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Transactions

I a group of operations to be carried out together
I doing one operation while omitting the other might cause

inconsistency

Definition
transaction:
a logical unit of work
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Transaction Example

Example (transferring money from one bank account to
another)

UPDATE ACCOUNTS SET BALANCE = BALANCE − 100
WHERE ACCOUNTID = 123

UPDATE ACCOUNTS SET BALANCE = BALANCE + 100
WHERE ACCOUNTID = 456
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Transaction Management

I no guarantee that a group of operations will be carried out
together

I we should at least be able to return to the state before the
changes
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Transaction Properties

I atomicity
I all or nothing

I consistency
I from one consistent state to another

I isolation
I operations of an unfinished transaction do not affect other

transactions

I durability
I when a transaction is finished, its changes are permament even

if there is a system failure
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Transaction Start/End

starting a transaction

BEGIN [ WORK | TRANSACTION ]

successfully ending a transaction

COMMIT [ WORK | TRANSACTION ]

unsuccessfully ending a transaction

ROLLBACK [ WORK | TRANSACTION ]
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Transaction Example

Example

BEGIN TRANSACTION
ON ERROR GOTO UNDO
UPDATE ACCOUNTS SET BALANCE = BALANCE − 100

WHERE ACCOUNTID = 123
UPDATE ACCOUNTS SET BALANCE = BALANCE + 100

WHERE ACCOUNTID = 456
COMMIT
. . .

UNDO: ROLLBACK
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Recovery

I system failure during a transaction
I buffer cache has not been flushed to the disk

I how to guarantee durability?
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Transaction Log

I data can be derived from some other source in the system
I internal level

I the values of every tuple before and after the operation is
noted in the log

I write-ahead rule:
the log must be flushed to the physical medium before the
transaction is finished
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Checkpoints

I create checkpoints in the log at certain intervals
I flush buffer cache to the physical medium
I note the checkpoint:

continuing transactions
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Recovery Lists

I after the failure, which transactions will be undone, which
transactions will be made permanent?

I two lists: undo (U), redo (R)

I tC : last checkpoint in the log
I add the transactions which are active at tC to the undo list

I scan records from tC to end of log
I add any starting transaction to the undo list
I add any finishing transaction to the redo list
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Recovery Example

Example

I tC :
U = {T2,T3} R = ∅

I T4 started:
U = {T2,T3,T4} R = ∅

I T2 finished:
U = {T3,T4} R = {T2}

I T5 started:
U = {T3,T4,T5} R = {T2}

I T4 finished:
U = {T3,T5} R = {T2,T4}
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Recovery Process

I scan records from end of log backwards
I undo the operations of the transactions in the undo list

I scan records forwards
I redo the operations of the transactions in the redo list
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Two-Phase Commit

I different source managers
I different undo / redo mechanisms

I modifications on data that reside on different source managers

I either commit in all sources
or rollback in all sources

I coordinator
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Protocol

I coordinator tells all participants to flush the data regarding
the transaction to the physical medium

I coordinator tells all participants to start the transaction and
report back the result

I if all participants report success, coordinator decides to commit
I if one or more participants report failure, coordinator decides

to rollback

I coordinator informs the participants about the decision
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References

Required text: Date

I Chapter 15: Recovery
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Concurrency

I lost update

I uncommitted dependency

I inconsistent analysis
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Lost Update

Example

Transaction A Transaction B

... ...
RETRIEVE p ...
... ...
... RETRIEVE p
... ...
UPDATE p ...
... ...
... UPDATE p
... ...
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Uncommitted Dependency

Example

Transaction A Transaction B

... ...

... UPDATE p

... ...
RETRIEVE p ...
... ...
... ROLLBACK
...
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Inconsistent Analysis

Example (sum of accounts: acc1=40, acc2=50, acc3=30)

Transaction A Transaction B

... ...
RETRIEVE acc1 (40) ...
RETRIEVE acc2 (90) ...
... ...
... UPDATE acc3 (30 → 20)
... UPDATE acc1 (40 → 50)
... COMMIT
... ...
RETRIEVE acc3 (110)
...

22 / 47

Conflicts

I A reads, B reads
I no problem

I A reads, B writes
I non-repeatable read (inconsistent analysis)

I A writes, B reads
I dirty read (uncommitted dependency)

I A writes, B writes
I dirty write (lost update)
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Locking

I transactions lock the tuples they work on
I shared lock (S)
I exclusive lock (X)

I they release the locks when they are done
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Lock Requests

lock type compatibility matrix

- S X

S Y Y N

X N N N

I if shared lock
I shared lock requests are granted
I exclusive lock requests are denied

I if exclusive lock, all lock requests are denied
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Locking Protocol

I the transaction requests a lock depending on the operation it
wants to perform

I promote a shared lock to an exclusive lock

I if the request cannot be granted, it starts waiting
I it continues when the transaction that holds the lock releases it
I starvation
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Two-Phase Locking

I two-phase locking:
after any lock is released there will be no more new lock
requests

I expansion phase: gather locks
I contraction phase: release locks

I two-phase strict locking:
all locks are released at the end of the transaction
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Lost Update

Example

Transaction A Transaction B

... ...
RETRIEVE p (S+) ...
... ...
... RETRIEVE p (S+)
... ...
UPDATE p (X-) ...
wait ...
wait UPDATE p (X-)
wait wait
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Uncommitted Dependency

Example

Transaction A Transaction B

... ...

