
www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-1

Chapter 4

4. MSP430 Architecture

The objective of this chapter is to provide a comprehensive
description of the MSP430 architecture, covering its main
characteristics: address space, the Central Processing Unit (CPU),
the seven addressing modes and the instruction set. A review is
made of the MSP430 assembly language instruction set composed of
27 base op-codes and 24 emulated instructions. It also discusses the
techniques used to program in assembly language and the basics of
writing an assembly-language program.

Topic Page

4.1 Introduction .. 4-3

4.2 Main characteristics of a MSP430 microcontroller 4-4

4.3 Address space.. 4-5

4.3.1 Interrupt vector table ... 4-6

4.3.2 Flash/ROM .. 4-8

4.3.3 Information memory (Flash devices only)................. 4-8

4.3.4 Boot memory (Flash devices only) 4-8

4.3.5 RAM... 4-8

4.3.6 Peripheral Modules.. 4-9

4.3.7 Special Function Registers (SFRs)............................. 4-9

4.4 Central Processing Unit (MSP430 CPU)............................ 4-9

4.4.1 Arithmetic Logic Unit (ALU)..................................... 4-10

4.4.2 MSP430 CPU registers ... 4-10

4.5 Central Processing Unit (MSP430X CPU)........................ 4-12

4.5.1 Main features of the MSP430X CPU architecture 4-12

4.5.2 MSP430X CPU registers... 4-14

MSP430 Architecture

4-2 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

4.6 Addressing modes ..4-17

4.6.1 Register Mode ..4-18

4.6.2 Indexed mode..4-19

4.6.3 Symbolic mode...4-20

4.6.4 Absolute mode ...4-21

4.6.5 Indirect register mode ...4-22

4.6.6 Indirect auto increment mode..................................4-23

4.6.7 Immediate mode..4-23

4.7 Instruction set..4-24

4.7.1 Double operand instructions4-25

4.7.2 Single operand instructions4-27

4.7.3 Program flow control - Jumps..................................4-28

4.7.4 Emulated instructions ..4-28

4.8 Quiz..4-31

4.9 FAQs...4-33

Introduction

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-3

4.1 Introduction

The types of devices such as microprocessor, microcontroller,
processor, digital signal processor (DSP), amongst others, in a
certain manner, are related to the same device – the ASIC
(Application Specific Integrated Circuit). Each processing device
executes instructions, following a determined program applied to the
inputs and shares architectural characteristics developed from the
first microprocessors created in 1971. In the three decades after the
development of the first microprocessor, huge developments and
innovations have been made in this engineering field. Any of the
terms used at the beginning of this section are correct to define a
microprocessor, although each one has different characteristics and
applications.

The definition of a microcontroller is somewhat difficult due to the
constantly changing nature of the silicon industry. What we today
consider a microcontroller with medium capabilities is several orders
of magnitude more powerful, than the computer used on the first
space missions. Nevertheless, some generalizations can be made as
to what characterizes a microcontroller. Typically, microcontrollers
are selected for embedded systems projects, i.e., control systems
with a limited number of inputs and outputs where the controller is
embedded into the system.

The programmable SoC (system-on-chip) concept started in 1972
with the 4-bit TMS1000 microcomputer developed by Texas
Instruments (TI), and in those days it was ideal for applications such
as calculators and ovens. This term was changed to Microcontroller
Unit (MCU), which was more descriptive of a typical application.
Nowadays, MCUs are at the heart of many physical systems, with
higher levels of integration and processing power at lower power
consumption.

The following list presents several qualities that define a
microcontroller:

 Cost: Usually, the microcontrollers are high-volume, low cost
devices;

 Clock frequency: Compared with other devices (microprocessors
and DSPs), microcontrollers use a low clock frequency.
Microcontrollers today can run up to 100 MHz/ 100 Million
Instructions Per Second (MIPS)

 Power consumption: orders of magnitude lower than their DSP
and MPU cousins;

 Bits: 4 bits (older devices) to 32 bits devices;

 Memory: Limited available memory, usually less than 1 MByte;

 Input/Output (I/O): Low to high (8-150) pin-out count.

Figure 4-1 shows a microcontroller that meets the above criteria.

MSP430 Architecture

4-4 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 4-1. Microcontroller Texas Instruments MSP430F169.

4.2 Main characteristics of a MSP430 microcontroller

Although there are variants in devices in the family, a MSP430
microcontroller can be characterized by:

 Low power consumption:

 0.1 A for RAM data retention;

 0.8 A for real time clock mode operation;

 250 A/MIPS at active operation.

 Low operation voltage (from 1.8 V to 3.6 V).

 < 1 s clock start-up.

 < 50 nA port leakage.

 Zero-power Brown-Out Reset (BOR).

 On-chip analogue devices:

 10/12/16-bit Analogue-to-Digital Converter (ADC);

 12-bit dual Digital-to-Analogue Converter (DAC);

 Comparator-gated timers;

 Operational Amplifiers (OP Amps);

 Supply Voltage Supervisor (SVS).

 16 bit RISC CPU:

 Instructions processing on either bits, bytes or words;

 Compact core design reduces power consumption and cost;

 Compiler efficient;

 27 core instructions;

 7 addressing modes;

 Extensive vectored-interrupt capability.

 Flexibility:

 Up to 256 kB In-System Programmable (ISP) Flash;

 Up to 100 pin options;

 USART, I2C, Timers;

 LCD driver;

 Embedded emulation.

Address space

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-5

The microcontroller’s performance is directly related to the 16-bit
data bus, the 7 addressing modes and the reduced instructions set,
which allows a shorter, denser programming code for fast
execution. These microcontroller families share a 16-bit CPU
(Central Processing Unit) core, RISC1 type, intelligent peripherals,
and flexible clock system that interconnects using a Von Neumann2
common memory address bus (MAB) and memory data bus (MDB)
architecture.

Figure 4-2. MSP430 architecture.

