
1

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.1

Relationships Between Objects

In the real world, there are relationships between objects.

Examples:

Students enroll in courses.

Classes have classrooms.

Professors have a list that contains the courses they offer.

The university consists of faculties, and faculties consist of departments.

The dean of the faculty is a professor.

A Ph.D. student is a kind of student.

The objects can cooperate (interact with each other) to perform a specific task.

Examples:

A professor can get the list of the students from the course object.

A student can get her grades from the related course objects.

A university can send an announcement to all faculties, and faculties can
distribute this announcement to their departments.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.2

Relationships Between Objects (contd)

In object-oriented design (OOD), we try to lower the representational gap
between real-world objects and the software components.

This makes it easier to understand what the code is doing.

To represent real-world relationships, we also create relationships among
software objects.

Types of relationships in object-oriented design (OOD):

There are two general types of relationships, i.e., association and inheritance.

• The association is also called a "has-a" ("uses") relationship.

• The inheritance is known as an "is-a" relationship.

Example:

A course has a classroom.

The dean of the faculty is a professor.

Although association itself is not a has-a relationship, its subtypes aggregation
and composition are kinds of the has-a relationship.

In this section, we will cover association, aggregation, and composition.

The Inheritance (is-a) relationship will be covered in the coming sections.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.3

• Association means objects of class A can send messages to (call methods of)
objects of another class B.

Objects of class A can use services given by class B.

• Objects of A know objects of B, and they communicate with each other.

Class A has pointers (or references) to objects of class B.

• The relationship may be unidirectional or bidirectional (where the two objects
are aware of each other).

If the relationship is bidirectional, class B also has pointers (or references) to
objects of class A.

• There may be one-to-one, one-to-many, and many-to-many associations between
objects.

• The objects that are part of the association relationship can be created and
destroyed independently.

Each of these objects has its own life cycle.

• There is no “owner”.

Association ("uses-a" relationship):

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.4

Example:

Students register for courses.

• A student object can have a list of active courses they registered for.

• A course class can also have a list of the students taking that course
(bidirectional).

• A student is associated with multiple courses. At the same time, one course is
associated with multiple students (many-to-many).

• A student object can call methods of course classes, for example, to get the
grade.

• If there is a bidirectional relation, the course class can also call the methods of
the student class.

• Each of these objects has its own life cycle.

The department can create new courses. In this case, new students are not
created.

When a course is removed from the department's plan, the students are not
destroyed.

Students can add or drop courses.

Association (contd):

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.5

UML Notation:

Example: Association between students and courses (contd):

myCourses *
Course

CRN

grades

getGrade()

Student

name

ID

getName()

*

{List}

Summary:

An association is a weak “using” relationship between two or more objects in
which the objects have their own lifetimes, and there is no owner.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.6

A B

The direction of messages is unspecified. Both may send messages to each other.

Direction of the message flow:

Multiplicity:

Multiplicity indicates the number of possible combinations of objects of one class
associated with objects from another class.

In other words, it shows the number of objects from that class that can be linked
at runtime with one instance of the class at the other end of the association line.

Instructor Course
teaches 1 *

An instructor teaches zero or more courses (read from left to right).
An association may also be read in reverse order.
A course is given exactly by one instructor (read from right to left).

Multiplicity

UML Class diagrams for association:

2

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.7

A B
1 1..*

Multiplicity

{List}

Constraint

One object of class A is associated
with one or more objects of class B
at a time.
Class A includes a list that can
contain one or more objects of
class B.

Zero or more, many
A

*

One or moreA
1..*

One to fortyA
1..40

Exactly fiveA
5

A
3, 5, 8

Exactly 3, 5, or 8

Example: Multiplicity

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.8

• Aggregation is a specialized form of association between two or more objects.

• It indicates a “Whole/Part” ("has-a") relationship.

• Each object has its own life cycle, but ownership also exists.

• The same part-object can belong to multiple objects at a time.

• The whole (i.e., the owner) can exist without the part and vice versa.

• The relation is unidirectional. The whole owns the part(s), but the part does not
own the whole.

Example:

A department of the faculty has professors.

• A professor may belong to one or more departments at some universities.

• Parts (professors) can still exist even if the whole (the department) does not
exist.

• If all professors retire or resign, the department can still exist and wait for
new professors.

• A department may own a professor, but the professor does not own the
department.

Aggregation:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.9

In UML diagrams, we use an empty diamond to present the aggregation
relationship.

Aggregation

(empty diamond)

Department
1..* *

Professor

A department has professors.
(Aggregation)

The department is the owner. A department can have zoro
or many Professors.

