
1

5.1

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

5 Direct Memory Access (DMA)
The DMA technique is used to transfer large volumes of data between I/O
modules and memory.

Examples: Disk drive controllers, graphics cards, network cards and sound cards.

DMA can also be used for

• intra-chip data transfer in multi-core processors

• "memory to memory" copying or moving of data

Reminder: Simple programmed I/O and interrupt-driven I/O require the active
intervention of the processor to transfer data, and any data transfer must
traverse a path through the processor.
• The CPU reads from I/O interface (or memory) and then writes to the memory

(or I/O interface) in the programmed I/O and interrupt-driven I/O techniques.

The DMA technique uses a hardware module, called the DMA Controller (DMAC).
The DMAC, acting like a CPU, can generate addresses and initiate memory read or
write cycles.

• The CPU programs the DMAC and delegates the I/O operations to it.

• The CPU then continues with other work.

• The DMAC performs all I/O operations by taking control of the system bus. The
data does not go through the CPU.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

5.2

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

DMAC I/O

Interface

BR

BR

BG

BG

CPU

Memory

System Bus

Data

Data

Handshaking

Data Fly-by (Implicit)
DMA:

Data does not pass
through the DMAC.

Flow-through
(Explicit) DMA:

Data flows through
the DMAC.

BR: Bus Request
BG: Bus Grant

A
d
d
re

s
s

C
o
n
tr

o
l

DMA Req.

DMA Ack.

5.1 Overview of DMA:
When data transfer is necessary, the I/O interface signals the DMAC.

The DMAC requests the system bus from the CPU (BR).

The CPU completes the current bus cycle (not the instruction), isolates itself from
the system bus, and responds to the DMAC by asserting BG.

Now, it is the responsibility of the DMAC to generate all bus signals and
performing the transfer.

The CPU can perform its internal operations.

The data does not pass through the CPU,
but the system bus is occupied.

2

5.3

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

5.2 Types of DMA Controllers:
a) Flow-through (Explicit) DMAC: The data, transferred between memory and the

I/O interface passes through the DMAC.

The DMAC first reads data into an internal register and then writes it to the
destination.

b) Fly-by (Implicit) DMAC: The data does not pass through the DMAC.

After the DMA controller gains access to the bus, it ouputs the source (or
destination) address and other control signals (R/W, VMA, etc.).

It activates the memory and the I/O interface at the same time.

So, it initiates a read and a write cycle simultaneously. The data is read from
the source address, and written to the destination in one clock cycle.

Therefore, the fly-by technique can transfer data faster than the flow-
through technique.

However, this technique implies that either the source or destination does not
require an address because the DMAC can only put one address on the bus at
any time.

So, memory-to-memory transfers (between two different addresses) are not
possible in this mode.

Therefore, a fly-by DMAC can only transfer data between an I/O port and a
memory address.

5.4

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

a) Burst mode (Block Transfer Mode): Once the DMA controller takes the control
of the system bus, it transfers all bytes of data in the data block before releasing
control of the system bus back to the CPU.

The CPU determines the size of the block in the initialization process.

The DMAC may render the CPU inactive for a relatively long time.

This mode is useful for loading programs or data files into memory, because the
CPU needs this data to continue its work.

b) Cycle stealing: The DMAC requests the bus as in the burst mode. When it is
granted to access the bus by the CPU, the DMAC transfers only one word and gives
the control of the bus back to the CPU.

The DMAC continually issues requests, transferring one word of data per request
until it has transferred its entire block.

This technique is suitable for systems in which the CPU should not be disabled for a
long time.

The CPU needs to access the memory in instruction and operand fetch cycles, and if
needed, for operand write operations.

In decode and execution cycles, the CPU can operate without accessing the memory,
while the DMAC performs the data transfer.

5.3 DMA Transfer Modes:

3

5.5

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

DMA Transfer Modes: (cont'd)

b) Cycle stealing: (cont'd)

This mode interleaves instruction execution by the CPU and data transfer by the
DMAC.

The rate of data transfer is slower than in burst mode.

c) Transparent mode (Hidden DMA):

The DMAC (or an additional hardware unit) monitors the CPU and uses the bus
only when the processor is not using it.

When the DMAC determines that the processor is executing an instruction
which leaves sufficient empty clock cycles to perform a word transfer, it
accesses the bus during this time.

The processor is not slowed down.

The transfer of the data block can take longer than other modes.

The disadvantage is that the hardware needs to determine when the CPU is not
using the system.

Burst mode and cycle stealing are the most commonly used transfer modes of
the DMA.

