
Functional Programming
Higher-Order Functions

H. Turgut Uyar

2013-2017

1 / 55

License

© 2013-2017 H. Turgut Uyar

You are free to:

Share – copy and redistribute the material in any medium or format

Adapt – remix, transform, and build upon the material

Under the following terms:

Attribution – You must give appropriate credit, provide a link to the license, and
indicate if changes were made.

NonCommercial – You may not use the material for commercial purposes.

ShareAlike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2 / 55

Topics

1 Higher-Order Functions
Function Order
Example: Sorting
Anonymous Functions
Example: Fixed Points

2 List Functions
Filter
Map
Fold
List Comprehension

3 / 55

First Class Values

first class values can be:

assigned

composed with other values

passed as parameters

returned as function results

in functional programming, functions are first class values

4 / 55

Function Order

first order functions

only accept data as parameter, and

only return data as result

higher-order functions

take functions as parameters, or

return functions as result

5 / 55

First Order Function Examples

sum up the squares in a range

-- sqr :: Integer -> Integer
sumSqr :: Integer -> Integer -> Integer
sumSqr a b
| a > b = 0
| otherwise = sqr a + sumSqr (a + 1) b

sum up the factorials in a range

-- fac :: Integer -> Integer
sumFac :: Integer -> Integer -> Integer
sumFac a b
| a > b = 0
| otherwise = fac a + sumFac (a + 1) b

6 / 55

Higher-Order Function Example

note the pattern

sumFun a b
| a > b = 0
| otherwise = fun a + sumFun (a + 1) b

send the function as parameter

sumF f a b
| a > b = 0
| otherwise = f a + sumF f (a + 1) b

sumSqr a b = sumF sqr a b
sumFac a b = sumF fac a b

7 / 55

Higher-Order Function Example

what is the type of f?

Integer -> Integer

what is the type of sumF?

(Integer -> Integer) -> Integer -> Integer -> Integer

8 / 55

Higher-Order Function Example

Python

def sum_f(f, a, b):
total = 0
while a <= b:

total += f(a)
a += 1

return total

def sqr(x):
return x * x

def sum_sqr(a, b):
return sum_f(sqr, a, b)

9 / 55

Higher-Order Function Example

C

int sum_f(int (*f)(int), int a, int b)
{

int total = 0;
while (a <= b) {

total += f(a);
a += 1;

}
return total;

}

10 / 55

Higher-Order Function Example

C

int sqr(int x)
{

return x * x;
}

int sum_sqr(int a, int b)
{

return sum_f(sqr, a, b);
}

11 / 55

Higher-Order Function Example

Rock - Paper - Scissors
parameterize generateMatch regarding both strategies

type Strategy = [Move] -> Move

generateMatch :: Strategy -> Strategy -> Integer
-> Match

generateMatch _ _ 0 = ([], [])
generateMatch sA sB n = step (generateMatch sA sB (n - 1))
where
step :: Match -> Match
step (movesA, movesB) = (sA movesB : movesA,

sB movesA : movesB)

12 / 55

Example: Sorting

insertion sort

ins :: Integer -> [Integer] -> [Integer]
ins n [] = [n]
ins n xs@(x’:xs’)
| n <= x’ = n : xs
| otherwise = x’ : ins n xs’

iSort :: [Integer] -> [Integer]
iSort [] = []
iSort (x:xs) = ins x (iSort xs)

13 / 55

Example: Sorting

parameterize iSort regarding precedes function

ins’ :: (Integer -> Integer -> Bool)
-> Integer -> [Integer] -> [Integer]

ins’ p n [] = [n]
ins’ p n xs@(x’:xs’)
| p n x’ = n : xs
| otherwise = x’ : ins’ p n xs’

iSort’ :: (Integer -> Integer -> Bool)
-> [Integer] -> [Integer]

iSort’ p [] = []
iSort’ p (x:xs) = ins’ p x (iSort’ p xs)

-- iSort’ (<=) [4, 5, 3] ~> [3, 4, 5]
-- iSort’ (>) [4, 5, 3] ~> [5, 4, 3]

