
1

Computer Architecture

© 2005-2022 Feza BUZLUCA B.1www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Appendix B: RISC (Reduced Instruction Set Computer) Processors:

• Relatively small set of simple instructions

• Relatively few, simple addressing modes

• Fixed-length, easily decoded instruction format

• No instructions that operate directly on memory, all operations performed
within internal registers of the CPU.

• Memory access only for load/store instructions (load-store architecture).

• One instruction per clock cycle (owing to pipelining)

• Hardwired rather than microprogrammed control unit

Other Characteristics:
Not all of the features listed below are included in all RISC processors, and CISC
processors may also include some of these features:
• A large number of registers (128-256) (Register File)

• Use of overlapped register windows to speed up procedure call and return

• Instruction pipeline that can be optimized for instructions

• Harvard architecture

• Compiler support for efficient translation of high-level language programs into
machine language programs

RISC Features:

Computer Architecture

© 2005-2022 Feza BUZLUCA B.2www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Overlapped Register Windows:

Without needing a stack (memory access), this structure is used in procedure
calls
• to provide passing of parameters and
• to avoid the need for saving and restoring register values.

Even though the processor has many registers, the programmer can only use a
limited number of these at any given moment.

This set of registers that can be active at any given time are called a window.

When the program calls (and returns from) a subroutine, the window changes.
Thus, the programmer accesses different registers.

Windows for adjacent procedures have overlapping registers that are shared to
provide the passing of parameters and results. Local registers are used for local
variables of the procedures.

If there are n registers in a window, when writing programs, only registers
R0 through Rn-1 are used.

However, as the window changes, these numbers correspond to different physical
registers.

Not all RISC processors use this structure (e.g., the MIPS processor does not).

Computer Architecture

© 2005-2022 Feza BUZLUCA B.3www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Example:

R0

R1

R2

R3

R4

R5

R6

R7

AR0

AR1

AR2

AR3

AR4

windows of procedure A (main program)
(caller)

• In A, when the programmer reaches R0, the programmer has reached R0 of
the processor.

• In the example below, the processor has 8 registers. However, a window has 5
registers, so at any given time, only 5 of these can be active.

Shared
registers

window of procedure B (called program)
(callee)

• In B, when the programmer reaches R0, the programmer has reached R3 of the
processor.

BR2

BR3

BR4

BR0

BR1

Local
Registers
of B

Local
Registers
of A

There are also global registers with fixed numbers that all procedures access.

• In programs, only R0-R4 are used, but as the window changes, these end up
corresponding to different registers.

Computer Architecture

© 2005-2022 Feza BUZLUCA B.4www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

G : Number of global registers
L : Number of local registers in each window
C : Number of registers common to two windows
W : Number of windows
Window size = L + 2C + G (2*C because there are registers in

common with the lower and upper window.)
Number of registers = (L+C)W + G

The window structure is arranged in a circular fashion.
If the processor has 4 windows, when the 4th procedure calls a 5th procedure,
the 1st window (the oldest window, the one furthest back in the call nesting) is
saved to memory.
Then, the 1st window is used by the 5th procedure.
When returning, the data in memory is restored to the relevant window.

Determining the number of registers:

In the next example, we give the register structure of a processor with a total
of 74 registers and a windows size of 32 registers which supports procedure
calls to a nesting depth of 4.

In this example, we assume that as procedures are called, subsequent windows
are allocated registers with higher numbers. In real processors (RISC 1,
SPARC), subsequent windows are allocated registers with lower numbers.

Example:

Computer Architecture

© 2005-2022 Feza BUZLUCA B.5www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Example:

Total of 74 registers

Global registers : G = 10 (R0-R9) (common to all procedures)

R10-R73 : 64 registers divided into FOUR windows to accommodate
procedures A-D. (W=4)

Local registers : L = 10

Common registers: 2*C = 6 + 6 =12

Window size : L + 2C + G = 32 reg.

In this system, since there are 32 registers in a window, when writing a program in
assembly language, each procedure uses register numbers R0 – R31.

Based on the location of the window, these numbers correspond to different physical
registers.

See: exemplary program in B.13

Computer Architecture

© 2005-2022 Feza BUZLUCA B.6www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Example:
(cont'd)

R10 R15

R16

R25

R31 R26

R32

R41

R47 R42

R48

R57

R63 R58

R64

R73

R10 R15

Common to A
and D

Local to A

Common to
A and B

Common to
B and C

Local to C

Common to
C and D

Local to B

Local to D

Common to
A and D

R0

R9 Global
(Common to all
procedures)

Proc. A

Proc. B

Proc. C

Proc. D

2

Computer Architecture

© 2005-2022 Feza BUZLUCA B.7www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

RISC Processor Example: Berkeley RISC I

1. Register mode:
Example: ADD R22, R21, R23 R23←R22+R21

Opcode Rd Rs 0 Not used S2

31 24 23 19 18 14 13 12 5 4 0

Easy to decode

Instruction Formats:

8 5 5 1 8 5

Second source register

• 32-bit address bus
• von Neumann architecture: Instruction and data are stored in the same

memory.
• 8-, 16-, or 32-bit data
• Fixed length (32-bit) instructions
• Total of 31 instructions
• Total of 138 registers (R0-R137),

8 windows of 32 registers in each, 10 global registers (R0-R9)
Local registers: 10, Common registers: 6+6=12