5.6

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

I/O

Interface

DMA Acknowledge

DMA Request

5.4 CPU - DMAC Interconnection:

Address Bus

Data Bus

Memory

Control

(VMA, E …)

Address

Decoding

Before the data transfer, the DMAC is programmed (initialized) by the CPU (necessary
information is written to registers of the DMAC).
In this step, the DMAC act as a memory unit or an I/O interface.
After DMAC has taken the control of the system bus, it acts as a CPU.

Fly-by DMA
(Implicit)

CPU

DataAddressR/W

IRQ

BG

BR

Memory

(RAM)

DataAddressR/WCS

DMA Controller
(DMAC)

R/W Address Data
CS

RS

BR

BG

IRQ

M
e
m

o
ry

C
o
n
tr

o
l

4

5.7

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

To I/O

Interface

DMA Request

DMA Acknowledge

Internal structure of a DMAC:

Other memory control
signals (VMA, E, AS, …)

Control

Unit

Data Bus

Buffer

Interrupt request

Bus grant

Bus request

Register select

R/W

DMA select

Data Bus

To CPU and

Memory

Bidirectional

RS

CS

BR

BG

IRQ

Address

Bus

Address Bus Buffer

Address Register

Word Counter

Register

Control Register

Status Register

In
te

rn
a

l
B

u
s

Control signals to
the internal units

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

5.8

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

5.5 Steps of data transfer in the DMA technique

1. The CPU programs (configures) the DMA controller (DMAC).

The I/O address, memory address, read/write, amount of data, transfer
mode etc. are written to the registers of the DMAC.

In this step, the DMAC acts as a memory or I/O unit that is addressable by
the CPU. Now, the R/W' pin of the DMAC is an input pin.

2. The I/O interface sends request to the DMAC by asserting DMA Request
(ready to send or receive).

3. The DMAC requests the bus from the CPU by asserting the BR.

4. The CPU completes the current bus cycle (not the instruction),

isolates itself from the system bus (goes to the 3rd state: high impedance),

and gives control of the bus to the DMAC by asserting the BG pin.

The CPU cannot mask (disable) a request from the DMAC (unlike an interrupt
request).

5

5.9

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

5. Now, the new bus master is the DMAC. It is the responsibility of the DMAC to
provide all necessary signals to address the memory as the CPU does.

In this step the R/W pin of the DMAC is an output.

The DMAC puts the address, R/W and other necessary signals on the system
bus.

a) Fly-by (implicit) DMA:

The DMAC sends a DMA Acknowledge to the I/O interface.

The I/O interface either reads the data from the data bus or puts the data on
the data bus.

b) Flow-through (explicit) DMA:

The DMAC sends a DMA Acknowledge to the I/O interface.

The DMAC reads the data from the I/O interface and writes it to memory

or

The DMAC reads the data from memory, sends a DMA Acknowledge to the I/O
interface, and writes the data to the I/O interface.

5.5 Steps of data transfer in the DMA technique (cont'd)

5.10

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

6. If the I/O interface persists in its transfer request (DMA Request), the
DMAC keeps the BR active.

Burst mode: The DMAC maintains BR (active) until the whole block is
completed.

Cycle stealing: After transferring one word, the DMAC deasserts the BR,
allowing the CPU to use the system bus, and then asserts the request again.

While the DMAC is transferring the data, the CPU can perform its internal
operations, which do not need the access to the system bus, such as
instruction decoding and operations on register (Compare to polling and
interrupt-driven I/O).

7. If there are no a new requests from the I/O interface (DMA Request is not
active) or the entire block has been transferred (the word counter of the
DMAC is zero), the DMAC isolates itself from the system bus, i.e. its control
lines go to the 3rd state (high impedance).

The DMAC deasserts BR. The CPU gets control of the system bus back.

5.5 Steps of data transfer in DMA technique (cont'd)

6

5.11

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

5.5 Steps of data transfer in DMA technique (cont'd)

8. After finishing the transfer of a block, the DMAC can send an interrupt
request to the CPU to inform it of the completion of the transfer (if it is
configured in this way).

The CPU can read the internal registers of the DMAC to get information
about the previous transfer (how many words have been transferred, are
there any errors?).

Here, interrupts are not involved in requesting the bus and data transfer.

5.12

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Example 1: I/O using DMA Technique
Problem:

The instruction cycle of a CPU has the following 5 states (cycles):
1. Instruction fetch: 60 ns, 2. Instruction Decode: 20 ns, 3. Operand fetch: 60 ns,
4. Execution: 30 ns, 5. Interrupt: 200 ns.

