
1

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.1

Operator Overloading

It is possible to overload the built-in C++ operators such as >, +, =, and ++ so that
they invoke different functions depending on their operands.

The + in a+b will perform an integer addition if a and b are fundamental integers
but will call a programmer-defined function if a or b is an object of a class you
have created, e.g., complex3 = complex1 + complex2.

In this way, the types you define will behave more like fundamental data types,
allowing you to express operations between objects more naturally.

Overloading does not actually add any capabilities to C++. Everything you can do
with an overloaded operator, you can also do with a function.

However, overloaded operators (should) make your programs easier to write, read,
understand, and maintain.

Operator overloading is only another way of calling a function.

Looking at it this way, you have no reason to overload an operator except if it will
make the code involving your class easier to write and especially easier to read.

Code is read much more than it is written.

Avoid overloaded operators that do not behave as expected from their built-in
counterparts.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.2

• You cannot overload operators that do not already exist in C++.
You cannot make up a ** operator for (say) exponentiation.
You can overload only the built-in operators.

Even a few of these, such as the dot operator (.), the scope resolution operator
(::), the conditional operator (?:), and sizeof, cannot be overloaded.

• The C++ operators can be divided roughly into binary and unary.
Binary operators take two arguments. Examples are a+b, a-b, a/b, and so on.
Unary operators take only one argument, e.g., -a, ++a, a--, etc.

If a built-in operator is binary, then all overloads of it remain binary. It is also
true for unary operators.

• Operator precedence and syntax (number of arguments) cannot be changed
through overloading. For example, operator * always has higher precedence than
operator +.

All the operators used in expressions that contain only built-in data types
cannot be changed.
For example, you can never overload the operator ‘+’ for integers so that
a = 1 + 7; behaves differently.
At least one operand must be of a programmer-defined type (class).

Limitations of Operator Overloading

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.3

Assume that we design a class ComplexNumber to define complex numbers.
Remember: Complex numbers can be expressed as a + bi, where a and b are real
numbers.
For the complex number z = + bi, a is called the real part, and b is called the
imaginary part.
The size of a complex number is measured by its absolute value, defined by

� � � � �� � �� � ��

Requirement:
We want to use the greater than operator > to compare two programmer-defined
complex number objects.

Example: Comparing complex numbers

// ComplexNumber is a programmer-defined type

ComplexNumber complex1{ 1.1, 2.3 };

ComplexNumber complex2{ 2.5, 3.7 };

if (complex1 > complex2) ...

else ...

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.4

class ComplexNumber {

public:

ComplexNumber(double, double); // Constructor to initialize re. and im.

bool operator>(const ComplexNumber&) const; // Overloading the operator >

:

private:

double m_re{}, m_im{1.0}; // real and imaginary parts are initialized

};

bool ComplexNumber::operator>(const ComplexNumber& in_number) const {

return (m_re * m_re + m_im * m_im) >

(in_number.m_re * in_number.m_re + in_number.m_im * in_number.m_im);

}

Example: Overloading the greater-than operator > for complex numbers

If the ComplexNumber class contains a getSize() method, then we can write the
operator > method as follows:

bool ComplexNumber::operator>(const ComplexNumber& in_number) const {

return getSize() > in_number.getSize();

}

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.5

Since the operator > is defined in the class ComplexNumber, we can use it to
compare the sizes of two complex numbers.

Example: Overloading the greater-than operator > for complex numbers (contd)

int main() {

ComplexNumber complex1{ 1.1, 2.3 };

ComplexNumber complex2{ 2.5, 3.7 };

if (complex1 > complex2)

cout << "complex1 is greater than complex2" << endl;

else

cout << "complex1 is NOT greater than complex2" << endl;

ComplexNumber *ptrComplex; // Pointer to complex numbers

if (complex1 > complex2) ptrComplex = &complex1;

else ptrComplex = &complex2

ptrComplex->print(); // prints the number that has the larger size

:

We can assign the addres of the complex number that has a larger size to a
pointer.