• 3 addressing modes: register addressing, immediate addressing, relative
addressing

Destination Source

Computer Architecture

© 2005-2022 Feza BUZLUCA B.8www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

2. Register – immediate mode:

Example: ADD R22, #150, R23 R23←R22+150

Memory access instructions use Rs to specify a 32-bit address in a register
(pointer) and S2 to specify an offset. The location accessed is:

(32-bit address in Rs) + S2

Example: LDL (R10)#5,R5 R5←M[R10 + 5] Load long: 32-bit data transfer

Opcode Rd Rs 1 S2

31 24 23 19 18 14 13 12 0

8 5 5 1 13

Immediate data

Example: JMPR EQ,Y

3. PC Relative mode:

Opcode COND Y

31 24 23 19 18 0

8 5 19

Offset

Computer Architecture

© 2005-2022 Feza BUZLUCA B.9www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Register R0 contains all 0's, so it can be used in any field to specify a zero
quantity. By using register R0, which always contains 0's (zeros), it is possible to
transfer the contents of one register or a constant into another register.

ADD R0, R21, R22 R22←R21 (Move)

ADD R0, #150, R22 R22←150 (Immediate load)

ADD R22, #1, R22 R22←R22 +1 (Increment)

The load and store instructions move data between a register and memory.

LDL (R22)#150,R5 R5←M[R22 +150] Load long: 32-bit data transfer

LDL (R22)#0,R5 R5←M[R22]

LDL (R0)#500,R5 R5←M[500]

Usage of Berkeley RISC I Instructions

Computer Architecture

© 2005-2022 Feza BUZLUCA B.10www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Instruction Set of Berkeley RISC I

Data manipulation instructions:

Opcode Operands Register Transfer

ADD Rs,S2,Rd Rd ← Rs + S2

ADDC Rs,S2,Rd Rd ← Rs + S2 + carry

SUB Rs,S2,Rd Rd ← Rs - S2

SUBC Rs,S2,Rd Rd ← Rs - S2 - carry

SUBR Rs,S2,Rd Rd ← S2 - Rs

SUBCR Rs,S2,Rd Rd ← S2 - Rs - carry

AND Rs,S2,Rd Rd ← Rs ∧ S2

OR Rs,S2,Rd Rd ← Rs ∨ S2

XOR Rs,S2,Rd Rd ← Rs ⊕S2

SLL Rs,S2,Rd Rd ← Rs shifted by S2

SRL Rs,S2,Rd Rd ← Rs shifted by S2

SRA Rs,S2,Rd Rd ← Rs shifted by S2

Computer Architecture

© 2005-2022 Feza BUZLUCA B.11www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Data transfer instructions:

Opcode Operands Register Transfer Description

LDL (Rs)S2,Rd Rd ← M[Rs + S2] Long load

LDSU (Rs)S2,Rd Rd ← M[Rs + S2] Short unsigned

LDSS (Rs)S2,Rd Rd ← M[Rs + S2] Short signed

LDBU (Rs)S2,Rd Rd ← M[Rs + S2] Byte unsigned

LDBS (Rs)S2,Rd Rd ← M[Rs + S2] Byte signed

LDHI Y,Rd Rd ← Y Immediate high

STL (Rs)S2, Rm M[Rs + S2] ← Rm Store load

STS (Rs)S2, Rm

STB (Rs)S2, Rm

GETPSW Rd Rd ← PSW Load status word

PUTPSW Rd PSW ← Rd Set status word

Computer Architecture

© 2005-2022 Feza BUZLUCA B.12www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Opcode Operands Register Transfer Description________

JMP COND,S2(Rs) PC ← Rs + S2 Absolute (direct) addressing

JMPR COND,Y PC ← PC + Y Relative

CALL S2(Rs),Rd Rd ← PC
PC ← Rs + S2
CWP ← CWP -1 Current window pointer

CALLR Y,Rd Rd ← PC Relative
PC ← PC + Y
CWP ← CWP -1

RET (Rd)S2 PC ← Rd + S2
CWP ← CWP +1

In the Berkeley RISC I processor, every time the program calls a new procedure,
the current window pointer (CWP) is decremented by one to point to the next-
lower register window.
Thus, the main program (process A) uses the registers with the highest numbers
(R116-R137) and the global registers (R0-R9).

Program control instructions:

3

Computer Architecture

© 2005-2022 Feza BUZLUCA B.13www.akademi.itu.edu.tr/en/buzluca
www.buzluca.info

Exemplary Program:

Write a program using Berkeley RISC-1 symbolic instructions (passing parameters
over overlapping register windows) to:

• add two 32-bit signed numbers located in memory slots 500 and 504, and

• write the result to memory slot 508.

The addition procedure starts at 20 bytes after the address stored in register R1.

Solution: Program Explanation

LDL (R0) #500, R10 R10 ← M[500] (1st parameter)
LDL (R0) #504, R11 R11 ← M[504] (2nd parameter)
CALL (R1)#20, R15 R15 ← PC

PC ← (R1)+20

CWP ← CWP-1

STL (R0) #508, R12 M[508] ← R12 (returned value)
…
…

[(R1)+20] ADD R26, R27, R28 R28 ← R27+R26

RET (R31)#0 PC ← (R31)+0

CWP← CWP+1

Note: When writing this program, problems that arise in the pipeline explained
in Ch. 2 were not taken into consideration.