4.3 Address space

All memory, including RAM, Flash/ROM, information memory, special
function registers (SFRs), and peripheral registers are mapped into a
single, contiguous address space as shown in Figure 4−3.

Note: See the device-specific datasheets for specific memory maps.
Code access is always performed on even addresses. Data can be
accessed as bytes or words.

1 RISC (Reduced Instructions Set Computing) – In this type of configuration, the instructions are reduced to
the basic ones, with the objective of providing simpler and faster instruction decoding. The MSP430 only uses
27 physical instructions and 24 emulated instructions.

2 Von Neumann architecture - Computational architecture that makes use of only one storage structure to
save the data and instructions sets. In the model, the separation of the processing unit storage is implicit. Since
the instructions are treated as data, the devices that use this type of architecture can easily modify the
instruction, i.e., are programmable.

MSP430 Architecture

4-6 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The MSP430 is available with either Flash or ROM memory types.
The memory type is identified by the letter immediately following
“MSP430” in the part numbers.

Flash devices: Identified by the letter “F” in the part numbers,
having the advantage that the code space can be erased and
reprogrammed.

ROM devices: Identified by the letter “C” in the part numbers. They
have the advantage of being very inexpensive because they are
shipped pre-programmed, which is the best solution for high-volume
designs.

Figure 4-3. Memory Map.

Memory Address Description Access
End: 0FFFFh

Start: 0FFE0h
Interrupt Vector Table

Word/Byte

End: 0FFDFh

Flash/ROM

0F800h
Start *:

01100h

Word/Byte

010FFh End *:
0107Fh Information Memory

Start: 01000h (Flash devices only)
Word/Byte

End: 0FFFh
Start: 0C00h

Boot Memory
(Flash devices only)

Word/Byte

09FFh End *:
027Fh RAM

Start: 0200h
Word/Byte

End: 01FFh
Start: 0100h

16-bit Peripheral modules Word

End: 00FFh
Start: 0010h

8-bit Peripheral modules Byte

End: 000Fh
Start: 0000h

Special Function Registers Byte

* Depending on device family.

For all devices, each memory location is formed by 1 data byte. The
CPU is capable of addressing data values either as bytes (8 bits) or
words (16 bits). Words are always addressed at an even address,
which contain the least significant byte, followed by the next odd
address, which contains the most significant byte. For 8-bit
operations, the data can be accessed from either odd or even
addresses, but for 16-bit operations, the data values can only be
accessed from even addresses.

4.3.1 Interrupt vector table

The interrupt vector table is mapped at the very end of memory
space (upper 16 words of Flash/ROM), in locations 0FFE0h through
to 0FFFEh (see the device-specific datasheets). The priority of the
interrupt vector increases with the word address.

Address space

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-7

Table 4-1. Interrupt vector table for MSP430 families.

Vector
Address

Priority ’11xx and
’12xx

’13x and
’14x

‘2xx ’3xx ’4xx

0xFFFE 31,
Highest

Hard Reset/
Watchdog

Hard Reset/
Watchdog

Hard Reset/
Watchdog

Hard Reset/
Watchdog

Hard Reset/
Watchdog

0xFFFC 30 Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

0xFFFA 29 Unused Timer_B Timer_B (22x2,
22x4, 23x, 24x,

26x only)

Dedicated I/O Timer_B
(’43x and’44x

only)
0xFFF8 28 Unused Timer_B Timer_B (22x2,

22x4, 23x, 24x
only)

Dedicated I/O Timer_B
(’43x and’44x

only)
0xFFF6 27 Comparator Comparator Comparator_A+

(20x1 only,
21x1, 23x, 24x,

26x)

Unused Comparator

0xFFF4 26 Watchdog
Timer

Watchdog
Timer

Watchdog
Timer+

Watchdog Timer Watchdog Timer

0xFFF2 25 Timer_A USART Rx Timer_A Timer_A USART0 Rx
(’43x and’44x

only)
0xFFF0 24 Timer_A USART0 Tx Timer_A

Timer_A USART0 Tx

(’43x and’44x
only)

0xFFEE 23 USART0 Rx
(’12xx only)

ADC USCI Rx
(22x2, 22x4,
23x, 24x, 26x

only)
I2C status
(23x, 24x)

USART Rx ADC
(’43x and’44x

only)

0xFFEC 22 USART0 Tx
(’12xx only)

Timer_A USCI Tx
(22x2, 22x4,
23x, 24x, 26x

only)
I2C Rx/Tx (23x,
24x, 26x only)

USART Tx Timer_A

0xFFEA 21 ADC10 Timer_A ADC10 (20x2
22x2, 22x4

only)
ADC12 (23x,

24x, 26x only)
SD16_A (20x3

only)

ADC(’32x and
’33x) Timer/Port

(’31x)

Timer_A

0xFFE8 20 Unused Port 1 USI
(20x2, 20x3

only)

Timer/Port
(’32x and ’33x)

Port 1

0xFFE6 19 Port 2 USART1 Rx Port P2

Port 2 USART1 Rx
(’44x only)

0xFFE4 18 Port 1 USART1 Tx Port P1

Port 1 USART1 Tx
(’44x only)

0xFFE2 17 Unused Port 2 USCI Rx (23x,
24x, 26x only)

I2C status
(241x, 261x

only)

Basic Timer Port 2

0xFFE0 16

Unused Unused USCI Tx
(23x,24x only)

I2C Rx/Tx
(241x, 261x

only)

Port 0 Basic Timer

 15 DMA (241x,
261x only)

 14 DAC12 (241x,
261 only)

 13 to 0
Lowest

 Reserved

MSP430 Architecture

4-8 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

4.3.2 Flash/ROM

The start address of Flash/ROM depends on the amount of
Flash/ROM present on the device. The start address varies between
01100h (60k devices) to 0F800h (2k devices) and always runs to
the end of the address space at location 0FFFFh. Flash can be used
for both code and data. Word or byte tables can also be stored and
read by the program from Flash/ROM.

