

Topics
Normalization
Introduction
Normal Forms
3rd Normal Form
Entity/Relationship Model
Introduction
E/R Diagrams

Functional Dependency Examples

Example

Table: R

MOVIEID	TITLE	COU	LANG	ACTORID	NAME	ORD
6	Usual Suspects	UK	EN	308	Gabriel Byrne	2
228	Ed Wood	US	EN	26	Johnny Depp	1
70	Being John Malkovich	US	EN	282	Cameron Diaz	2
1512	Suspiria	IT	IT	745	Udo Kier	9
70	Being John Malkovich	US	EN	503	John Malkovich	14

- assumption: the language of the movie is the language of the country where it was made

License

```
c
SOME FIGHIS RESERVED
(C)2002-2010 T. Uyar, Ş. Öğüdücü
You are free:
    - to Share - to copy, distribute and transmit the work
    to Remix - to adapt the work
Under the following conditions:
    - Attribution - You must attribute the work in the manner specified by the author or licensor (but not in
        any way that suggests that they endorse you or your use of the work).
    - Noncommercial - You may not use this work for commercial purposes.
    - Suare Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only
        under the same or similar license to this one.
```

 Legal code (the full license):
 http://creativecommons.org/licenses/by-nc-sa/3.0/

Functional Dependency

Definition

- let Z be the set of all attributes of relation R, and $A, B \subseteq Z$
- A functionally determines $B: A \rightarrow B$ for every A value there is only one B value
- every functional dependency is an integrity constraint

Functional Dependency Examples

Example

- MOVIEID \rightarrow COUNTRY
- ACTORID \rightarrow NAME
- MOVIEID \rightarrow \{TITLE, COUNTRY, LANGUAGE $\}$
- \{MOVIEID, ACTORID $\} \rightarrow$ COUNTRY
- \{MOVIEID, ACTORID $\} \rightarrow$ MOVIEID
- \{MOVIEID, ACTORID $\} \rightarrow$ ORD
- \{MOVIEID, ACTORID $\} \rightarrow\{$ COUNTRY, ORD $\}$
- COUNTRY \rightarrow LANGUAGE

Irreducible Set

- S : the set of all FDs of the relation
- $T \subseteq S$, such that
- T contains as few elements as possible
- every FD in S can be derived by the FDs in T
- let there be only one attribute on the right hand side of FDs

Dependence Diagram

Example

Normalization

Definition
normalization:
transition from one form to the next, narrower form

- transition between normal forms must be lossless

Theorem (Heath)

- Z: R the set of all attributes of the relation
- $A, B, C \subseteq Z$
- if $A \rightarrow B$, then R can be obtained by joining the relations $\{A, B\}$ and $\{A, C\}$

Irreducible Set Example

Example

- MOVIEID \rightarrow TITLE
- MOVIEID \rightarrow COUNTRY
- COUNTRY \rightarrow LANGUAGE
- ACTORID \rightarrow NAME
- \{MOVIEID, ACTORID $\} \rightarrow$ ORD

Normal Forms

- 1NF, 2NF, 3NF, BCNF, 4NF, 5NF
- every form narrows down the scope of the previous form
- every relation in 2 NF is also in 1NF
- every relation in 3 NF is also in 2 NF ,
- 1NF: attribute values are atomic

Lossless Transition Example

Example

Table: R1

Table: R2

- $R=$ natjoin $(R 1)(R 2)$

MOVIEID	ACTORID	NAME	ORD
6	308	Gabriel Byrne	2
228	26	Johnny Depp	1
70	282	Cameron Diaz	2
1512	745	Udo Kier	9
70	503	John Malkovich	14

Lossy Transition Example

Example

Table: R2

- $R \neq$ natjoin $(R 1)(R 2)$
- \{MOVIEID, ACTORID $\} \rightarrow$ ORD

Anomalies

- insert
- data is known but can not be inserted due to constraints
- delete
- deleting some data causes some other data to be lost
- update
- updating some data requires modifications in multiple tuples

2nd Normal Form

Definition
2NF: every non-key attribute depends on the primary key transition from 1NF to 2NF

- in an R relation that conforms to 1 NF :
- $R(A, B, C, D)$, primary key: $\{A, B\}$
- $A \rightarrow D$
- for it to be 2NF:
- $R 1(A, D)$, primary key: A
- $R 2(A, B, C)$, primary key: $\{A, B\}$ A is a foreign key referencing $R 1$

1NF-2NF Transition Example

Example

- among the non-key attributes, only ORD depends on the primary key
- A: MOVIEID
- B: ACTORID
- C: \{NAME,ORD $\}$
- $D:\{$ TITLE,COUNTRY,LANGUAGE $\}$

1NF-2NF Transition Example

Example
R1(MOVIEID,TITLE,COUNTRY,LANGUAGE) primary key: MOVIEID

- R2(MOVIEID,ACTORID,NAME,ORD) primary key: \{MOVIEID,ACTORID\} MOVIEID is a foreign key referencing R1

1NF-2NF Transition Example

Example

- R2 still not 2NF: ACTORID \rightarrow NAME
- A: ACTORID
- B: MOVIEID
- C: ORD
- D: NAME
- R3(ACTORID,NAME) primary key: ACTORID
- R4(MOVIEID,ACTORID,ORD) primary key: \{MOVIEID,ACTORID\} ACTORID is a foreign key referencing R3

Dependency Diagram Example

Example

2NF Remaining Anomalies

Example

- It is known that movies made Brasil are in Portuguese, but this data can not be inserted because there is no known movie made in Brasil.
- Deleting the movie Suspiria causes the data that movies made in Italy are in Italian to be lost.
- If the language of the movies made in the US is to be changed as American English, two tuples need to be updated.