A professor can work in one or more departments simultaneously.

A department has professors.

Example (contd):

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.10

Example: An active course has a classroom.

class Course{

private:

ClassRoom* assignedRoom;

:

};

If the owner is clear, we do not need to indicate it on diagrams.

We can also use an arrow to represent the aggregation, like for associations.

Remember: Aggregation is a special type of association where there is an owner.

assignedRoom
ClassRoomCourse

assignedRoom
ClassRoom

id

building

capacity

getCapacity()

Course

crn

numOfStudents

isAvailable()

In C++, the association and aggregation relationships are implemented nearly
similarly.

The name of data
in the owner class

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.11

Example: An active course has a classroom (contd)
class ClassRoom { // Declaration/definition of the Classroom

public:

:

unsigned int getCapacity() const { return m_capacity; }

private:

std::string m_building;

std::string m_id;

unsigned int m_capacity{}; // capacity initialized to zero

};

class Course {

public:

// Initialize crn, number of students, and the classroom

Course(const std::string&, unsigned int, const ClassRoom*);

bool isAvailable() const; // Are there available seats?

private:

:

const ClassRoom* m_classRoom; // The course has a classroom

};

Constructer gets the address of
the assigned classroom.

Course has a pointer to
ClassRoom objects.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.12

See Example e06_1.cpp

Example: An active course has a classroom (contd)
// Constructor to initialize crn, number of students, and the classroom

Course::Course(const std::string& in_crn, unsigned int in_numOfStudents,

const ClassRoom* in_classRoom)

: m_crn{ in_crn }, m_numOfStudents{ in_numOfStudents },

m_classRoom{ in_classRoom }

{} The pointer in the Course object
points to the ClassRoom object.

bool Course::isAvailable() const {

return m_classRoom->getCapacity() > m_numOfStudents;

} The Course object calls the
method of the ClassRoom object.

int main(){

ClassRoom classRoom1{ "BBF", "D5102", 100 }; // Classroom is created

Course BLG252E{ "23135", 110, &classRoom1 }; // Course is created

if (BLG252E.isAvailable()){

room_id = BLG252E.getClassRoom()->getId(); // Chain of function calls

... Returns the pointer to the
ClassRoom object.

getId() of the
ClassRoom is called.

A Course object does not create
or delete ClassRoom objects.
Each object has its own life cycle.

3

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.13

• The Composition is also a specialized form of association and a specialized form
of aggregation.

Composition is a strong kind of “has-a” relationship.

• It is also called a "part-of" or "belongs-to" relationship.

Examples:

- University is composed of departments, or departments are parts of a university.

- A rectangle is composed of four points.

- Rooms belong to a house.

• The objects' lifecycles are tied.

The part object (room) cannot exist without the owner/whole (house).

When the owner object is deleted, the part objects are also deleted.

Sometimes, the owner can still exist without some parts (members).

The whole and part objects are created together.

Constructors in C++ will ensure the creation of the parts when the owner is
created.

• The relation is unidirectional.

Composition:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.14

In UML diagrams, the composition is represented by a filled diamond arrowhead.

Compositon (contd):

Compositon

(filled diamond)

University 1..*
Department

University is the whole. A university has at least one
or many departments.

Head

LegHumanHand

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.15

Example: A triangle is composed of three Point objects.

Triangle

Trinagle(int,int,

int,int,int,int)

print()

getPerimeter()

3

Usually, we do not show the parameters
and their types in UML class diagrams
if they are unrelated to our design
decisions.

The developer (programmer) can decide
on them.

m_corner1,

m_corner2,

m_corner3,

3

Point

m_x: Integer

m_y: Integer

Point(int, int)

print()

operator-(const Point&):double

Member variables in
the Triangle class

A Triangle object is
composed of three
Point objects.

Calculate the distance
between two points.

(Operator overloading)

Type of the return value

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.16

class Triangle {

public:

// Constructor with three points

Triangle(const Point&, const Point&, const Point&);

// Constructor with the coordinates of three corners

Triangle(int, int, int, int, int, int);

// Calculates and returns the perimeter of the triangle

double getPerimeter()const;

void print()const; // Prints the corners

private:

// Corners of the triangle

Point m_corner1, m_corner2, m_corner3; // Composition

};

Example: A triangle is composed of three Point objects (contd).

Point objects (parts) are created in the constructors of the Triangle object
(whole, owner).