See Example: e05_1.cpp

The object for which the operator
function runs. this points to this object.

The argument to the operator function.
complex1.operator>(complex2);

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.6

A class may contain multiple functions with different signatures for the same
operator.
Assume that we want to compare the size of a complex number directly with a
double literal.
if (complex1 > 5.7) ...

We should write a proper operator> function.
bool operator>(double) const; // Overloading the operator

Example: Comparing a complex number with a double literal

bool ComplexNumber::operator>(double in_size) const {
return sqrt(m_re * m_re + m_im * m_im) > in_size;

}

See Example: e05_2.cpp

If the class ComplexNumber contains a method getSize() that returns the size of
the complex number, we can call in the operator function.

bool ComplexNumber::operator>(double in_size) const {

return getSize() > in_size;

}

2

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.7

If you only want to compare members of two objects, you do not need to write the
body of the overloading function for the operator ==.

In C++20, you can default the equality operator ==.

In this case, the compiler will generate and maintain a member function that
performs the member-wise comparison.

In other words, the de default equality operator compares all corresponding
member variables of the objects in the order of their declaration.

Defaulting the equality operator ==

class ComplexNumber {
:

// Default equality operator, member-wise comparison
bool operator==(const ComplexNumber&) const = default;

If you want to compare the sizes of the complex numbers using the equality
operator, you should provide a new method to overload the operator ==.

If your class contains a pointer, the default equality operator will compare the
addresses in the pointers, not the contents of the memory locations pointed to by
the pointer.

If you want to compare the contents of memory locations, then you must write your
method for the equality operator (remember the programmer-defined String).

See Example: e05_3.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.8

class ComplexNumber{

:

// Signature of the method for operator +

ComplexNumber operator+(const ComplexNumber&) const;

:

};

// The Body of the function for operator +

ComplexNumber ComplexNumber::operator+(const ComplexNumber& in_number) const

{

double result_re, result_im; // Local variables to store the results

result_re = m_re + in_number.m_re;

result_im = m_im + in_number.m_im;

return ComplexNumber(result_re, result_im); // constructor is called

} // creates a local object

Overloading the + operator for ComplexNumber objects

int main()

{

ComplexNumber complex0;

ComplexNumber complex1{ 1.1, 2.3 };

ComplexNumber complex2{ 0, 1.0 };

complex0 = complex1 + complex2;

// like complex0 = complex1.operator+(complex2)

See Example: e05_4.cpp

Returns by-value because
it returns a local object

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.9

Because assigning an object to another object of the same type is an activity most
people expect to be possible, the compiler will automatically create an assignment
operator method type::operator=(const type &) if you don’t make one.

The behavior of this operator is a member-wise assignment. It copies each
member of an object to members of another object.

It is called the default copy assignment operator.

If this operation is sufficient, you don't need to overload the assignment operator.

For example, overloading of assignment operator for complex numbers is not
necessary.

Overloading the Assignment Operator "="

void ComplexNumber::operator=(const ComplexNumber& in) // unnecessary

{

m_re = in.m_re; // Member-wise assignment

m_im = in.m_im;

}

You do not need to write such an assignment operator function because the
operator provided by the compiler does the same thing.

See Example: e05_5.cpp

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.10

With classes of any sophistication (especially if they contain pointers!), you must
create an operator= explicitly.

Overloading the Copy Assignment Operator "="

a
b
c
\0

3

0x00185d12

Destination object

size

contents

8

0x008d0080

Default copy assignment operator provided by the compiler:

Source object

size

contents

8

0x008d0080

s
t
r
i
n
g

1
\0

X

Data is still wasting
memory space.

