
Discrete Mathematics
Algebraic Structures
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Algebraic Structures

I algebraic structure: <set, operations, constants>

I carrier set

I operations: binary, unary

I constants: identity, zero
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Operations

I every operation is a function

I binary operation:
◦ : S × S → T

I unary operation:
∆ : S → T

I closed: T ⊆ S

example

I subtraction is closed on Z
I subtraction is not closed on Z+
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Constants

Definition
identity: 1
x ◦ 1 = 1 ◦ x = x

I left identity: 1l ◦ x = x

I right identity: x ◦ 1r = x

Definition
zero: 0
x ◦ 0 = 0 ◦ x = 0

I left zero: 0l ◦ x = 0

I right zero: x ◦ 0r = 0
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Examples of Constants

I identity for < N,max > is 0

I zero for < N,min > is 0

I zero for < Z+,min > is 1
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Examples of Constants

◦ a b c

a a b b

b a b c

c a b a

I b is a left identity

I a and b are right zeros
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Constants

Theorem

∃1l ∧ ∃1r ⇒ 1l = 1r

Proof.
1l ◦ 1r = 1l = 1r

Theorem

∃0l ∧ ∃0r ⇒ 0l = 0r

Proof.
0l ◦ 0r = 0l = 0r
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Inverse

I x ◦ y = 1:
x is a left inverse of y
y is a right inverse of x

I x ◦ y = y ◦ x = 1:
x is an inverse of y
y is an inverse of x
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Inverse

Theorem
◦ associative

w ◦ x = x ◦ y = 1 ⇒ w = y

Proof.
w = w ◦ 1

= w ◦ (x ◦ y)
= (w ◦ x) ◦ y
= 1 ◦ y
= y
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Algebraic Families

I algebraic family: structure and axioms

I axioms: associativity, commutativity, inverses, . . .
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Algebraic Family Examples

I axioms:

I x ◦ y = y ◦ x

I (x ◦ y) ◦ z = x ◦ (y ◦ z)

I x ◦ 1 = x

I structures for which these axioms hold:

I < Z,+, 0 >

I < Z, ·, 1 >

I < P(S),∪, ∅ >
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Subalgebra

I A =< S , ◦,∆, k >
A′ =< S ′, ◦′,∆′, k ′ >

I A′ is a subalgebra of A:

I S ′ ⊆ S

I k ′ = k

I ∀a, b ∈ S ′ a ◦′ b = a ◦ b ∈ S ′

I ∀a ∈ S ′ ∆′a = ∆a ∈ S ′
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Subalgebra Examples

I < Z+,+, 0 > is a subalgebra of < Z,+, 0 >

I < N,−, 0 > is not a subalgebra of < Z,−, 0 >
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Semigroups

Definition
semigroup: < S , ◦ >

I ∀a, b, c ∈ S (a ◦ b) ◦ c = a ◦ (b ◦ c)
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Semigroup Example

I < Σ+,& >

I Σ: alphabet, Σ+: strings of length at least 1

I &: string concatenation
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Monoids

Definition
monoid: < S , ◦, 1 >

I ∀a, b, c ∈ S (a ◦ b) ◦ c = a ◦ (b ◦ c)

I ∀a ∈ S a ◦ 1 = 1 ◦ a = a
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Monoid Example

I < Σ∗,&, ε >

I Σ: alphabet, Σ∗: strings of any length

I &: string concatenation

I ε: empty string
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Groups

Definition
group: < S , ◦, 1 >

I ∀a, b, c ∈ S (a ◦ b) ◦ c = a ◦ (b ◦ c)

I ∀a ∈ S a ◦ 1 = 1 ◦ a = a

I ∀a ∈ S ∃a−1 ∈ S a ◦ a−1 = a−1 ◦ a = 1

I Abelian group: ∀a, b ∈ S a ◦ b = b ◦ a
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Group Examples

I < Z,+, 0 > is a group

I < Q, ·, 1 > is not a group

I < Q− {0}, ·, 1 > is a group
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Group Example

I a ◦ b = a + b + ab

I is < Z, ◦ > a group?

I is ◦ associative?

(a ◦ b) ◦ c = (a + b + ab) + c + (a + b + ab) · c
= a + b + ab + c + ac + bc + abc
= a + b + c + bc + ab + ac + abc
= a + (b + c + bc) + a · (b + c + bc)
= a ◦ (b ◦ c)
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Group Example

I is there an identity element?

a ◦ 0 = a + 0 + a · 0 = a

I does every element have an inverse?

a ◦ a−1 = 0
⇒ a + a−1 + a · a−1 = 0
⇒ a + a−1 · (1 + a) = 0
⇒ a−1 = − a

1+a

-1 doesn’t have an inverse, not a group
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Group Example: Permutations

I permutation: a bijective function on a set

I A = {a1, a2, . . . , an}(
a1 a2 . . . an

p(a1) p(a2) . . . p(an)

)

I permutation composition: �
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Permutation Example

I A = {1, 2, 3}

p1 =

(
1 2 3
1 2 3

)
p2 =

(
1 2 3
1 3 2

)
p3 =

(
1 2 3
2 1 3

)
p4 =

(
1 2 3
2 3 1

)
p5 =

(
1 2 3
3 1 2

)
p6 =

(
1 2 3
3 2 1

)
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Permutation Composition Example

I A = {1, 2, 3}

p3 =

(
1 2 3
2 1 3

)
p5 =

(
1 2 3
3 1 2

)
p3 � p5 =

(
1 2 3
1 3 2

)
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Group Example: Permutations