All code, tables, and hard-coded constants reside in this memory
space.

4.3.3 Information memory (Flash devices only)

The MSP430 flash devices contain an address space for information
memory. It is like an onboard EEPROM, where variables needed for
the next power up can be stored during power down. It can also be
used as code memory. Flash memory may be written one byte or
word at a time, but must be erased in segments. The information
memory is divided into two 128-byte segments. The first of these
segments is located at addresses 01000h through to 0107Fh
(Segment B), and the second is at address 01080h through to
010FFh (Segment A). This is the case in 4xx devices. It is 256 bytes
(4 segments of 64 bytes each) in 2xx devices.

4.3.4 Boot memory (Flash devices only)

The MSP430 flash devices contain an address space for boot
memory, located between addresses 0C00h through to 0FFFh. The
“bootstrap loader” is located in this memory space, which is an
external interface that can be used to program the flash memory in
addition to the JTAG. This memory region is not accessible by other
applications, so it cannot be overwritten accidentally. The bootstrap
loader performs some of the same functions as the JTAG interface
(excepting the security fuse programming), using the TI data
structure protocol for UART communication at a fixed data rate of
9600 baud.

4.3.5 RAM

RAM always starts at address 0200h. The end address of RAM
depends on the amount of RAM present on the device. RAM is used
for both code and data.

Central Processing Unit (MSP430 CPU)

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-9

4.3.6 Peripheral Modules

Peripheral modules consist of all on-chip peripheral registers that are
mapped into the address space. These modules can be accessed
with byte or word instructions, depending if the peripheral module is
8-bit or 16-bit respectively. The 16-bit peripheral modules are
located in the address space from addresses 0100 through to 01FFh
and the 8-bit peripheral modules are mapped into memory from
addresses 0010h through to 00FFh.

4.3.7 Special Function Registers (SFRs)

Some peripheral functions are mapped into memory with special
dedicated functions. The Special Function Registers (SFRs) are
located at memory addresses from 0000h to 000Fh, and are the
specific registers for:

 Interrupt enables (locations 0000h and 0001h);

 Interrupt flags (locations 0002h and 0003h);

 Enable flags (locations 0004h and 0005h);

SFRs must be accessed using byte instructions only. See the device-
specific data sheets for the applicable SFR bits.

4.4 Central Processing Unit (MSP430 CPU)

The RISC type architecture of the CPU is based on a short
instruction set (27 instructions), interconnected by a 3-stage
instruction pipeline for instruction decoding. The CPU has a 16-bit
ALU, four dedicated registers and twelve working registers, which
makes the MSP430 a high performance microcontroller suitable for
low power applications. The addition of twelve working general
purpose registers saves CPU cycles by allowing the storage of
frequently used values and variables instead of using RAM.

The orthogonal instruction set allows the use of any addressing
mode for any instruction, which makes programming clear and
consistent, with few exceptions, increasing the compiler efficiency
for high-level languages such as C.

Note: MSP430 Assembly programming language topics are
discussed in Chapter 15.

MSP430 Architecture

4-10 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 4-4. MSP430 CPU block diagram.

4.4.1 Arithmetic Logic Unit (ALU)

The MSP430 CPU includes an arithmetic logic unit (ALU) that handles
addition, subtraction, comparison and logical (AND, OR, XOR)
operations. ALU operations can affect the overflow, zero, negative,
and carry flags in the status register.

4.4.2 MSP430 CPU registers

The CPU incorporates sixteen 16-bit registers:

 Four registers (R0, R1, R2 and R3) have dedicated functions;

 There are 12 working registers (R4 to R15) for general use.

Central Processing Unit (MSP430 CPU)

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-11

R0: Program Counter (PC)

The 16-bit Program Counter (PC/R0) points to the next instruction to
be read from memory and executed by the CPU. The Program
counter is implemented by the number of bytes used by the
instruction (2, 4, or 6 bytes, always even). It is important to
remember that the PC is aligned at even addresses, because the
instructions are 16 bits, even though the individual memory
addresses contain 8-bit values.

R1: Stack Pointer (SP)

The Stack Pointer (SP/R1) is located in R1.

1st: stack can be used by user to store data for later use
(instructions: store by PUSH, retrieve by POP);

2nd: stack can be used by user or by compiler for subroutine
parameters (PUSH, POP in calling routine; addressed via offset
calculation on stack pointer (SP) in called subroutine);

3rd: used by subroutine calls to store the program counter value for
return at subroutine's end (RET);

4th: used by interrupt - system stores the actual PC value first, then
the actual status register content (on top of stack) on return from
interrupt (RETI) the system get the same status as just before the
interrupt happened (as long as none has changed the value on TOS)
and the same program counter value from stack.

R2: Status Register (SR)

The Status Register (SR/R2) stores the state and control bits. The
system flags are changed automatically by the CPU depending on
the result of an operation in a register. The reserved bits of the SR
are used to support the constants generator. See the device-specific
data sheets for more details.

SR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved for CG1 V SCG1 SCG0 OSCOFF CPUOFF GIE N Z C

Bit Description
8 V Overflow bit.

V = 1  Result of an arithmetic operation overflows the signed-variable range.
7 SCG1 System clock generator 0.

SCG1 = 1  DCO generator is turned off – if not used for MCLK or
 SMCLK.

6 SCG0 System clock generator 1.
SCG0 = 1  FLL+ loop control is turned off.

5 OSCOFF Oscillator Off.
OSCOFF = 1  turns off LFXT1 when it is not used for MCLK or SMCLK.

4 CPUOFF CPU off.
CPUOFF = 1  disable CPU core.

3 GIE General interrupt enable.
GIE = 1  enables maskable interrupts.

2 N Negative flag.
N = 1  result of a byte or word operation is negative.

1 Z Zero flag.
Z = 1  result of a byte or word operation is 0.

0 C Carry flag.
C = 1  result of a byte or word operation produced a carry.

MSP430 Architecture

4-12 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

R2/R3: Constant Generator Registers (CG1/CG2)

Depending of the source-register addressing modes (As) value, six
commonly used constants can be generated without a code word or
code memory access to retrieve them.

