
1

10.1

Computer Architecture

2013 - 2018 Feza BUZLUCA
www.faculty.itu.edu.tr/buzluca

www.buzluca.info

10 Floating-Point Numbers

or

Base 2:

To store real numbers (too small / big numbers) in the memory the exponential
notation (scientific notation) is used.

or , ,

Base 10:

10.1 Scientific notation, exponential notation:

±F x B±E

F: Fraction (mantissa, significand)
E: Exponent
B: Base

± F and ± E are stored in the memory.
The base B is implicit and does not need
to be stored. It is the same (in
computers B=2) for all numbers.

Examples (Base 10):

a)
976,000,000,000,000 = +0.976 x 1015

+976 and +15 are stored in the memory.

b)
0.000 000 000 000 976 = +0.976 x 10-12

+976 and -12 are stored in the memory.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

10.2

Computer Architecture

2013 - 2018 Feza BUZLUCA
www.faculty.itu.edu.tr/buzluca

www.buzluca.info

Normalized Number:

A number can be written in exponential form in many ways.

For example 3.14 = 314x10-2 = 3.14x100 = 0.314x101

In normalized notation the location of the radix point is predetermined.

For example, the exponent (E) can be chosen so that the point is always to the left
of the most significant digit.

Example:
3.14 normalization → 0.314x101

This number can be stored as ±F ±E → +314 +01

It is not necessary to store the base (now it is 10) and the location of the point.

There are also other methods to normalize the numbers.
For example the point can be placed to the right of the most significant digit.

Biased Exponent:

Exponent values are signed and they can be negative (small numbers) and positive.

It is difficult to compare signed numbers (2's complement).

To make the comparison easier the exponent is biased (added with a fixed bias)
before being stored, by adjusting its value to make it unsigned suitable for
comparison. (Now we don't need to store the sign of the exponent)

2

10.3

Computer Architecture

2013 - 2018 Feza BUZLUCA
www.faculty.itu.edu.tr/buzluca

www.buzluca.info

10.2 IEEE 754 Standard (1985, updated in 2008)

S Exp. Fraction

Sign E F

1 8 23

Single (32-bit)

S Exp. Fraction

Sign E F

1 11 52

Double (64-bit)

Exponent is biased by 127. Exponent is biased by 1023.

If E consists of k bits the exponent value is biased by adding (2k-1 -1).

In the current standard there are also half (16-bit) and quadruple (128-bit)
numbers.

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical
standard for floating-point computation established in 1985 by the Institute of
Electrical and Electronics Engineers (IEEE).

Many hardware floating point units and compilers use the IEEE 754 standard.

10.4

Computer Architecture

2013 - 2018 Feza BUZLUCA
www.faculty.itu.edu.tr/buzluca

www.buzluca.info

The radix point is to the right of the most significant digit that is not zero.

As we are working with base-2 the digit different than “0”is “1”.

Example:

(normalization)

(10110.101)2

As there is always a "1" on the left side of the point, this "1" is not stored in the
memory either.

This "1" is called hidden one.

Normalized Number (IEEE 754):

1.0110101x 24

3

10.5

Computer Architecture

2013 - 2018 Feza BUZLUCA
www.faculty.itu.edu.tr/buzluca

www.buzluca.info

0 10000011 0110101...000

How to store (+22.625)10 in IEEE single format?

(22)10 = (10110)2

Converting (.625)10 to base 2:

2 x 0.625 = 1 + 0.25

2 x 0.25 = 0 + 0.5

2 x 0.5 = 1 + 0

Most significant bit

 (0.625)10 = (0.101)2

(+22.625)10 = (+10110.101)2 = +1.0110101 x 24 (Normalized)

IEEE Single:

Fraction
(Mantissa)

The least significant bits of the
fraction are filled with “0”,
because the point is on the left.

Sign
+

Biased exp.
4 + 127
= 131

5/8

Example:

Hidden 1 is not stored. Base 2, implicit, not stored.

1 bit 8 bits 23 bits

10.6

Computer Architecture

2013 - 2018 Feza BUZLUCA
www.faculty.itu.edu.tr/buzluca

www.buzluca.info

Examples (Single):

The value of the number in Base 10 (N):

Single: Double:

S E F

0 10010011 10100010000000000000000 = +1.1010001 x 210100 = +1.6328125 x 220

1 10010011 10100010000000000000000 = - 1.1010001 x 210100 = -1.6328125 x 220

0 01101011 10100010000000000000000 = +1.1010001 x 2-10100 = +1.6328125 x 2-20

1 01101011 10100010000000000000000 = - 1.1010001 x 2-10100 = -1.6328125 x 2-20

To represent zero a special notation is used: E=0 and F=0 → N=0

Special Cases:

1. E = 0 and F = 0 → N = 0 There are two zeros (+,-).

2. E = 255 , F = 0 → N = ±∞
3. E = 255, F ≠ 0 → NaN (Not a Number) 0/0 , ∞/∞
4. E = 0, F ≠ 0 → Denormalized number

The last case is used for numbers with too small magnitudes (absolute values)
which cannot be represented using the normalized notation.

Value (Meaning):

81/128

4

10.7

Computer Architecture

2013 - 2018 Feza BUZLUCA
www.faculty.itu.edu.tr/buzluca

www.buzluca.info

The smallest normalized number: S =0, E = 0000 0001 , F = 000.... 0

N= +(1+0)21-127 = 2-126

Numbers between 0 and 2-126 cannot be expressed as normalized numbers.

The value of denormalized numbers (E = 0, F ≠ 0) is calculated as follows:

Single: Double:

Denormalized smallest number: S =0, E = 0000 0000 , F = 000.... 01

N= +(1/223)2-126 = 2-149

Numbers between 0 and2-149 cannot be expressed. (Underflow).

With the normalized notation numbers with too small magnitudes cannot be
expressed.

Limit values:

The number with the smallest magnitude:

Single: 2-149 (Denormalized) , Double: 2-1074 (Denormalized)
The number with the largest magnitude :

Single: 0 11111110 11111111111111111111111 = (2-2-23)x2127 ≈ 1038.53 (Normalized)

Double: (2-2-52)x21023 ≈ 10308.3 (Normalized)

Denormalized Numbers:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

10.8

Computer Architecture

2013 - 2018 Feza BUZLUCA
www.faculty.itu.edu.tr/buzluca

www.buzluca.info

Example: Addition and subtraction of floating point numbers
An arithmetic pipeline

X= A*2a

Y= B*2b

R

a b exponent

R

A B fraction (mantissa)

Compare by

subtracting

R

Select

exponent
Shift Mantissa

R

R

Add/Subtr.

R

Normalization

R

R

Change exp

R

Difference

R

R