14 / 55

Example: Sorting

ins’ :: (a -> a -> Bool) -> a -> [a] -> [a]
ins’ p n [] = [n]
ins’ p n xs@(x’:xs’)
| p n x’ = n : xs
| otherwise = x’ : ins’ p n xs’

iSort’ :: (a -> a -> Bool) -> [a] -> [a]
iSort’ p [] = []
iSort’ p (x:xs) = ins’ p x (iSort’ p xs)

-- iSort’ (<=) [4, 5, 3] ~> [3, 4, 5]
-- iSort’ (<=) ["b", "a", "c"] ~> ["a", "b", "c"]

15 / 55

Example: Sorting

in C, qsort takes comparison function as parameter

typedef struct {
int num, denom;

} rational;

rational items[] = {{3, 2}, {1, 3}, {2, 1}};
qsort(items, 3, sizeof(rational), compare_rationals);

16 / 55

Sorting

int compare_rationals(const void *r1, const void *r2)
{

const rational *x = r1, *y = r2;
int diff = x->num * y->denom - y->num * x->denom;

if (diff < 0)
return -1;

else if (diff > 0)
return 1;

else
return 0;

}

17 / 55

Sorting

in Python, sorted takes key function as parameter

def second(p):
return p[1]

def value(p):
return p[0] / p[1]

items = [(3, 2), (1, 3), (2, 1)]

sorted(items) ~> [(1, 3), (2, 1), (3, 2)]
sorted(items, key=second) ~> [(2, 1), (3, 2), (1, 3)]
sorted(items, key=value) ~> [(1, 3), (3, 2), (2, 1)]

18 / 55

Anonymous Functions

no need to name small functions that are not used anywhere else
→ anonymous functions

\x1 x2 ... -> e

f x = e : f = \x -> e

example

sumSqr :: Integer -> Integer -> Integer
sumSqr a b = sumF (\x -> x * x) a b

19 / 55

Anonymous Functions

Python

lambda x1, x2, ...: e

examples

def sum_sqr(a, b):
sum_func(lambda x: x * x, a, b)

sorted(items, key=lambda p: p[0] / p[1])

20 / 55

Fixed Points

x is a fixed point of f:
f(x) = x

repeatedly apply f until value doesn’t change:
x→ f(x)→ f(f(x))→ f(f(f(x)))→ . . .

21 / 55

Fixed Points

fixedPoint :: (Float -> Float) -> Float -> Float
fixedPoint f x0 = fpIter x0
where
fpIter :: Float -> Float
fpIter x
| isCloseEnough x x’ = x’
| otherwise = fpIter x’
where
x’ = f x

isCloseEnough :: Float -> Float -> Bool
isCloseEnough x x’ = (abs (x’ - x) / x) < 0.001

22 / 55

Square Roots

use fixed points to compute square roots

y =
√

x⇒ y ∗ y = x⇒ y = x/y

fixed point of the function f(y) = x/y

sqrt :: Float -> Float
sqrt x = fixedPoint (\y -> x / y) 1.0

doesn’t converge (try with x = 2.0)

23 / 55

Square Roots

average successive values (average damping)

sqrt x = fixedPoint (\y -> (y + x/y) / 2.0) 1.0

exercise: implement average damping as a higher order function
and use it in sqrt implementation

24 / 55

Filter

select all elements with a given property

all odd elements of a list

-- allOdds [4, 1, 3, 2] ~> [1, 3]

allOdds :: [Integer] -> [Integer]
allOdds [] = []
allOdds (x:xs)
| odd x = x : allOdds xs
| otherwise = allOdds xs

25 / 55

Filter

filter: select elements that satisfy a predicate

filter f [] = []
filter f (x:xs)
| f x = x : filter f xs
| otherwise = filter f xs

what is the type of filter?
filter :: (a -> Bool) -> [a] -> [a]

26 / 55

Filter Example

all odd elements of a list

allOdds :: [Integer] -> [Integer]
allOdds xs = filter odd xs

Python

filter(lambda x: x % 2 == 1, [4, 1, 3, 2])

27 / 55

Filter Example

how many elements in a list are above a threshold?

howManyAbove :: Float -> [Float] -> Int
howManyAbove t xs = length (filter (\x -> x >= t) xs)

28 / 55

Splitting Lists

take elements from the front of a list while a predicate is true
takeWhile even [8, 2, 4, 5, 6] ~> [8, 2, 4]