Example: The programmer-defined String:
size

*contents t e x t \0

destination = source; // Assignment

The same
address

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.11

Example:
Overloading the copy assignment operator for the programmer-defined String
class:

a
b
c
\0

3

0x00185d12

Destination object

size

contents

8

0x00ef0080

s
t
r
i
n
g

1
\0

Source object

size:

contents:

8

0x008d0080

s
t
r
i
n
g

1
\0

Copy assignment operator of the programmer:

X

destination = source; // Assignment

Differenet
addresses

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.12

class String{

public:

void operator=(const String &); // Copy assignment operator

: // Other methods

private:

size_t size;

char *contents;

};

Example:
Overloading the copy assignment operator for the programmer-defined String:

void String::operator=(const String &in_object)

{

if (this != &in_object) { // checking for self-assignment

: // Assignment operations

}

}

A programmer-defined copy assignment operator should start by checking for self-
assignment if the class contains pointers.

Forgetting to do so may lead to fatal errors when accidentally assigning an object to
itself, e.g., string1 = string1;

3

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.13

If the return value of the operator function is void, you cannot chain the
assignment operator (as in a = b = c).

To fix this, the assignment operator must return a reference to the object
called the operator function (its address: *this).

// Assignment operator can be chained as in a = b = c

const String& String::operator=(const String& in_object)

{

if (this != &in_object) { // checking for self-assignment

if (size != in_object.size) { // if the sizes are different

size = in_object.size;

delete[] contents; // The old contents is deleted

contents = new char[size + 1]; // Memory allocation

}

strcpy_s(contents, size+1,in_object.contents);

}

return *this; // returns a reference to the object

}

Return value of the assignment operator function

Example:
Overloading the copy assignment operator for the programmer-defined String
class:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.14

• The copy constructor creates a new object before copying data from
another object.

• The copy assignment operator copies data into an already existing object.

The difference between the assignment operator and the copy constructor

String firstString{ "First String" }; // Constructor is called

String secondString{ firstString }; // Copy constructor

String thirdString = secondString; // Copy constructor
// This is NOT an assignment!

secondString = firstString = thirdString; // Assignment

See Example: e05_6.cpp

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.15

Just like with the copy constructor, you may not always want the compiler to
generate an assignment operator for your class.

Design patterns, such as Singleton, for example, rely on objects that may not be
copied.

To prevent copying, always delete both copy members. Deleting only the copy
constructor or copy assignment operator is generally not a good idea.

String(const String&) = delete; // Delete the copy construtor

const String& operator=(const String&) = delete; // Delete assignement

Deleting the Copy Assignment Operator

Move assignment operators typically "steal" the resources the argument holds
(e.g., pointers to dynamically allocated objects) rather than making copies of them.

For example, the move assignment operator for the String class will copy the size
and contents of the source object to the destination and then assign zero to the
size and nullptr to the contents of the source.

The source object is left empty.

Declaration for the move assignment operator:

const String& operator=(String&&); // Move assignment operator

The Move Assignment Operator:

Not constant
r-value reference

Details are out
of the scope
of the course.

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.16

The same rules apply to all operators. So we do not need to discuss each
operator. However, we will examine some interesting operators.

One of the interesting operators is the subscript operator.

It is usually declared in two different ways:

Overloading the Subscript Operator ”[]”

class AnyClass{

returntype & operator[] (paramtype); // for the left side of an assignment

or
const returntype & operator[] (paramtype) const; // for the right side

};

The first declaration can be used when the overloaded subscript operator
modifies the object.

The second declaration is used with a const object; in this case, the overloaded
subscript operator can access but not modify the object.

If obj is an object of class AnyClass, the expression

obj[i];

is interpreted as

obj.operator[](i);

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.17

// Subscript operator

char & String::operator[](int index)

{

if(index < 0)

return contents[0]; // return first character

if(index >= size)

return contents[size-1]; // return last character

return contents[index]; // return ith character

}

int main()

{

String string1("String");

string1[1] = 'p'; // modifies an element of the contents

string1.print();

cout << " 5 th character of the string is: " << string1[5] << endl;

return 0;

}

The operator will be used to access the ith character of the string.
If index i is less than zero, then the first character, and if i is greater than the
size of the string, the last character will be accessed.

See Example: e05_7.cpp

Example: Overloading of the subscript operator for the String class.

