
1

Object-Oriented Programming

1999 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

10.1

Writing a program from scratch every time would be a tedious task.

Many programs require similar functions, such as reading input from the keyboard,
calculating square roots, and sorting data records into specific sequences.

C++ includes a vast amount of pre-existing code that offers various features,
saving you the hassle of writing the code from scratch.

Examples are numerical calculations, string processing, sorting and searching,

organizing and managing data, and input and output.

All this standard code is defined in the Standard Library.

The Standard Template Library (STL), as a subset of the C++ Standard Library,
contains function and class templates for managing and processing data in various
ways.

With each new release of the C++ standard, the variety of types and functions also
grows.

This chapter does not (cannot) describe the standard library in detail.

It would be best if you referred to books and online documents.

THE STANDARD LIBRARY

THE STANDARD TEMPLATE LIBRARY (STL)

Object-Oriented Programming

1999 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

10.2

The pointers we have covered up to now are referred to as raw pointers.

Variables of raw pointers contain only an address.

They are a part of the C++ language.

A smart pointer is a class template that enables the creation of objects that
behave like raw pointers.

These objects contain an address and can be utilized in similar ways.

One of the most significant advantages of using a smart pointer is that we do not
need to free the memory manually using the delete or delete[] operator.

We create the object and then let the system take care of deleting it at the
correct time.

No garbage collector runs in the background (like in Java and C#); memory is
managed according to the standard C++ scoping rules so that the runtime
environment is faster and more efficient.

There are three types of smart pointers, defined in the std namespace:

• unique_ptr<T>

• shared_ptr<T>

• weak_ptr<T>

Smart Pointers:

Object-Oriented Programming

1999 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

10.3

unique_ptr<T>:

It is an object of a template that behaves as a pointer to type T.

It is “unique” because there can be only one single unique_ptr<T> object (pointer)
containing the same address.

In other words, there can never be two or more unique_ptr<T> objects
simultaneously pointing to the same memory address.

Example:

Unique pointers to ColoredPoint objects

int main(){

std::unique_ptr<ColoredPoint> ptr1 {new ColoredPoint{10,20,Color::Green }};

{ // A new scope

auto ptr2{ std::make_unique<ColoredPoint>(30, 40, Color::Blue) };

ptr2->print();

} // End of scope // object pointed to by ptr2 is deleted automatically

ptr1->print();

return 0; // object pointed to by ptr2 is deleted automatically

}

Smart Pointers (contd):

See Example e10_1.cpp

Object-Oriented Programming

1999 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

10.4

shared_ptr<T>:

Different than unique_ptr<T>, there can be any number of shared_ptr<T>
objects that contain or share the same address.

Now, we can make a copy of the pointer.

The data pointed to by shared pointers is deleted only if all the pointers holding
that memory get out of scope.

This is done by maintaining a reference counter.

The reference counter keeps track of how many pointers are pointing to a
particular memory location.

The destructor will check the reference counter and free the memory only if the
reference counter value is 1.

Example:

Smart Pointers (contd):

std::shared_ptr<ColoredPoint> ptr1 {new ColoredPoint{10,20,Color::Green }};

{// A new scope

std::shared_ptr<ColoredPoint> ptr2{ ptr1 }; // Copy of the pointer

} // End of scope. The object will not be deleted.

return 0; // The object is deleted.
See Example e10_2.cpp

Object-Oriented Programming

1999 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

10.5

weak_ptr<T>:

The weak_ptr is similar to the shared_ptr.

The only difference is that when we create a weak_ptr to a shared_ptr, the
reference count does not increase.

Therefore, the smart pointer will free the memory regardless of whether the
weak_ptr is still in scope or not.

Example:

std::weak_ptr<ColoredPoint> ptr1;

{ // A new scope

std::shared_ptr<ColoredPoint> ptr2{new ColoredPoint{10,20,Color::Green }};

ptr1 = ptr2; // weak_ptr points to same object as shared_ptr

} // End of scope. The object will be deleted.

// smart_ptr1->print(); The object does not exist

// smart_ptr still exist.

cout << smart_ptr1.use_count() << endl;

// The Number of pointers sharing the same object. weak_ptr does not count

return 0;

}

Smart Pointers (contd):

See Example e10_3.cpp

Object-Oriented Programming

1999 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

10.6

This chapter will be extended.

The Standard Template Library (STL)

• Containers

• Algorithms

• Iterators