This is a very powerful feature, which allows the implementation of
emulated instructions, for example, instead of implementing a core
instruction for an increment, the constant generator is used.

Table 4-2. Values of the constant generator registers.

Register As Constant Remarks
R2 00 - Register mode
R2 01 (0) Absolute mode
R2 10 00004h +4, bit processing
R2 11 00008h +8, bit processing
R3 00 00000h 0, word processing
R3 01 00001h +1
R3 10 00002h +2, bit processing
R3 11 0FFFFh -1, word processing

R4 - R15: General–Purpose Registers

These general-purpose registers are used to store data values,
address pointers, or index values and can be accessed with byte or
word instructions.

4.5 Central Processing Unit (MSP430X CPU)

4.5.1 Main features of the MSP430X CPU architecture

The MSP430X CPU extends the addressing capabilities of the
MSP430 family beyond 64 kB to 1 MB. To achieve this, there are
some changes to the addressing modes and two new types of
instructions. One type of new instructions allows access to the entire
address space, and the other is designed for address calculations.

The MSP430X CPU address bus is 20 bits, but the data bus is still 16
bits. The CPU supports 8-bit, 16-bit and 20-bit memory accesses.
Despite these changes, the MSP430X CPU remains compatible with
the MSP430 CPU, having a similar number of registers. A block
diagram of the MSP430X CPU is shown in the figure below:

Central Processing Unit (MSP430X CPU)

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-13

Figure 4-5. MSP430X CPU block diagram.

Although the MSP430X CPU structure is similar to that of the
MSP430 CPU, there are some differences that will now be discussed.

With the exception of the status register SR, all MSP430X registers
are 20 bits. The CPU can now process 20-bit or 16-bit data.

MSP430 Architecture

4-14 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

4.5.2 MSP430X CPU registers

 R0 (PC) - Program Counter

Has the same function as the MSP430 CPU, although now it has 20
bits.

 R1 (SP) - Stack Pointer

Has the same function as the MSP430 CPU, although now it has 20
bits.

 R2 (SR) - Status Register

Has the same function as the MSP430 CPU, but still only has 16 bits.

Table 4-3. Description of the SR bits.

Central Processing Unit (MSP430X CPU)

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-15

 R2 (CG1) and R3 (CG2) - Constant Generators

The registers R2 and R3 can be used to generate six different
constants commonly used in programming, without the need to add
an extra 16-bit word of code to the instruction. The constants below
are chosen based on the bit (As) of the instruction that selects the
addressing mode.

Table 4-4. Values of constant generators.

Whenever the operand is one of these six constants, the registers
are selected automatically. Therefore, when used in constant mode,
registers R2 and R3 cannot be addressed explicitly by acting as
source registers.

 R4-R15 – General-purpose registers

These registers have the same function as the MSP430 CPU,
although they now have 20 bits. They can store 8-bit, 16-bit or
20-bit data. Any byte written to one of these registers clears bits
19:8. Any word written to one of these registers clears bits 19:16.
The exception to this rule is the instruction SXT, which extends the
sign value to fill the 20-bit register.

The following figures illustrate how the operations are conducted for
the exchange of information between memory and registers, for the
following formats: byte (8 bits), word (16 bits) and address (20
bits).

The following figure illustrates the handling of a byte (8 bits) using
the suffix .B.

MSP430 Architecture

4-16 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 4-6. Example: Register-Byte/Byte-Register operation.

The following figure illustrates the handling of a word (16-bit) using
the suffix .W.

Figure 4-7. Example: Register-Word/Word-Register operation.

The following figure illustrates the manipulation of an address (20
bits) using the suffix .A.

Addressing modes

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-17

Figure 4-8. Example: Register - Address-Word operation.

Figure 4-9. Example: Address-Word - Register operation.

All other differences in the addressing modes, instruction set, and
other details for the CPUX architecture present in MSP430 devices
which have over 64 kB of on chip memory are described in much
greater depth is section 15.3.2.

4.6 Addressing modes

The MSP430 supports seven addressing modes for the source
operand and four addressing modes for the destination operand (see
Table 4-5). The following sections describe each of the addressing
modes, with a brief description, an example and the number of CPU
clock cycles required for an instruction, depending on the instruction
format and the addressing modes used.

Note: Additional information concerning the MSP430 addressing
modes can be found in Chapter 15.

MSP430 Architecture

4-18 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 4-5. Source and destination operands, addressing modes.

Mode Source operand Destination operand Description

Register mode X X Single cycle

Indexed mode X X Table processing

Symbolic mode X X Easy to read code,
PC relative

Absolute mode X X Directly access any
memory location

Indirect register mode X Access memory
with pointers

Indirect auto increment mode X Table processing

Immediate mode X Unrestricted
constant values

Before describing the addressing modes, it is important to mention
the clock cycles required by interrupts and resets.

Table 4-6. Cycles required performing an interrupt or a reset.

Action Cycles Length (words)

Return from interrupt 5 1

Interrupt accepted 6 -

Watchdog timer reset 4 -

Hard reset 4 -

4.6.1 Register Mode

Register mode operations work directly on the processor registers,
R4 through R15, or on special function registers, such as the
program counter or status register. They are very efficient in terms
of both instruction speed and code space.

Description: Register contents are operands.

Source mode bits: As = 00 (source register defined in the opcode).

Destination mode bit: Ad=0 (destination register defined in the
opcode).

Addressing modes

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-19

Syntax: Rn.

Length: One or two words.

Comment: Valid for source and destination.

Example 1: Move (copy) the contents of source (register R4) to
destination (register R5). Register R4 is not affected.