Assume that the CPU accesses the memory in the instruction fetch and operand
fetch cycles but not in the decode and execution cycles.

In this system there is a 2-wire (BR, BG) DMAC that is configured to transfer 10
words from the I/O interface to the memory using the cycle-stealing technique.
The DMAC type is fly-by (implicit). Data does not pass through the DMAC.

The memory access time and I/O interface access times are both 50 ns.

Assume that we start a clock (Clock = 0) when the CPU begins to run a program
that consists of 10 instructions.

When the CPU is in the instruction fetch cycle for the first instruction (Clock =

5ns), the DMAC attempts to start the data transfer.

a. When (Clock =?) will the DMAC complete the transfer of the first word? Why?

b. When (Clock =?) will the CPU finish the first instruction? Why?
c. When (Clock =?) will the DMAC complete the transfer of all 10 words? When
will the CPU complete the run of the entire program with 10 instructions?

7

5.13

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Time [ns]

CPU:

DMAC:

Instr. Fetch

60 ns

50

DMA Req.

60

The DMAC
gets the
bus

50 ns

Data Transfer

110

The DMAC
releases
the bus

The DMAC
gets the
bus

30 ns

Execution

200

Operand Fetch

60 ns

50 ns

Data Transfer

The DMAC
releases
the bus

220

Decode

20 ns

The DMAC completes
the transfer of the
first word.

End of execution
of the first
instruction

The DMAC completes
the transfer of the
second word.

Solution:

DMA
Req.

Memory is not used in
the decode cycle.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

5.14

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Solution (cont'd):
a) The CPU completes the current bus cycle (instruction fetch) and isolates
itself from the system bus. The DMAC transfers the first word.

Since the DMAC type is fly-by (implicit), data is transferred in 50 ns.

Clock = 60 + 50 = 110ns

b) Instruction decoding and execution cycles of the CPU can run in parallel with
DMA transfers.

Since the DMAC uses the cycle-stealing technique, after the transfer of the
first word, it will give the bus to the CPU. After the fetching the operand, the
CPU executes the instruction.

Clock = 60 + 50 + 60 + 30 = 200ns

c) During one instruction cycle, the DMAC transfers two words in 220 ns.
10 words are transferred in 5 x 220 = 1100 ns.

Clock = 5 * 220 = 1100ns

During the transfer of 10 words, the CPU can run 5 instructions.
After the transfer of the 10 words, the CPU runs each instruction in 170 ns.
The duration of an instruction cycle is 60+20+60+30= 170 ns.

Clock = 1100 + 5*170 = 1950ns

Compare these times to the interrupt-driven I/O example on slide 4.17.

8

5.15

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Example 2: DMA and Interrupt

Problem:

The instruction cycle of a CPU has the following 5 states (cycles) with the given
durations:

1. Instruction fetch and decode: 60 ns, 2. Operand fetch: 70 ns, 3. Execution: 30
ns, 4. Result write: 60 ns, 5. Interrupt: 200 ns.

Only in the “3. Execution” cycle, the CPU does not access memory. The CPU uses
memory in the other cycles (1, 2, 4, 5).

The memory access time and I/O interface access time are both 50 ns.

In this system there is a single interrupt source (IS). The duration of its
interrupt service routine (ISR) is 2500ns.

In this system there is a 2-wire DMAC that is configured to transfer words from
the I/O interface to the memory using the cycle-stealing technique. The DMAC
type is fly-by (implicit). Data does not pass through the DMAC.

Assume that we start a clock (Clock = 0) when the CPU begins to run the program.

5.16

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

At Clock = 10ns, the device IS sends an interrupt request.

At Clock = 20ns, the DMAC attempts to start the data transfer from the I/O
interface to memory. We assume that the I/O interface is always ready to
transfer.

a. When (Clock =?) will the DMAC complete the transfer of the first, second,
and third words? Why?

b. When (Clock =?) will the ISR of the IS start to run? Why?

c. What happens if the DMAC has still words to transfer while the ISR is
running?

Problem: (cont’d)

9

5.17

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Time [ns]

CPU:

DMAC:

Instr. Fetch
and decode

60 ns

100

INT Req.

60

The DMAC
gets the
bus.

50 ns

Data Transfer

110

The DMAC
releases
the bus.

The DMAC
gets the
bus.

30 ns

ExecutionOperand Fetch

70 ns

50 ns

Data Transfer

The DMAC
releases
the bus.

230

The DMAC completes
the transfer of the
first word.

The DMAC completes
the transfer of the
second word.

Solution:

DMA
Req.