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.18

The function call operator is unique in that it allows any number of arguments.

Overloading the Function Call Operator ()

class AnyClass{

returntype operator() (paramtypes);

};

If obj is an object of class AnyClass, the expression

obj(p1, p2, p3);

is interpreted as

obj.operator()(p1, p2, p3);

// The function call operator to move point objects

bool Point::operator()(int new_x, int new_y){

...

}

Example:

The function call operator is overloaded to move the objects of the class Point.

In this example, the function call operator takes two arguments, i.e., coordinates.

See Example: e05_8.cpp

4

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.19

A function object is an object of a class that overloads the function call
operator.

Function objects can be passed as arguments providing a powerful method to pass
functions.

We will use them after we have covered templates.

Function Objects

Example:

CalculateDistance is a class that contains functions to calculate the distance of
points from (0,0).

class CalculateDistance {

public:

double operator()(int x, int y) const { // Takes the coordinates

return sqrt(x * x + y * y); // distance from (0,0)

}

double operator()(const Point& in_point) const { //Takes a Point object

return in_point.distanceFromZero();

}

};

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.20

In main function we can define a function object of CalculateDistance and use
its functions for distance calculation

int main()

{

CalculateDistance calculateDistance; // A function object

cout << "Distance of (30,40): " << calculateDistance(30, 40);

Point point1{ 10, 20 };

cout << "Distance of the point1 from Zero: " << calculateDistance(point1);

return 0;

}

Example: Function Object (contd)

See Example: e05_9.cpp

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.21

Overloading Unary Operators
Unary operators operate on a single operand. Examples are the increment (++)
and decrement (--) operators; the unary minus, as in -5; and the logical not (!)
operator.
Unary operators take no arguments and operate on the object for which they
were called.
Normally, this operator appears on the left side of the object, as in !obj, -obj,
and ++obj.

void ComplexNumber::operator++()
{

m_re = m_re + 0.1;
}

int main()
{

ComplexNumber complex1{ 1.2, 0.5 };
++complex1; // z.operator++()
complex1.print();
return 0;

}

Example: We define ++ operator for class ComplexNumber to increment the
real part of a complex number by 0.1 .

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.22

// ++ operator

// increments the real part of a complex number by 0.1

const ComplexNumber & ComplexNumber::operator++()

{

m_re = m_re + 0.1;

return *this;

}

int main()

{

ComplexNumber complex0;

ComplexNumber complex1{ 1.1, 2.3 };

complex0 = ++complex1; // operator ++ is called

:

return 0;

}

To assign the incremented value to a new object, the operator function must
return a reference to the object.

Returning the this pointer from the overloading function:

See Example: e05_10.cpp

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.23

Recall that ++ and -- operators come in a "pre" and "post" form.

If these operators are used with an assignment statement, different forms have
different meanings.

z2 = ++z1; // pre-increment. Firstly increment, then assign

z2 = z1++; // post-increment Firstly assign, then increment

The declaration operator++() with no parameters overloads the pre-increment
operator.

The declaration operator++(int) with a single int parameter overloads the post-
increment operator.

Here, the int parameter serves to distinguish the post-increment form from the
pre-increment form. This parameter is not used.

"Pre" and "post" form of operators ++ and --

Object Oriented Programming

1999 - 2023 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

5.24

"Pre" and "post" form of operators ++ and -– (contd)

See Example: e05_11.cpp

Example:

Overloading pre- and post-increment operators for the ComplexNumber class.

class ComplexNumber {

public:

:

const ComplexNumber& operator++(); // pre-increment ++ operator

ComplexNumber operator++(int); // post-increment ++ operator

:

}

// post-increment ++ operator

// increments the real part of a complex number by 0.1

ComplexNumber ComplexNumber::operator++(int)

{

ComplexNumber temp{ *this }; // creates a copy of the original object

m_re = m_re + 0.1; // increment operation

return temp; // returns the copy of the original object

}

Return-by value because
it returns a local object.

Temporary local object