Before operation: R4=A002h R5=F50Ah PC = PCpos

Operation: MOV R4, R5

After operation: R4=A002h R5=A002h PC = PCpos + 2

The first operand is in register mode and depending on the second
operand mode, the cycles required to complete an instruction will
differ. Table 4-7 shows the cycles required to complete an
instruction, depending on the second operand mode.

Table 4-7. Cycles required to perform the instruction in the first operand, in register
mode.

Operands 2nd operand mode Operator Cycles Length
(words)

2 Register Any 1* 1

2 Indexed, Symbolic or Absolute Any 4 2

1 N/A RRA, RRC, SWPB or SXT 1 1

1 N/A PUSH 3 1

1 N/A CALL 4 1

*Register mode instructions where the destination is the Program Counter (PC)
require 2 cycles instead of 1.

4.6.2 Indexed mode

The Indexed mode commands are formatted as X(Rn), where X is a
constant and Rn is one of the CPU registers. The absolute memory
location X+Rn is addressed. Indexed mode addressing is useful for
applications such as lookup tables.

Description: (Rn + X) points to the operand. X is stored in the next
word.

Source mode bits: As = 01 (memory location is defined by the word
immediately following the opcode).

MSP430 Architecture

4-20 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Destination mode bit: Ad=1 (memory location is defined by the word
immediately following the opcode).

Syntax: X(Rn).

Length: Two or three words.

Comment: Valid for source and destination.

Example 2: Move (copy) the contents at source address (F000h +
R5) to destination (register R4).

Before operation: R4=A002h R5=050Ah Loc:0xF50A=0123h

Operation: MOV F000h(R5), R4

After operation: R4=0123h R5=050Ah Loc:0xF50A=0123h

Table 4-8. Cycles required to perform an instruction contained in the first operand, using
indexed mode.

Operands 2nd operand mode Operator Cycles Length
(words)

2 Register Any 3 2

2 Indexed, Symbolic or Absolute Any 6 3

1 N/A RRA, RRC, SWPB or SXT 4 2

1 N/A CALL or PUSH 5 2

4.6.3 Symbolic mode

Symbolic mode allows the assignment of labels to fixed memory
locations, so that those locations can be addressed. This is useful for
the development of embedded programs.

Description: (PC + X) points to the operand. X is stored in the next
word. Indexed mode X(PC) is used.

Source mode bits: As = 01 (memory location is defined by the word
immediately following the opcode).

Destination mode bit: Ad=1 (memory location is defined by the word
immediately following the opcode).

Syntax: ADDR.

Length: Two or three words.

Comment: Valid for source and destination.

Addressing modes

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-21

Example 3: Move the content of source address XPT (x pointer) to
the destination address YPT (y pointer).

Before operation: XPT=A002h Location YPT=050Ah

Operation: MOV XPT, YPT

After operation: XPT= A002h Location YPT=A002h

Table 4-9. Cycles required to perform an instruction contained in the first operand, in
symbolic mode.

Operands 2nd operand mode Operator Cycles Length
(words)

2 Register Any 3 2

2 Indexed, Symbolic or Absolute Any 6 3

1 N/A RRA, RRC, SWPB or SXT 4 2

1 N/A CALL or PUSH 5 2

4.6.4 Absolute mode

Similar to Symbolic mode, with the difference that the label is
preceded by “&”.

Description: The word following the instruction contains the absolute
address. X is stored in the next word. Indexed mode X(SR) is used.

Source mode bits: As = 01 (memory location is defined by the word
immediately following the opcode).

Destination mode bit: Ad=1 (memory location is defined by the word
immediately following the opcode).

Syntax: &ADDR.

Length: Two or three words.

Comment: Valid for source and destination.

Example 4: Move the content of source address XPT to the
destination address YPT.

Before operation: Location XPT=A002h Location YPT=050Ah

Operation: MOV &XPT, &YPT

After operation: Location XPT= A002h Location YPT=A002h

MSP430 Architecture

4-22 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 4-10. Cycles required to perform an instruction contained in the first operand in
absolute mode.

Operands 2nd operand mode Operator Cycles Length
(words)

2 Register Any 3 2

2 Indexed, Symbolic or Absolute Any 6 3

1 N/A RRA, RRC, SWPB or SXT 4 2

1 N/A CALL or PUSH 5 2

4.6.5 Indirect register mode

The data word addressed is located in the memory location pointed
to by Rn. Indirect mode is not valid for destination operands, but
can be emulated with the indexed mode format 0(Rn).

Description: Rn is used as a pointer to the operand.

Source mode bits: As = 10.

Syntax: @Rn.

Length: One or two words.

Comment: Valid only for source operand. The substitute for
destination operand is 0(Rn).

Example 5: Move the contents of the source address (contents of
R4) to the destination (register R5). Register R4 is not modified.

Before operation: R4=A002h R5=050Ah Loc:0xA002=0123h

Operation: MOV @(R4), R5

After operation: R4= A002h R5=0123h Loc:0xA002=0123h

Table 4-11. Cycles required to perform an instruction contained in the first operand, in
indirect register mode.

Operands 2nd operand mode Operator Cycles Length (words)

2 Register Any 2* 1

2 Indexed, Symbolic or Absolute Any 5 2

1 N/A RRA, RRC, SWPB or SXT 3 1

1 N/A CALL or PUSH 4 1

*Indirect register mode instructions where destination is Program Counter (PC)
require 3 cycles.

Addressing modes

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-23

4.6.6 Indirect auto increment mode

Similar to indirect register mode, but with indirect auto increment
mode, the operand is incremented as part of the instruction. The
format for operands is @Rn+. This is useful for working on blocks of
data.

Description: Rn is used as a pointer to the operand. Rn is
incremented afterwards by 1 for byte instructions and by 2 for word
instructions.

Source mode bits: As = 11.

Syntax: @Rn+.

Length: One or two words.

