Computer Architecture License	https://creativecommons.org/licenses/by-nc-nd/4.0/			
10 Floating-Point Numbers				
Base 10: (12.34) ₁₀ = $12 + \frac{34}{100}$ or (12.34) ₁₀ = $12 + \frac{34}{100}$	$\frac{3}{10} + \frac{4}{100} = 1 \cdot 10^1 + 2 \cdot 10^0 + 3 \cdot 10^{-1} + 4 \cdot 10^{-2}$			
Base 2: (101.11) ₂ = 5 + $\frac{3}{4}$ or (101.11) ₂ = 5 + $\frac{3}{2}$ +	$\frac{1}{4}$, $(0.1111)_2 = \frac{15}{16}$, $(0.1)_2 = \frac{1}{2}$			
To store real numbers (too small / big numbers) in the memory the exponential notation (scientific notation) is used.				
10.1 Scientific notation, exponential notation:				
±F x B ^{±E}	Examples (Base 10):			
F: Fraction (mantissa, significand) E: Exponent B: Base + E and + E are stored in the memory	a) 976,000,000,000,000 = +0.976 x 10 ⁽⁵⁾ +976 and +15 are stored in the memory.			
The base B is implicit and does not need to be stored. It is the same (in computers B=2) for all numbers.	b) 0.000 000 000 000 976 = +0.976)x 10-13 +976 and -12 are stored in the memory.			
www.faculty.itu.edu.tr/buzluca	© © © © 2013 - 2018 Feza BUZLUCA 10.1			

Computer Architecture			
Normalized Number:			
A number can be written in exponential form in many ways.			
For example 3.14 = 314x10 ⁻² = 3.14x10 ⁰ = 0.314x10 ¹			
In normalized notation the location of the radix point is predetermined.			
For example, the exponent (E) can be chosen so that the point is always to the left of the most significant digit.			
Example:			
3.14 normalization $\rightarrow 0.314 \times 10^{1}$			
This number can be stored as \pm F \pm E \rightarrow +314 +01			
It is not necessary to store the base (now it is 10) and the location of the point.			
There are also other methods to normalize the numbers.			
For example the point can be placed to the right of the most significant digit.			
Biased Exponent:			
Exponent values are signed and they can be negative (small numbers) and positive.			
It is difficult to compare signed numbers (2's complement).			
To make the comparison easier the exponent is biased (added with a fixed bias) before being stored, by adjusting its value to make it unsigned suitable for comparison. (Now we don't need to store the sign of the exponent)			
www.faculty.itu.edu.tr/buzluca			

Computer Architecture						
10.2 IEEE 754 Standard (1985, updated in 2008) The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point computation established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). Many hardware floating point units and compilers use the IEEE 754 standard.						
Single (32-bit) _{Sign E F} S Exp. Fraction 1 8 23	Sign S 1	ouble (E Exp. 11	64-bit) F Fract 52	ion		
Exponent is biased by 127. Exponent is biased by 1023. If E consists of k bits the exponent value is biased by adding (2 ^{k-1} -1). In the current standard there are also half (16-bit) and quadruple (128-bit) numbers.						
www.faculty.itu.edu.tr/buzluca www.buzluca.info		e		2013 - 2018	Feza BUZLUCA	10.3

Computer Architecture			
Normalized Number (IEEE 754):			
The radix point is to the right of the most significant digit that is not zero.			
As we are working with base-2 the digit different than "O"is "1".			
Example:			
(normalization)			
$(10110.101)_2 \longrightarrow \pi 1.0110101 \times 2^4$			
As there is always a "1" on the left side of the point, this "1" is not stored in the memory either.			
This "1" is called hidden one.			
www.faculty.itu.edu.tr/buzluca			

Computer Architecture			
The value of the number in Base 10 (N):			
Single: $N = (-1)^{s} (1.F) 2^{E-127}$ Double:	$N = (-1)^{s} (1.F) 2^{E-1023}$		
$N = (-1)^{S} \left(1 + \frac{F}{2^{23}}\right) 2^{E - 127}$	$N = (-1)^{S} \left(1 + \frac{F}{2^{52}}\right) 2^{E - 1023}$		
To represent zero a special notation is used:	E=0 and F=0 \rightarrow N=0		
Examples (Single):			
S E F	Value (Meaning):		
0 10010011 1010001000000000000 = +1.1010001 x 2^{10100} = +1.6328125 x 2^{20} 1 10010011 1010001000000000000 = -1.1010001 x 2^{10100} = -1.6328125 x 2^{20} 0 01101011 1010001000000000000 = +1.1010001 x 2^{-10100} = +1.6328125 x 2^{-20} 1 01101011 10100010000000000000 = -1.1010001 x 2^{-10100} = -1.6328125 x 2^{-20}			
Special Cases: 1. $E = 0$ and $F = 0 \rightarrow N = 0$ There are two zeros (+,-). $481/128$ 2. $E = 255$, $F = 0 \rightarrow N = \pm \infty$ 3. $E = 255$, $F \neq 0 \rightarrow NaN$ (Not a Number) 0/0, ∞/∞ 4. $E = 0$, $F \neq 0 \rightarrow Denormalized number$ The last case is used for numbers with too small magnitudes (absolute values) which cannot be represented using the normalized notation.			
www.faculty.itu.edu.tr/buzluca	SO 2013 - 2018 Feza BUZLUCA 10.6		

Computer Architecture	License: https://creativecommons.org/licenses/by-nc-nd/4.0/		
Denormalized Numbers:			
With the normalized notation numbers with too small magnitudes cannot be expressed.			
The smallest normalized number: S =0, E = 0000 0001 , F = 000 0 N= $+(1+0)2^{1-127} = 2^{-126}$			
Numbers between 0 and 2 ⁻¹²⁶ cannot be expressed as normalized numbers.			
The value of denormalized numbers	(E = 0, F \neq 0) is calculated as follows:		
Single: $N = (-1)^{s} (\frac{F}{2^{23}}) 2^{-126}$	Double: $N = (-1)^{s} (\frac{F}{2^{52}}) 2^{-1022}$		
Denormalized smallest number: S =0, E = 0000 0000, F = 000 01 N= $+(1/2^{23})2^{-126} = 2^{-149}$ Numbers between 0 and 2 ⁻¹⁴⁹ cannot be expressed. (Underflow).			
Limit values:			
The number with the smallest magni Single: 2 ⁻¹⁴⁹ (Denormalized) The number with the laraest magnit	tude: , Double: 2 ⁻¹⁰⁷⁴ (Denormalized) rude :		
Single: 0 11111110 1111111111111111111111 = (2-2 ⁻²³)x2 ¹²⁷ ≈ 10 ^{38.53} (Normalized)			
Double: (2-2 ⁻⁵²)x2 ¹⁰²³ ≈ 10 ^{308.3} (Normalized)			
www.faculty.itu.edu.tr/buzluca www.buzluca.info	2013 - 2018 Feza BUZLUCA 10.7		