... UPDATE p (X+)

... ...
RETRIEVE p (S-) ...
wait ...
wait ROLLBACK
RETRIEVE p (S+)
...
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Inconsistent Analysis

Example (sum of accounts: acc1=40, acc2=50, acc3=30)

Transaction A Transaction B

... ...
RETRIEVE acc1 (S+) ...
RETRIEVE acc2 (S+) ...
... ...
... UPDATE acc3 (X+)
... UPDATE acc1 (X-)
... wait
RETRIEVE acc3 (S-) wait
wait wait
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Deadlock

Definition
deadlock:
transactions are waiting for each other to release the locks

I almost always between two transactions
I countermeasures:

I detecting and solving
I preventing
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Solving Deadlocks

Example I wait graph

I choose a victim and kill it
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Preventing Deadlocks

I every transaction has a starting timestamp
I if the lock request of transaction A conflicts with a lock held

by transaction B:
I wait-die: A waits if it is older than B, otherwise it dies

A is rolled back and restarted
I wound-wait: A waits if it is younger than B, otherwise it

wounds B
B is rolled back and restarted

I the timestamp of a restarted transaction is not changed
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Lock Statements

shared Lock

SELECT query FOR SHARE

exclusive Lock

SELECT query FOR UPDATE
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Isolation Levels

I if isolation is decreased, concurrency can be increased:
I serializable
I repeatable read
I read committed
I read uncommitted
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Serializable

I serial execution: one transaction starts after the other is
finished

Example

I x = 10

I transaction A: x = x + 1

I transaction B: x = 2 ∗ x

I first A, then B: x = 22

I first B, then A: x = 21
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Serializability

I serializable:
the result of concurrent execution is always the same as one of
the serial executions

I if all transactions obey the two-phase locking protocol,
all concurrent executions are serializable
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Read Committed

I only exclusive locks are held until end of transaction

Example

Transaction A Transaction B

... ...
RETRIEVE p (S+) ...
... ...
release lock ...
... ...
... UPDATE p (X+)
... COMMIT
RETRIEVE p (S+)
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Phantoms

Definition
phantom:
when query is executed again, new tuples appear in the result

Example

I transaction A computes the average of a customer’s account
balances:
100+100+100

3 = 100

I transaction B creates a new account with balance 200 for the
same customer

I transaction A computes again:
100+100+100+200

4 = 125
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Setting Isolation Levels

statement

SET TRANSACTION ISOLATION LEVEL
[ SERIALIZABLE | REPEATABLE READ |

READ COMMITTED | READ UNCOMMITTED ]
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Isolation Level Problems

Isolation level Dirty Non-repeatable Phantom
read read

READ UNCOMMITTED Y Y Y

READ COMMITTED N Y Y

REPEATABLE READ N N Y

SERIALIZABLE N N N
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Locking Granularity

I locking relations instead of tuples
I even the entire database

I if granularity is increased, concurrency is decreased

I hard to find locks on tuples
→ first, get intent locks on relation variables
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Intent Locks

I Intent Shared (IS):
the transaction intends to read some tuples

I Intent Exclusive (IX):
IS + the transaction intends to write some tuples

I Shared (S):
concurrent readers are allowed but no concurrent writers

I Shared + Intent Exclusive (SIX):
S + IX

I Exclusive (X):
no concurrency allowed on this relation
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Lock Requests

lock compatibility matrix

- IS S IX SIX X

IS Y Y Y Y Y N

S Y Y Y N N N

IX Y Y N Y N N

SIX Y Y N N N N

X Y N N N N N
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Lock Precedence

I for a shared lock on a tuple,
at least an IS lock on the
relation

I for an exclusive lock on a
tuple, at least an IX lock on
the relation
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Locking Statements

statement

LOCK [ TABLE ] tab le name
[ IN lock mode MODE ]

I lock modes:
I ACCESS SHARE
I ROW SHARE
I ROW EXCLUSIVE
I SHARE UPDATE EXCLUSIVE
I SHARE
I SHARE ROW EXCLUSIVE
I EXCLUSIVE
I ACCESS EXCLUSIVE
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