Comment: Valid only for source operand. The substitute for
destination operand is 0(Rn) plus second instruction INCD Rn.

Example 6: Move the contents of the source address (contents of
R4) to the destination (register R5), then increment the value in
register R4 to point to the next word.

Before operation: R4=A002h R5=050Ah Loc:0xA002=0123h

Operation: MOV @R4+, R5

After operation: R4= A004h R5=0123h Loc:0xA002=0123h

Table 4-12. Cycles required to perform an instruction contained in the first operand, in
indirect auto increment mode.

Operands 2nd operand mode Operator Cycles Length (words)

2 Register Any 2* 1

2 Indexed, Symbolic or Absolute Any 5 2

1 N/A RRA, RRC, SWPB or SXT 3 1

1 N/A PUSH 4 1

1 N/A CALL 5 1

*Indirect autoincrement mode instructions where destination is Program Counter (PC)
require 3 cycles.

4.6.7 Immediate mode

Immediate mode is used to assign constant values to registers or
memory locations.

MSP430 Architecture

4-24 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Description: The word following the instruction contains the
immediate constant N. Indirect autoincrement mode @PC+ is used.

Source mode bits: As = 11.

Syntax: #N.

Length: Two or three words. It is one word less if a constant in CG1
or CG2 can be used.

Comment: Valid only for source operand.

Example 7: Move the immediate constant E2h to the destination
(register R5).

Before operation: R4=A002h R5=050Ah

Operation: MOV #E2h, R5

After operation: R4= A002h R5=00E2h

Table 4-13. Cycles required to perform an instruction contained in the first operand, in
immediate mode.

Operands 2nd operand mode Operator Cycles Length (words)

2 Register Any 2* 2

2 Indexed, Symbolic or Absolute Any 5 3

1 N/A RRA, RRC, SWPB or SXT N/A N/A

1 N/A PUSH 4 2

1 N/A CALL 5 2

*Immediate mode instructions where destination is Program Counter (PC) require 3
cycles.

4.7 Instruction set

The MSP430 instruction set consists of 27 core instructions.
Additionally, it supports 24 emulated instructions. The core
instructions have unique op-codes decoded by the CPU, while the
emulated ones need assemblers and compilers to generate their
mnemonics.

There are three core-instruction formats:

 Double operand;

 Single operand;

 Program flow control - Jump.

Byte, word and address instructions are accessed using the .B, .W
or .A extensions. If the extension is omitted, the instruction is
interpreted as a word instruction.

Note: Additional information about the instruction set can be found
in Chapter 15.

Instruction set

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-25

4.7.1 Double operand instructions

The double operand instruction is formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opcode S-Reg Ad B/W As D-Reg

Bit Description
15-12 opcode

11-8 S-Reg The working register used for the source operand (src)

7 Ad The addressing bits responsible for the addressing mode used for the

destination operand (dst)
6 B/W Byte or word operation:

B/W=0: word operation; B/W=1: byte operation
5-4 As The addressing bits responsible for the addressing mode used for the source

operand (src)
3-0 D-Reg The working register used for the destination operand (dst)

Table 4-14 shows the double operand instructions that are not
emulated.

Table 4-14. Double operand instructions that are not emulated.

Mnemonic Operation Description
Arithmetic instructions
ADD(.B or .W) src,dst src+dstdst Add source to destination
ADDC(.B or .W) src,dst src+dst+Cdst Add source and carry to destination
DADD(.B or .W) src,dst src+dst+Cdst (dec) Decimal add source and carry to destination
SUB(.B or .W) src,dst dst+.not.src+1dst Subtract source from destination
SUBC(.B or .W) src,dst dst+.not.src+Cdst Subtract source and not carry from

destination
Logical and register control instructions
AND(.B or .W) src,dst src.and.dstdst AND source with destination
BIC(.B or .W) src,dst .not.src.and.dstdst Clear bits in destination
BIS(.B or .W) src,dst src.or.dstdst Set bits in destination
BIT(.B or .W) src,dst src.and.dst Test bits in destination
XOR(.B or .W) src,dst src.xor.dstdst XOR source with destination
Data instructions
CMP(.B or .W) src,dst dst-src Compare source to destination
MOV(.B or .W) src,dst srcdst Move source to destination

Depending on the double operand instruction result, the status bits
may be affected. Table 4-15 gives the conditions for setting and
resetting the status bits.

Instruction set

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-26

Table 4-15. Conditions for status bits, depending on the double operand instruction result.

 Status bits
Mnemonic V N Z C
Arithmetic instructions
ADD(.B or .W) src,dst =1, Arithmetic overflow

=0, otherwise
=1, negative result
=0, if positive

=1, null result
=0, otherwise

=1, carry from result
=0, if not

ADDC(.B or .W) src,dst =1, Arithmetic overflow
=0, otherwise

=1, negative result
=0, if positive

=1, null result
=0, otherwise

=1, carry from MSB result
=0, if not

DADD(.B or .W) src,dst - =1, MSB=1
=0, otherwise

=1, null result
=0, otherwise

=1, result > 99(99)

SUB(.B or .W) src,dst =1, Arithmetic overflow
=0, otherwise

=1, negative result
=0, if positive

=1, null result
=0, otherwise

=1, if no borrow
=0, otherwise

SUBC(.B or .W) src,dst =1, Arithmetic overflow
=0, otherwise

=1, negative result
=0, if positive

=1, null result
=0, otherwise

=1, if no borrow
=0, otherwise

Logical and register control instructions
AND(.B or .W) src,dst =0 =1, MSB result set

=0, if not set
=1, null result
=0, otherwise

=1, not zero
=0, otherwise

BIC(.B or .W) src,dst

- - - -

BIS(.B or .W) src,dst

- - - -

BIT(.B or .W) src,dst =0 =1, MSB result set
=0, otherwise

=1, null result
=0, otherwise

=1, not zero
=0, otherwise

XOR(.B or .W) src,dst =1, both operands negative =1, MSB result set
=0, otherwise