When the Triangle objects are destroyed, Point objects contained by them are
also destroyed.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.17

constructor(int, int, int, int, int, int)
getPerimeter()
print()

Triangle

Point m_corner1

Point m_corner2

Point m_corner3

m_x
m_y

constructor(in,int)
Copy Consructor

operator-()
print()

Point

m_x
m_y

m_x
m_y

m_x
m_y

Example: A triangle is composed of three Point objects (contd).

Triangle objects in memory:

Triangle triangle1{10, 20, 30, 40, 50, 60};

This statement creates a Triangle object
tirangle1 that contains three Point objects
m_corner1(10,20), m_corner2(30,40), and
m_corner3(50,60).

These Point objects are created in the
constructor of the Triangle class when it runs for
the triangle1 object.

When the triangle1 object goes out of scope,
these Point objects will also be destroyed.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.18

Example: A triangle is composed of three Point objects (contd)

The author of the Triangle class must call the constructors of the Point class
properly to create point objects.

In this example, we assume that the Point class has only the following two
constructors:

Point(int, int); // Constructor to initialize x and y coordinates

Point(const Point&); // Copy Constructor

The constructors of the Tringle class must call one of these constructors.

// Constructor with the coordinates of three corners

Triangle::Triangle(int corner1_x, int corner1_y, int corner2_x,

int corner2_y, int corner3_x, int corner3_y)

:m_corner1{ corner1_x, corner1_y }, m_corner2{ corner2_x, corner2_y },

m_corner3{ corner3_x, corner3_y }

{}

This constructor takes the x and y coordinates of three corner points (six integers)
and calls the constructor of the Point class three times, once for each corner point.

The constructor of the Point is called.

4

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.19

Example: A triangle is composed of three Point objects (contd)

The author of the Triangle class must call the constructors of the Point class
properly to create point objects.

// Constructor with three points

Triangle::Triangle(const Point& in_corner1, const Point& in_corner2,

const Point& in_corner3)

:m_corner1{ in_corner1 }, m_corner2{ in_corner2 },

m_corner3{ in_corner3 }

{}

This constructor takes references to three existing point objects and calls the
copy constructor of the Point class three times, once for each corner point.
The member points of the triangle are created as copies of the input points.

Since the Point class does not contain a default constructor in this example, the
author of the Triangle class cannot create corner points as follows:

// Constructor that calls the default constructor of the Point

Triangle::Triangle():m_corner1{}, m_corner2{}, m_corner3{} //Error!

{}

or

Triangle::Triangle(){} //Error! If the Point does not contain a default constructor

The copy constructor of the Point is called.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.20

Example: A triangle is composed of three Point objects (contd)

Objects of the Triangle can use public methods of its member points to fulfill
its tasks.

// Calculates and returns the perimeter of the triangle

double Triangle::getPerimeter()const {

return (m_corner2 - m_corner1) + (m_corner3 - m_corner2)

+(m_corner1 - m_corner3);

}

// Prints the corners

void Triangle::print()const {

cout << "Corners of the triangle:" << endl;

m_corner1.print();

m_corner2.print();

m_corner3.print();

}

See Example e06_2.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.21

Default Constructors and Destructors in composition:

Remember, when the programmer does not write a constructor, the compiler
provides a default default constructor.

The default default constructor of the whole (owner) calls the default
constructor of the parts.

If the Part class contains a programmer-written default constructor, the default
default constructor of the Whole calls it automatically.

When the whole object goes out of scope, the destructors are called in reverse
order, i.e., the Whole object is destroyed first, then the member objects (parts).

See Example e06_3a.cpp

See Example e06_3b.cpp

See Example e06_3c.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.22

Dynamic Member objects (Pointers as members)

Instead of automatic objects, data members of a class may also be pointers to
objects of other classes (parts).

Example: The Triangle class contains pointers to Point objects.

class Triangle {
:

private:
// Pointers to corners of the triangle

Point *m_ptr_corner1, *m_ptr_corner2, *m_ptr_corner3;
};

Now, only the pointers (addresses) of Point objects are included in the objects of
the Triangle.

Point *m_ptr_corner1

Point *m_ptr_corner2

Point *m_ptr_corner3

m_x
m_y

m_x
m_y

m_x
m_y

Triangle object

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.23

If the relationship is aggregation, the owner should get the addresses of its
members as parameters to its constructors.

If the relationship is composition, the whole must create and initialize part objects
(memory allocation) in the constructor.

Example: The Triangle class contains pointers to Point objects.

Since the relationship is composition, the member objects must be created in the
constructor of the Triangle.