20

DMA Req.

Memory is not used in
the execution cycle.

5.18

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Time [ns]

CPU:

DMAC:

Result write

60 ns

290

The DMAC
gets the
bus.

50 ns

Data Transfer

340

The DMAC
releases
the bus.

Interrupt
(Housekeeping)

200 ns

ISR

2500 ns

The DMAC
releases
the bus.

230

The CPU can start
the ISR at
Clock=540 ns at the
earliest.

The DMAC completes
the transfer of the
third word.

The DMAC completes
the transfer of the
second word.

Solution (cont’d):

DMA
Req.

540

The DMAC can
transfer
between bus cycles.

Data Transfer

The DMAC can
transfer
between bus cycles.

Data Transfer

10

5.19

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Reminder: Interrupt requests are considered after the instruction has been
completed.

If there is a request and interrupts are enabled, then the CPU enters the
interrupt cycle.

In the interrupt cycle, there are many bus (memory) cycles: the vector number is
read, return address and the status register are pushed onto the stack.

If the DMAC is enabled, it can still transfer data between these memory cycles.

The CPU can start the ISR at Clock = 540 ns at the earliest.

The ISR is a program that consists of instructions.

Therefore, the DMAC can continue to transfer during the ISR.

Solution (cont’d):

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

5.20

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

5.6 3-Wire DMA

Example MC68000:

The MC68000 uses 3 control lines
for bus arbitrations. MC68000

BR

BG

BGACK

Bus Request

Bus Grant

Bus Grant Acknowledge

The steps of the interaction between the DMAC and the 68000:

1. The DMAC asserts a bus mastership request by asserting BR’ (active low).

2. The 68000 asserts BG’ as soon as possible.

It does not mean that the processor has finished its current bus cycle.

It only means that the processor is ready to let go of the bus at the end of the
current bus cycle, and the next bus master can be determined.

There may be multiple DMACs in the system. Which one will be the next bus
master?

An additional unit (bus arbiter) will determine the next bus master.

The DMAC explained in the previous section uses two control lines (BR, BG) for
bus arbitration.

There are also 3-wire DMACs that are suitable for systems with multiple DMACs.

11

5.21

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

3. If there is more than one DMAC in the system, the bus arbiter circuitry
determines the next bus muster.

Upon receiving BG, the requesting device waits until the current bus cycle is
completed (AS, DTACK, and BGACK must be negated).

The negation of AS indicates that the previous bus master has completed its
cycle. (No device is allowed to assume bus mastership while AS is asserted.)
The negation of DTACK indicates that neither memory nor peripherals are using
the bus.
The negation of BGACK indicates that the previous master has released the
bus.

4. The new bus master asserts and maintains BGACK during the entire bus cycle
(or cycles) for which it is bus master.

The BR of this DMAC is negated after BGACK is asserted. Hence, another
DMAC in the system can issue its request.

5. When the data transfer is complete, the DMAC relinquishes control of the bus
by negating BGACK.

The processor cannot access the bus while BGACK is asserted.

The operation of a DMAC in a 68000-based system: (cont'd)

5.22

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Bus Arbitration Flowchart for Single Request

12

5.23

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Bus Arbiter
In DMA operations, the processor is at a lower bus priority level than the DMACs.

In systems consisting of a processor and multiple DMACs, a bus arbiter is needed
to determine the next bus master if multiple devices issue requests at the same
time.

Bus
Arbiter

BR

BG

DMAC 1
(68450)

BR AS

BG

BGACK

68000

BG

BR

AS

BGACK

DMAC 2

BR
AS

BG

BGACK

I/O Module

Handshaking
(Request, ACK)

Address and data bus
AS, UDS, LDS, R/W…

Address,
Data,
control

68000 compatible DMACs:

MC68450 (4-channel), MC68440 (2-channel)

5.24

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Function of the system:

If the DMAC uses the 3-wire scheme (with BGACK) (e.g., MC68450)

1. The DMAC issues the request to the bus arbiter via BR.

2. The bus arbiter sends the request to the 68000 (BR).

3. The bus arbiter receives the grant signal (BG) from the 68000 and sends this
signal to the requesting DMAC with the highest priority.

4. After receiving the bus grant BG, the DMAC monitors the AS and BGACK

signals to determine when it may assume mastership of the bus.

AS and BGACK must be negated to indicate that the previous cycle is complete
and the previous bus master has released the bus.

5. When this condition is met, the DMAC asserts BGACK to inform the processor
and other DMACs that it has taken control of the bus.