=1, null result,
=0, otherwise

=1, not zero
=0, otherwise

Data instructions
CMP(.B or .W) src,dst =1, Arithmetic overflow

=0, otherwise
=1, src>=dst
=0, src<dst

=1, src=dst
=0, otherwise

=1, carry from MSB result
=0, if not

MOV(.B or .W) src,dst - - - -

Instruction set

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-27

4.7.2 Single operand instructions

The single operand instruction is formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opcode B/W Ad D/S-Reg

Bit Description
15-7 opcode

6 B/W Byte or word operation:

B/W=0: word operation; B/W=1: byte operation
5-4 Ad The addressing bits responsible for the addressing mode used for the source

operand (src)
3-0 D/S-Reg The working register used for the destination operand (dst) or for the source

operand (src)

Table 4-16 shows the single operand instructions that are not
emulated.

Table 4-16. Single operand instructions that are not emulated.

Mnemonic Operation Description
Logical and register control instructions
RRA(.B or .W) dst MSBMSB…LSBC Roll destination right
RRC(.B or .W) dst CMSB…LSBC Roll destination right through (from) carry
SWPB(.B or .W) dst Swap bytes Swap bytes in destination
SXT dst bit 7bit 8…bit 15 Sign extend destination
PUSH(.B or .W) src SP-2SP, src@SP Push source to stack
Program flow control instructions
CALL(.B or .W) dst SP-2SP, PC+2@SP

dstPC
Subroutine call to destination

RETI TOSSR, SP+2SP
TOSPC, SP+2SP

Return from interrupt

Table 4-17. Conditions for status bits, depending on the single operand instruction result.

 Status bits
Mnemonic V N Z C
Logical and register control instructions
RRA(.B or .W) dst =0 =1, negative result

=0, otherwise
=1, null result,
=0, otherwise

Loaded from LSB

RRC(.B or .W) dst =1, dst positive & C=1
=0, otherwise

=1, negative result
=0, otherwise

=1, null result,
=0, otherwise

Loaded from LSB

SWPB(.B or .W) dst - - - -
SXT dst =0 =1, negative result

=0, otherwise
=1, null result,
=0, otherwise

=1, not zero
=0, otherwise

PUSH(.B or .W) src - - - -

Data instructions
CALL(.B or .W) dst - - -- -
RETI restored from stack restored from stack restored from stack restored from stack

MSP430 Architecture

4-28 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

4.7.3 Program flow control - Jumps

The jump instruction is formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opcode C 10 bit PC offset

Bit Description
15-13 opcode

12-10 C
9-0 PC offset PCnew = PCold + 2 + PCoffset 2

Table 4-18 shows the program flow control (jump) instructions that
are not emulated.

Table 4-18. Program flow control (jump) instructions.

Mnemonic Description
Program flow control instructions
JEQ/JZ label Jump to label if zero flag is set
JNE/JNZ label Jump to label if zero flag is reset
JC label Jump to label if carry flag is set
JNC label Jump to label if carry flag is reset
JN label Jump to label if negative flag is set
JGE label Jump to label if greater than or equal
JL label Jump to label if less than
JMP label Jump to label unconditionally

4.7.4 Emulated instructions

Table 4-19 gives the different emulated instructions. This table also
contains the type of operation and the emulated instruction based
on the core instructions.

Instruction set

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-29

Table 4-19. Emulated instructions.

Mnemonic Operation Emulation Description
Arithmetic instructions
ADC(.B or .W) dst dst+Cdst ADDC(.B or .W) #0,dst Add carry to

destination
DADC(.B or .W) dst dst+Cdst (decimally) DADD(.B or .W) #0,dst Decimal add carry to

destination
DEC(.B or .W) dst dst-1dst SUB(.B or .W) #1,dst Decrement

destination
DECD(.B or .W) dst dst-2dst SUB(.B or .W) #2,dst Decrement

destination twice
INC(.B or .W) dst

dst+1dst ADD(.B or .W) #1,dst Increment destination

INCD(.B or .W) dst dst+2dst ADD(.B or .W) #2,dst Increment destination
twice

SBC(.B or .W) dst dst+0FFFFh+Cdst
dst+0FFhdst

SUBC(.B or .W) #0,dst Subtract source and
borrow /.NOT. carry
from dest.

Logical and register control instructions
INV(.B or .W) dst .NOT.dstdst XOR(.B or .W) #0(FF)FFh,dst Invert bits in

destination
RLA(.B or .W) dst CMSBMSB-

1…LSB+1LSB0
ADD(.B or .W) dst,dst Rotate left

arithmetically
RLC(.B or .W) dst CMSBMSB-

1…LSB+1LSBC
ADDC(.B or .W) dst,dst Rotate left through

carry
Data instructions
CLR(.B or .W) dst 0dst MOV(.B or .W) #0,dst Clear destination

CLRC 0C BIC #1,SR Clear carry flag

CLRN 0N BIC #4,SR Clear negative flag

CLRZ 0Z BIC #2,SR Clear zero flag

POP(.B or .W) dst @SPtemp

SP+2SP
tempdst

MOV(.B or .W) @SP+,dst Pop byte/word from
stack to destination

SETC 1C BIS #1,SR Set carry flag

SETN 1N BIS #4,SR Set negative flag

SETZ 1Z BIS #2,SR Set zero flag

TST(.B or .W) dst dst + 0FFFFh + 1
dst + 0FFh + 1

CMP(.B or .W) #0,dst Test destination

Program flow control
BR dst

dstPC MOV dst,PC Branch to destination

DINT 0GIE BIC #8,SR Disable (general)
interrupts

EINT 1GIE BIS #8,SR Enable (general)
interrupts

NOP None MOV #0,R3 No operation

RET @SPPC
SP+2SP

MOV @SP+,PC Return from
subroutine

Instruction set

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-30

Table 4-20. Conditions for status bits, depending on the emulated instruction result.