// Constructor with the coordinates of three corners

Triangle::Triangle(int corner1_x, int corner1_y,

int corner2_x,int corner2_y, int corner3_x, int corner3_y)

:m_ptr_corner1{ new Point{corner1_x,corner1_y} },

m_ptr_corner2{ new Point{corner2_x,corner2_y} },

m_ptr_corner3{ new Point{corner3_x,corner3_y} }

{}

Dynamic Member objects (Pointers as members) (contd)

The constructor of the Point is called.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.24

If the relationship is composition and memory is allocated in the constructor, then
these memory locations must be released (in most cases) in the destructor.

Example: The Triangle class contains pointers to Point objects.

Dynamic Member objects (Pointers as members) (contd)

// Destructor

Triangle::~Triangle()

{

delete m_ptr_corner1;

delete m_ptr_corner2;

delete m_ptr_corner3;

}

See Example e06_4.cpp

The destructor of the Point
is called.

5

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.25

Association

Aggregation

Property Association Aggregation Composition

Relationship type Otherwise
unrelated

Whole/part Whole/part

Relationship verb Uses-a Has-a Part-of

Members can belong
to multiple classes

Yes Yes No

Members’ existence
managed by owner

No No Yes

Directionality Unidirectional or
bidirectional

Unidirectional Unidirectional

Summary: Asscociation, Aggregation, Compoisiton

Composition

Weak

Mild

Strong

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.26

Visibility Between Objects

Visibility means that one object can "see" or have reference to another object.

To send a message to another object, the sender must have a reference or a
pointer to the receiver object.

How can the Sender call Receiver's mR() method?

The sender must "see" the receiver.
m_r.mR();

m_rPtr->mR();

During the design of a system as a set of interacting objects, it is necessary to
ensure that the required visibility is achieved between objects to support message
interaction.

Types of visibility:

There are four ways that visibility can be established from object A to object B:

• Attribute visibility: B is an attribute of A.

• Parameter visibility: B is a parameter of a method of A.

• Local visibility: B is a (non-parameter) local object in a method of A.

• Global visibility: B is in the global space of A.

Sender

mS();

m_r

m_r: Receiver

A B

A B

Receiver

mR();

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.27

Types of visibility:
Example:

In the example e06_1.cpp, the Course class has a pointer to its classroom.

In the main function, we create the object of the ClassRoom and send it to the
constructor of the Course object to establish the attribute visibility from the
Course object to the ClassRoom object.

Now the Course object can "see" the ClassRoom object.

class Course{

private:

ClassRoom* assignedRoom; // The course has a classroom

:

};

ClassRoom classRoom1{ "BBF", "D5102", 100 } // ClassRoom object is created

Course BLG252E{ "23135", 110, &classRoom1 }; // Visiblity

Example:

In the examples e06_2.cpp and e06_4.cpp corner points of the Triangle are
created in the constructor of the Triangle class.

There is attribute visibility from the Triangle to the corner objects.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.28

Sending this as an argument to establish visibility:

In an object-oriented program, a class (Client) may get services from another
class (Server) by calling its methods.

The Server class may also need to access the members of the Client class to give
these services.

If this is the case, the Client object can send its address (this) to the Server
object to enable the Server to (see) access the public members of the Client
object. Now, we have a bidirectional association (visibility)

Example:

We have a class called GraphicTools that contains tools that Point objects can
use.

For example, the method distanceFromZero of the GraphicTools calculates the
distance of a Point object from zero (0,0).

We assume that the Point class does not have the ability to calculate distances.

The Point class may contain a pointer to the object of the GraphicTools.

The distanceFromZero method of the GraphicTools can get the reference to a
Point object for which the distance is calculated.

Now, both of the objects can see each other.

Example: Parameter visibility

Client Server

Client Server

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.29

class Point {

public:

//Constructor receives the address of the GraphicTools object for visibility

Point(int, int, GraphicTools*);

private:

GraphicTools * m_toolPtr; // Visibility to GrpahicsTool

};

:

double Point::distanceFromZero() const {

return m_toolPtr->distanceFromZero(*this); // sending this for visiblity

}

The methods of the Point can access methods of the GraphicTools.
Since the method sends this pointer, the method of the GraphicTools can also
access methods of the Point class (bidirectional association).

Example: Parameter visibility (contd)

double GraphicTools::distanceFromZero(const Point& in_point) const {

double local_x = in_point.getX(); // Can call methods of the Point

double local_y = in_point.getY();

return sqrt(local_x * local_x + local_y * local_y);

}

Parameter visibility

See Example e06_5.cpp

Point GraphicTools
*m_toolPtr

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.30

Example: Partial class diagram of an exemplary software system for a school.