As the new bus master, the DMAC deasserts its BR output to allow the external
arbiter to begin arbitration for the next bus master.

It maintains BGACK until the transfer is complete.

As the bus master, it is responsibility of this DMAC to supply all address and
control signals (AS, UDS, LDS, VMA, R/W, …).

6. When all DMACs complete their transfers, the BGACK input of the 68000 is
negated. Now, the 68000 can use the system bus again.

13

5.25

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Connecting 2-wire (BR, BG) DMACs to 68000:
If it is necessary to connect 2-wire (BR, BG) DMACs without BGACK to the
68000, then operations involving the BGACK signal must be performed by the bus
arbiter.

Bus
Arbiter

BR

BG

DMAC 1

BR

BG68000

BG

BR

AS

BGACK

DMAC 2

BR

BG

I/O Module

Handshaking
(Request, ACK)

DMACs do not
have BGACK

Address and data bus
AS,UDS,LDS,R/W…

Address,
data,
control

6800 compatible DMAC:

6844

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

5.26

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Function of the system:

If the DMAC uses the 2-wire scheme (without BGACK)

1. The DMAC issues the request to the bus arbiter via BR.

2. The bus arbiter sends the request to the 68000 (BR).

3. After receiving the bus grant BG from the 68000, the bus arbiter waits for the
current bus cycle to complete by monitoring the AS line.

It also waits for the previous bus master DMAC (if any) to release the bus (BR).

In this system, the bus arbiter itself supplies the BGACK signal; therefore, it
does not need to monitor the BGACK line.

4. The bus arbiter sends the bus grant signal (BG) to the requesting DMAC with
the highest priority.

5. The bus arbiter asserts the BGACK signal to inform the 68000 that a DMAC is
using the bus.

6. A two-wire DMAC keeps its request (BR) output active as long as its transfer
continues.

In this case, the bus arbiter also maintains the BGACK signal.

7. When the DMAC completes its transfer, it negates its request (BR) output.

If there is no other pending request from another DMAC, the bus arbiter
negates the BGACK signal so that the 68000 can use the bus again.

14

5.27

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Memory

CPU

I/O Processor

IOP

P1 P2 P3 P3

I/O Bus

S
y
s
te

m
 B

u
s

Peripherals

5.7 The I/O Processor
The I/O processor (IOP) is a combination of a CPU, a DMAC, and I/O interfaces.

Some IOPs also include a local memory.

The IOPs have a specialized instruction set tailored for I/O.
The CPU directs the IOP to execute an I/O program in memory.
The I/O processor fetches and executes these instructions without CPU
intervention (DMA method).
IOPs can also perform format conversion, encryption/decryption, error correction.

5.28

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

5.8 Indivisible Bus Cycle

Semaphore operations are performed using the Test-And-Set (TAS) instruction
that operates in a single indivisible bus cycle.

In a single instruction and in a single bus cycle

the memory is read,

the data is tested (compared to zero),

modified, and

written back to the memory.

The TAS instruction and the read-modify-write cycle used by this instruction
are indivisible in two ways:

• Three operations (read/test, modify, write) are performed in a single
instruction. Therefore, these operations cannot be interrupted.

• AS (address strobe) remains asserted throughout the entire cycle.
Therefore, DMACs or other processors cannot interrupt this cycle to access
memory.

15

5.29

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Read Modify Write

AS remains
asserted
throughout
the entire
cycle.
DMACs or
other
processors
cannot
interrupt
this cycle.

Timing diagram of the read-modify-write cycle:
(used by the TAS "test-and-set" instruction)

Example : Read-modify-write cycle in MC6800-based systems

5.30

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Format: TAS <ea>
Operation: [CCR] ← tested([operand <ea>]); [destination: <ea>(7)] ← 1
Tests the operand: According the value of data, Z and N flags are modified.
The most significant bit (7) of the operand is set to 1 (made negative).
These operations are indivisible (single instruction, single bus cycle).
It is used for semaphore operations.

TAS Test and set an operand (MC6800)

Example1: Critical section access without TAS instruction (dangerous!)

TEST TST.B FLAG
BMI TEST If negative (MSB=1?)

CRITICAL OR.B #$80,FLAG Semaphore is set
...... Critical section
......

END CLR.B FLAG Semaphore is cleared (unlock)

As these two instructions are
divisible this program may run
incorrectly.

Example2: Critical section access using the TAS instruction (correct)

TEST TAS FLAG Tests the semaphore and sets it if necessary
BMI TEST

CRITICAL Critical section
......

END CLR.B FLAG Semaphore is cleared (unlock)

(Divisible)