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile f [] = []
takeWhile f (x:xs)
| f x = x : takeWhile f xs
| otherwise = []

exercise: drop elements from the front of a list
while a predicate is true
dropWhile even [8, 2, 4, 5, 6] ~> [5, 6]

29 / 55

Map

transform all elements of a list

example: floors of all elements of a list

-- floorAll [5.7, 9.0, 2.3] ~> [5, 9, 2]

floorAll :: [Float] -> [Integer]
floorAll [] = []
floorAll (x:xs) = floor x : floorAll xs

30 / 55

Map

map: apply a function to all elements of a list

map f [] = []
map f (x:xs) = f x : map f xs

what is the type of map?
map :: (a -> b) -> [a] -> [b]

31 / 55

Map Example

floors of all elements of a list

floorAll :: [Float] -> [Integer]
floorAll xs = map floor xs

Python

from math import floor

map(floor, [5.7, 9.0, 2.3])

32 / 55

Map Examples

make a list of n copies of an item

replicate :: Int -> a -> [a]
replicate n i = map (_ -> i) [1 .. n]

zip two lists over a function

zipWith (+) [1, 2] [10, 12] ~> [11, 14]
zipWith replicate [3, 2] [’a’, ’b’] ~> ["aaa", "bb"]

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f xs ys = map (\(x, y) -> f x y) (zip xs ys)

33 / 55

Fold

reduce the elements of a list to a single value

sum all elements of a non-empty list

-- sum [2, 8, 5] ~> 15

sum :: [Integer] -> Integer
sum [x] = x
sum (x:xs) = x + sum xs

34 / 55

Fold

foldr1: reduce a non-empty list to a value over a function

foldr1 f [x] = x
foldr1 f (x:xs) = x ‘f‘ (foldr1 f xs)

-- OR:
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

what is the type of foldr1?
foldr1 :: (a -> a -> a) -> [a] -> a

35 / 55

Fold Expansion

foldr1 f [e1, e2, ..., ej, ek]
= f e1 (foldr1 f [e2, ..., ej, ek])
= e1 ‘f‘ (foldr1 f [e2, ..., ej, ek])
= e1 ‘f‘ (e2 ‘f‘ (... (ej ‘f‘ ek)...)

36 / 55

Fold

sum all elements of a list

sum :: [Integer] -> Integer
sum xs = foldr1 (+) xs

Python

from functools import reduce
from operator import add

def sum(xs):
return reduce(add, xs)

37 / 55

Fold with Initial Value

foldr1 doesn’t work on empty lists

add a parameter as initial value for empty list: foldr

foldr f s [] = s
foldr f s (x:xs) = f x (foldr f s xs)

what is the type of foldr?
foldr :: (a -> b -> b) -> b -> [a] -> b

38 / 55

Fold with Initial Value Expansion

foldr f s [e1, e2, ..., ej, ek]
= f e1 (foldr f s [e2, ..., ej, ek])
= e1 ‘f‘ (foldr f s [e2, ..., ej, ek])
= e1 ‘f‘ (e2 ‘f‘ (... (ej ‘f‘ (ek ‘f‘ s))...)

39 / 55

Fold with Initial Value

sum all elements of a list

sum :: [Integer] -> Integer
sum xs = foldr (+) 0 xs

Python

from functools import reduce
from operator import add

def sum(xs):
return reduce(add, xs, 0)

40 / 55

Fold Examples

product :: [Integer] -> Integer
product xs = foldr (*) 1 xs

fac :: [Integer] -> Integer
fac n = foldr (*) 1 [1 .. n]

and :: [Bool] -> Bool
and xs = foldr (&&) True xs

concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs

maxList :: [Integer] -> Integer
maxList xs = foldr1 max xs

41 / 55

Fold Example

how many elements in a list are above a threshold?

howManyAbove :: Float -> [Float] -> Integer
howManyAbove t xs =

foldr (\x n -> if x >= t then n + 1 else n) 0 xs

42 / 55

Fold Example

insertion sort

ins :: Integer -> [Integer] -> [Integer]
ins n [] = [n]
ins n xs@(x’:xs’)
| n <= x’ = n : xs
| otherwise = x’ : ins n xs’

iSort :: [Integer] -> [Integer]
iSort [] = []
iSort (x:xs) = ins x (iSort xs)