Professor

Department

Course
myCourses1 *

{Vector}*

1

ClassRoom

Student
myCourses1..*

{List}

5..*

Project

*

1..*

Parameter visibility

Dependency

6

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.31

Industrial software systems generally comprise many collaborating objects linked
together using pointers and references.

All these objects must be created, linked together (visibility), and destroyed at
the end.

The Standard Library of C++ includes smart pointers, which ensure all objects are
deleted in a timely manner.

A smart pointer is a wrapper class template that owns a raw pointer and overloads
necessary operators like * and -> .

Smart pointers are used like standard pointers.

Unlike standard pointers, they can destroy objects automatically when necessary.

C++ Standard Library smart pointers:

• std::unique_ptr<type>: It ensures the object is deleted if it is not
referenced anymore.

• std::shared_ptr<type>: It is used when an object has (shared by) multiple
owners. It is a reference-counted smart pointer.
The raw pointer is not deleted until all shared_ptr owners have gone out of
scope or given up ownership.

We will cover smart pointers in detail in Chapter 10.

Smart pointers:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.32

Interaction diagrams illustrate how objects interact via messages in runtime.
There are two common types: communication and sequence interaction diagrams.
Both can express similar interactions.
Sequence diagrams are more notationally rich, but communication diagrams also
have their use, especially for wall sketching.

UML Interaction Diagrams

Communication diagrams:
They illustrate object interactions in a graph or network format, where objects
can be placed anywhere on the diagram.

:ClassA

nb:ClassB

1: message2()

2: message3()

message1()

cd Example Diagram

Name of the diagram

cd: Communication
diagram Any instance

(object)
of Class A

Object nb

of ClassB

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.33

Direction of

the message

First message

(External)
parameter

First internal message

Link

Object
Creates a new object

Constructor call

:Course

1: offerCourse(crn)

1.1: create(crn)

: Faculty :Department
offerCourse(crn)

Example:

A communication diagram that presents a message flow about offering a new
course at the beginning of a semester.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.34

Sequence numbers of messages:

The external message is not numbered.

:ClassA
msg1()

:ClassB
1: msg2()

:ClassC

1.1: msg3()

2.1: msg5()

2: msg4()

:ClassD

2.2: msg6()

First Second

Third

Fifth

Sixth

Fourth

Nested message

It is sent in the
method of msg2

A B C D

msg2()

1:
msg3()

1.1:

2:
msg5()

msg4()

msg6()

2.2:
2.1:

msg1()

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.35

The message is only sent if the clause evaluates to true.

1 [color = red] : calculate()
:ClassA : ClassB

message1()

Conditional message

Conditional Messages:

Iteration or Looping:

iteration is indicated with a * and an optional

iteration clause following the sequence number

1 * [i:=1..N] : num := nextInt()
: Simulator :Random

runSimulation ()

1 * grade := getGrade(this)
: Student :Course

getGPA ()

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.36

Sequence diagrams also illustrate the interactions between objects.
They clearly show the sequence or time ordering of messages.

Sequence diagrams:

:ClassA nb: ClassB

message2()

message1()

message3()

sd Example

Any instance

(object)
of Class A

Object nb

of ClassB

Name of the diagram

sd: Sequence
diagram

Body (lifetime)

of the method
Lifeline of the

object

7

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.37

Example:

: School :Department

openCourse(crn)

openCourse(crn)

: Course
create(crn)

Creates a new object
Constructor call

Object

Message

Illustrating Reply or Returns:

A sequence diagram may optionally
show the return from a message as a
dashed open-arrowed line at the end
of an activation box.
There are two ways to show the return
result from a message:
1. Using the message syntax:
returnVar := message(parameter)

2. Using a reply (return) message line.

: ClassA : ClassB

reply := getSomething()
msg1()

msg4()

msg5()

getSomething()

reply

New Object

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.38

:A :B

calculate()

msg1()
msg x

msg y

opt [color = blue]

sd if-then

Label

Frame

if condition is true

Conditional Messages:

To support conditional and looping constructs, the UML uses frames.

Frames are regions or fragments of the diagrams; they have an operator or label
(such as loop or opt) and a guard (conditional clause).

To illustrate conditional messages, an opt frame is placed around one or more
messages.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

6.39

Looping:

:Simulator :Random

hours := nextInt()

runSimulation()

:Programmer

work(hours)

[i:=1..N]

eat()

loop

Borders of

The for loop

Guard

Continuation condition