 Status bits
Mnemonic V N Z C
Arithmetic instructions
ADC(.B or .W) dst =1, Arithmetic overflow

=0, otherwise
=1, negative result
=0, if positive

=1, null result
=0, otherwise

=1, dst from 0FFFFh to 0000
=0, otherwise

DADC(.B or .W) dst - =1, MSB=1
=0, otherwise

=1, dst=0
=0, otherwise

=1, dst from 99(99) to 00(00)
=0, otherwise

DEC(.B or .W) dst =1, Arithmetic overflow
=0, otherwise

=1, negative result
=0, if positive

=1, dst contained 1
=0, otherwise

=1, dst contained 0
=0, otherwise

DECD(.B or .W) dst =1, Arithmetic overflow
=0, otherwise

=1, negative result
=0, if positive

=1, dst contained 2
=0, otherwise

=1, dst contained 0 or 1
=0, otherwise

INC(.B or .W) dst

=1, dst contained 07(FF)h
=0, otherwise

=1, negative result
=0, if positive

=1, dst contained FF(FF)h
=0, otherwise

=1, dst contained FF(FF)h
=0, otherwise

INCD(.B or .W) dst =1, dst contained 07(FFE)h
=0, otherwise

=1, negative result
=0, if positive

=1, dst contained FF(FE)h
=0, otherwise

=1, dst contained FF(FF)h or FF(FE)h
=0, otherwise

SBC(.B or .W) dst =1, Arithmetic overflow
=0, otherwise

=1, negative result
=0, if positive

=1, null result,
=0, otherwise

=1, if no borrow
=0, otherwise

Logical and register control instructions
INV(.B or .W) dst =1, negative initial dst

=0, otherwise
=1, negative result
=0, if positive

=1, dst contained FF(FF)h
=0, otherwise

=1, not zero
=0, otherwise

RLA(.B or .W) dst =1, Arithmetic overflow
=0, otherwise

=1, negative result
=0, if positive

=1, null result,
=0, otherwise

Loaded from MSB

RLC(.B or .W) dst =1, Arithmetic overflow
=0, otherwise

=1, negative result
=0, if positive

=1, null result,
=0, otherwise

Loaded from MSB

Data instructions
CLR(.B or .W) dst - - - -
CLRC - - - =0
CLRN - =0 - -
CLRZ - - =0 -
POP(.B or .W) dst - - - -
SETC - - - =1
SETN - =1 - -
SETZ - - =1 -
TST(.B or .W) dst =0 =1, dst negative

=0, otherwise
=1, dst contains zero
=0, otherwise

=1

Program flow control
BR dst - - - -
DINT - - - -
EINT - - - -
NOP - - - -
RET - - - -

Quiz

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-31

4.8 Quiz

1. The number of instructions supported by the MSP430 CPU is:

(a) 27 instructions;

(b) 20 core instructions and 14 emulated instructions;

(c) 27 core instructions and 24 emulated instructions;

(d) 24 core instructions.

2. The MSP430 RISC type CPU is:

(a) Based on a reduced instruction set;

(b) Based on pure pattern matching and absence of instructions;

(c) Based on a complex instruction set;

(d) A CPU without peripheral connections.

3. The von Neumann architecture used by the MSP430:

(a) Has data storage entirely contained within the data processing
unit;

(b) Has physically separate storage and signal pathways for
instructions and data;

(c) Has a separate bus just for peripherals;

(d) Has program, data memory and peripherals, all sharing a
common bus structure.

4. The ALU included in the MSP430 CPU handles:

(a) Addition, subtraction, multiplication and division operations;

(b) Addition, subtraction, comparison and logical (AND, OR, XOR)
operations;

(c) Addition, subtraction, multiplication and comparison operations;

(d) Addition, subtraction, multiplication and logical (AND, OR, XOR)
operations.

5. The MSP430 CPU incorporates:

(a) 14 registers (2 for dedicated functions and 12 working
registers);

(b) 16 registers (6 for dedicated functions and 10 working
registers);

(c) 18 registers (4 for dedicated functions and 14 working
registers);

(d) 16 registers (4 for dedicated functions and 12 working
registers).

MSP430 Architecture

4-32 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

6. The Program Counter (PC):

(a) Stores the return addresses of subroutine calls and interrupts;

(b) Points to the next instruction to be read from memory and
executed by CPU;

(c) Stores state and control bits;

(d) Points to the next instruction to be written in memory.

7. The result in the Status Register SR = 0x0104 indicates:

(a) Arithmetic operation result overflows the signed-variable range
and produced a carry;

(b) Arithmetic operation result overflows the signed-variable range
which result is negative, when maskable interrupts are enabled;

(c) Arithmetic operation result is negative and produced a carry;

(d) CPU is disabled and the maskable interrupts are enabled.

8. The MSP430 Status Register (SR) bit:

(a) V is set when the result of a byte or word operation overflows;

(b) Z is set when the result of a byte or word operation is zero;

(c) All of the above;

(d) None of the above.

9. The MSP430 supports on two-address-instructions:

(a) Seven addressing modes for the source operand and three
addressing modes for the destination operand;

(b) Six addressing modes for the source operand and four
addressing modes for the destination operand;

(c) Seven addressing modes for the source operand and four
addressing modes for the destination operand;

(d) Six addressing modes for the source operand and three
addressing modes for the destination operand.

FAQs

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 4-33

4.9 FAQs

1. Can I access the data in the register mode?

The data in the register can be accessed using word or byte
instructions. If byte instructions are used, the MSB byte is always 0
in the result. The status bits (V, N, Z, C) are modified according to
the result of the byte instruction.

2. What are the available destination addresses of any kind (opcode
or emulated) instruction?

Destination addresses are valid anywhere in the memory map. It
must be ensured that an instruction that modifies the contents of
the destination uses a writable address.