-- equivalent to:
iSort :: [Integer] -> [Integer]
iSort xs = foldr ins [] xs

43 / 55

Fold Left

foldl f s [e1, e2, ..., ej, ek]
= (...((s ‘f‘ e1) ‘f‘ e2) ‘f‘ ... ej) ‘f‘ ek
= foldl f (s ‘f‘ e1) [e2, ..., ej, ek]
= foldl f (f s e1) [e2, ..., ej, ek]

foldl f s [] = s
foldl f s (x:xs) = foldl f (f s x) xs

what is the type of foldl?
foldl :: (b -> a -> b) -> b -> [a] -> b

44 / 55

Fold Right - Fold Left

results not the same if function is not commutative

example

foldr (*) 1 [3 .. 6] ~> 360
foldl (*) 1 [3 .. 6] ~> 360

foldr (/) 6.0 [3.0, 2.0, 4.0] ~> 1.0
foldl (/) 6.0 [3.0, 2.0, 4.0] ~> 0.25

45 / 55

Edit Distance

transform a source string into a destination string
operations: copy, insert, delete, change

costs: copy 0, all others 1

find path with minimum cost

data Edit = Copy | Insert Char | Delete | Change Char
deriving (Eq, Show)

46 / 55

Edit Distance

transform :: String -> String -> [Edit]
transform [] [] = []
transform xs [] = map (_ -> Delete) xs
transform [] ys = map Insert ys
transform xs@(x’:xs’) ys@(y’:ys’)
| x’ == y’ = Copy : transform xs’ ys’
| otherwise = best [Insert y’ : transform xs ys’,

Delete : transform xs’ ys,
Change y’ : transform xs’ ys’]

47 / 55

Edit Distance

find best path

best :: [[Edit]] -> [Edit]
best [x] = x
best (x:xs)
| cost x <= cost b = x
| otherwise = b
where
b = best xs

cost :: [Edit] -> Int
cost xs = length (filter (\x -> x /= Copy) xs)

exercise: implement best using fold

48 / 55

List Comprehension

describe a list in terms of the elements of another list

generate, test, transform

[e | v1 <- l1, v2 <- l2, ..., p1, p2, ...]

49 / 55

List Comprehension Examples

[2 * n | n <- [2, 4, 7]] ~> [4, 8, 14]

[even n | n <- [2, 4, 7]] ~> [True, True, False]

[2 * n | n <- [2, 4, 7], even n, n > 3] ~> [8]

[m + n | (m, n) <- [(2, 3), (2, 1), (7, 8)]]
~> [5, 3, 15]

[(x, y, z) | x <- [1 .. 5], y <- [1 .. 5],
z <- [1 .. 5],
x*x + y*y == z*z]

50 / 55

List Comprehension Examples

Python

[2 * n for n in [2, 4, 7]]

[n % 2 == 0 for n in [2, 4, 7]]

[2 * n for n in [2, 4, 7] if (n % 2 == 0) and (n > 3)]

[m + n for (m, n) in [(2, 3), (2, 1), (7, 8)]]

[(x, y, z) for x in range(1, 6)
for y in range(1, 6)
for z in range(1, 6)
if x * x + y * y == z * z]

51 / 55

List Comprehension Example

quick sort

qSort :: [Integer] -> [Integer]
qSort [] = []
qSort (x:xs) =

qSort smaller ++ [x] ++ qSort larger
where
smaller = [a | a <- xs, a <= x]
larger = [b | b <- xs, b > x]

52 / 55

Higher Order List Functions

filter f xs = [x | x <- xs, f x]

map f xs = [f x | x <- xs]

53 / 55

Python Comprehensions

list comprehension: [x for ...]

[x * x for x in [2, 4, 7, -2]]
~> [4, 16, 49, 4]

set comprehension: {x for ...}

{x * x for x in [2, 4, 7, -2]}
~> {4, 16, 49}

dictionary comprehension: {k: v for ...}

{s: len(s) for s in [’haskell’, ’python’, ’foo’]}
~> {’haskell’: 7, ’python’: 6, ’foo’: 3}

54 / 55

References

Required Reading: Thompson
Chapter 10: Generalization: patterns of computation

55 / 55