2NF Relation Examples

Example

Table: R1

MOVIEID	TITLE	COU	LANG
6	Usual Suspects	UK	EN
228	Ed WWood	US	EN
70	Being John Malkovich	US	EN
1512	Suspiria	IT	IT

Table: R3

ACTORID	NAME
308	Gabriel Byrne
26	Johnny Depp
282	Cameron Diaz
745	Uol Kier
503	John Malkovich

Table: R4

MOVIEID	ACTORID	ORD
6	308	2
228	26	1
70	282	2
1512	745	9
70	503	14

2NF Corrected Anomalies

Example

- If the country of the movie Gattaca is US, this data can be inserted to $R 1$.
- If Gabriel Byrne is deleted from the cast list of the movie Usual Suspects, the fact that the country of the movie is UK is preserved in $R 1$.
- Changing the country of the movie Being John Malkovich requires updating only one tuple in $R 1$.

3rd Normal Form

Definition
3NF: non-key attributes are not dependent on any attribute or attribute group other than the primary key
transition from 2NF to 3NF

- in an R relation that conforms to 2 NF :
- $R(A, B, C, D)$, primary key: A
- $C \rightarrow D$
- for it to be 3NF:
- $R 1(C, D)$, primary key: C
- R2(A, B, C), primary key: A C is a foreign key referencing $R 1$

2NF-3NF Transition Example

Example

- R1: COUNTRY \rightarrow LANGUAGE
- A: MOVIEID
- B: TITLE
- C: COUNTRY
- D: LANGUAGE
- R5(COUNTRY, LANGUAGE)
primary key: COUNTRY
- R6(MOVIEID, TITLE, COUNTRY) primary key: MOVIEID COUNTRY is a foreign key referencing R5

Dependency Diagram Example

Example

Boyce-Codd Normal Form

Definition
BCNF: all functional dependencies must be on candidate keys

3NF Relation Examples

Example

Table: R3

Table: R5

COU	LANG
UK	EN
US	EN
IT	IT

Table: R4

MOVIEID	ACTORID	ORD
6	308	2
228	26	1
70	282	2
1512	745	9
70	503	14

3NF Corrected Anomalies

Example

- If it is known that movies made in Brasil are in Portuguese, this data can be added to $R 5$.
- If the movie Suspiria is deleted, the data that movies made in Italy are in Italian is preserved in $R 5$.
- If the language of the movies made in the US has to be updated as American English, only one tuple in R5 has to be modified.

BCNF Example

Example (let movie titles be unique)

- candidate keys:
- \{MOVIEID,ACTORID\}
- \{TITLE,ACTORID\}
- non-conforming functional dependencies:
- MOVIEID \rightarrow TITLE
- TITLE \rightarrow MOVIEID

References

Required text: Date

- Chapter 11: Functional Dependencies
- Chapter 12: Further Normalization I: 1NF, 2NF, 3NF, BCNF

Entities

Definition
entity:
set of "things" with the same attributes

- elements of the set are instances of the entity
- strong: can exist by itself
- weak: existence depends on another entity

Properties

Definition
property:
data describing entities or relationships

- simple / composite
- key
- single / multiple valued
- empty
- base / derived

Entity/Relationship Model

- modelling approach
- Chen 1976
- components
- entities
- properties
- relationships

Entity Examples

Example

- entity: movie, director, actor
- instance: Johnny Depp
- strong entity: director
- weak entity: movie

Property Examples

Example

- property: title, country, language
- simple: first name, last name
- composite: full name
- base: date of birth
- derived: age

Relationships

Definition
relationship:
connections between entities

- participant: entities in the relationship
- degree: number of participants
- total / partial: all instances of the entity do / don't participate in the relationship

Relationship Types

- one-to-one
- one-to-many or many-to-one
- many-to-many

Entity/Relationship Diagrams

- entity: rectangle
- weak: double lines
- property: ellipsis
- derived: dashed lines
- multi-valued: double lines
- composite: sub-ellipses
- relationship: diamond
- between weak and strong: double lines
- total: connection double lines
- 1 or n depending on the type of the relationship

Entity/Relationship Diagram Example

Example

Applying to Design

- every entity a relation
- every property an attribute
- every many-to-many relationship a relation
- foreign keys to participating entities
- for every many-to-one relationship a foreign from the "many" side to the "one" side

References

Required text: Date

- Chapter 14: Semantic Modeling

