world objects both data and the
functions that operate on that data are combined into a single program entity.

Data represent the attributes (state), and functions represent the behavior of an
object.

Data and its functions are said to be encapsulated into a single entity (class).

An object’s functions, called member functions in C++ typically provide the only
way to access its data.

The data is usually hidden, so it is safe from accidental alteration.

If you want to modify the data in an object, you know exactly what functions
interact with it: the member functions in the object. No other functions can
access the data.

This simplifies writing, debugging, and maintaining the program.

Encapsulation and data hiding are key terms in the description of object-oriented
languages.

The other important concepts of the OOP are inheritance and polymorphism,
which are explained in subsequent chapters.

The Object-Oriented Approach (cont'd):
Key Terms: Encapsulation - Data Hiding

1.20

11

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.21

A Point on a plane has two attributes; x-y coordinates.

Abilities (behavior, responsibilities) of a Point are, moving on the plane,
appearing on the screen and disappearing.

We can create a model for 2 dimensional points with the following parts:

• Two integer variables (x , y) to represent x and y coordinates

• A function to move the point: move ,

• A function to print the point on the screen: print ,

• A function to hide the point: hide .

Example of an Object: A Point in a graphics program

Once the model (class) of the point has been
built and tested, it is possible to create and
activate many point objects from this model.

In the example on the right point1, point2,
point3 are three different objects of the same
class (model) Point.

Point point1, point2, point3;
:

point1.move(50,30);
point1.print();
point2.move(0,100);

Point

+ void move(int, int);

- int x, y;

+ void print()
+ void hide()

Model (class) of a point:

(The Unified Modeling Language (UML) is a useful tool to
express the model.)

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.22

A C++ program typically consists of a number of
objects that communicate with each other by calling
one another’s member functions (messaging).

move

print

hide

The Model of an Object

Main program Objects

message
message

message

message

message

Structure of an object-oriented program in C++:

Data (attributes)

Functions (abilities, behaviors, responsibilities)x

y

12

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
1.23

• The object-oriented approach provides tools for the programmer to represent
elements in the problem space (Low representational gap).

• We refer to the elements in the problem space (real world) and their
representations in the solution space (program) as “objects.”

• OOP allows you to describe the problem in terms of the problem, rather than
in terms of the computer where the solution will run.

• So when you read the code describing the solution, you’re reading words that
also express the problem.

• Some benefits of the OOP if the techniques are applied properly:

– Understandability: It is easy to understand a good program. As a consequence
it is easy analyze the program in case of failures and modify it if necessary.

– Low probability of errors
– Flexibility: It easy to add new modules (parts of the software system) or

modify existing modules.
– Reusability: Existing modules can be used in new projects.

– Teamwork: Modules can be written by different members of the team and can
be integrates easily.

Conclusion 1 (Good news)

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

• Programming is fun but it is related (only) to the implementation phase of
software development.

• Development of quality software is a bigger job, and besides programming
skills other capabilities are also necessary.

• In this course we will cover OO basics: Encapsulation, data hiding,
inheritance, polymorphism.

• Although OO basics are important building blocks, a software architect must
also be aware of design principles and software design patterns, which help
us developing high-quality software.

See chess vs. software analogy in the next slides.

• Design principles and patterns are covered in another course:

Object Oriented Modeling and Design (8th semester).

http://www.ninova.itu.edu.tr/tr/dersler/bilgisayar-bilisim-fakultesi/2097/blg-468e/

Conclusion 2 (Bad news)

1.24

13

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Chess:

1. Learning basics: Rules and physical requirements of the game, the names
of all the pieces, the way that pieces move and capture.

At this point, people can play chess, although they will probably not be very
good players.

2. Learning principles: The value of protecting the pieces, the relative value
of those pieces, and the strategic value of the center squares.

At this point, people can become good players of chess.

3. Studying the games of other masters (Patterns): Buried in those games
are patterns that must be understood, memorized, and applied repeatedly
until they become second nature.

At this point people can be master of chess.

1.25

Analogy: Learning to play chess – Learning to design software

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object Oriented Programming

1999 - 2020 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Software:

1. Learning basics: The rules of the languages, data structures, algorithms.

At this point, one can write programs, albeit not very good ones.

2. Learning principles: Object oriented programming.

Importance of abstraction, information hiding, cohesion, dependency
management, etc.

3. Studying the designs of other masters (Patterns): Deep within those
designs are patterns that can be used in other designs.

Those patterns must be understood, memorized, and applied repeatedly until
they become second nature.

This chess analogy has been barrowed from Douglas C. Schmidt

https://github.com/douglascraigschmidt

Learning to play chess – Learning to design software (cont'd)

1.26