I permutation composition is associative

I identity permutation: 1A(
a1 a2 . . . an

a1 a2 . . . an

)

I Perm(A): set of all permutations of the elements of A

I < Perm(A), �, 1A > is a group
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Group Example: Permutation

I A = {1, 2, 3, 4}

A 1A p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

1 1 1 1 1 1 1 2 2 2 2 2 2
2 2 2 3 3 4 4 1 1 3 3 4 4
3 3 4 2 4 2 3 3 4 1 4 1 3
4 4 3 4 2 3 2 4 3 4 1 3 1

p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23

1 3 3 3 3 3 3 4 4 4 4 4 4
2 1 1 2 2 4 4 1 1 2 2 3 3
3 2 4 1 4 1 2 2 3 1 3 1 2
4 4 2 4 1 2 1 3 2 3 1 2 1
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Group Example: Permutation

I p8 � p12 = p12 � p8 = 1A:
p12 = p−1

8 , p8 = p−1
12

I p14 � p14 = 1A:
p14 = p−1

14

I G =< {1A, p1, . . . , p23}, �, 1A > is a group
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Group Example: Permutation

I G ′ =< {1A, p2, p6, p8, p12, p14}, �, 1A >

� 1A p2 p6 p8 p12 p14

1A 1A p2 p6 p8 p12 p14

p2 p2 1A p8 p6 p14 p12

p6 p6 p12 1A p14 p2 p8

p8 p8 p14 p2 p12 1A p6

p12 p12 p6 p14 1A p8 p2

p14 p14 p8 p12 p2 p6 1A

I G ′ is a subgroup of G
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Cancellation in Groups

Theorem
a ◦ c = b ◦ c ⇒ a = b
c ◦ a = c ◦ b ⇒ a = b

Proof.
a ◦ c = b ◦ c

⇒ (a ◦ c) ◦ c−1 = (b ◦ c) ◦ c−1

⇒ a ◦ (c ◦ c−1) = b ◦ (c ◦ c−1)
⇒ a ◦ 1 = b ◦ 1
⇒ a = b
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Basic Theorem of Groups

Theorem
The unique solution of the equation a ◦ x = b is:
x = a−1 ◦ b

Proof.
a ◦ x = b

⇒ a−1 ◦ (a ◦ x) = a−1 ◦ b
⇒ 1 ◦ x = a−1 ◦ b
⇒ x = a−1 ◦ b
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Ring

Definition
ring: < S ,+, ·, 0 >

I ∀a, b, c ∈ S (a + b) + c = a + (b + c)

I ∀a ∈ S a + 0 = 0 + a = a

I ∀a ∈ S ∃(−a) ∈ S a + (−a) = (−a) + a = 0

I ∀a, b ∈ S a + b = b + a

I ∀a, b, c ∈ S (a · b) · c = a · (b · c)
I ∀a, b, c ∈ S

I a · (b + c) = a · b + a · c
I (b + c) · a = b · a + c · a
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Field

Definition
field: < S ,+, ·, 0, 1 >

I all properties of a ring

I ∀a, b ∈ S a · b = b · a
I ∀a ∈ S a · 1 = 1 · a = a

I ∀a ∈ S ∃a−1 ∈ S a · a−1 = a−1 · a = 1
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Partially Ordered Set

Definition
partial order relation:

I reflexive

I anti-symmetric

I transitive

I partially ordered set (poset):
a set with a partial order relation defined on its elements
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Partial Order Examples

Example (set of sets, ⊆)

I A ⊆ A

I A ⊆ B ∧ B ⊆ A ⇒ A = B

I A ⊆ B ∧ B ⊆ C ⇒ A ⊆ C
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Partial Order Examples

Example (Z, ≤)

I x ≤ x

I x ≤ y ∧ y ≤ x ⇒ x = y

I x ≤ y ∧ y ≤ z ⇒ x ≤ z
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Partial Order Examples

Example (Z+, |)

I x |x
I x |y ∧ y |x ⇒ x = y

I x |y ∧ y |z ⇒ x |z
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Comparability

I a � b: a precedes b

I a � b ∨ b � a: a and b are comparable

I total order (linear order):
all elements are comparable with each other
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Comparability Examples

Example

I Z+, |: 3 and 5 are not comparable

I Z,≤: total order
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Hasse Diagrams

I a � b: a immediately precedes b
¬∃x a � x � b

I Hasse diagram:
I draw a line between a and b if a � b
I preceding element is below

42 / 71

Hasse Diagram Examples

Example

{1, 2, 3, 4, 6, 8, 9, 12, 18, 24}
the relation |
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Consistent Enumeration

I consistent enumeration:
f : S → N
a � b ⇒ f (a) ≤ f (b)

I there can be more than one consistent enumeration
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Consistent Enumeration Examples

Example

I {a 7−→ 5, b 7−→ 3, c 7−→ 4, d 7−→ 1, e 7−→ 2}
I {a 7−→ 5, b 7−→ 4, c 7−→ 3, d 7−→ 2, e 7−→ 1}
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Maximal - Minimal Elements

Definition
maximal element: max
∀x ∈ S max � x ⇒ x = max

Definition
minimal element: min
∀x ∈ S x � min ⇒ x = min
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Maximal - Minimal Element Examples

Example

max : 18, 24
min : 1
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Bounds

Definition
A ⊆ S

M is an upper bound of A:
∀x ∈ A x � M

M(A): set of upper bounds of A

sup(A) is the supremum of A:
∀M ∈ M(A) sup(A) � M

Definition
A ⊆ S

m is a lower bound of A:
∀x ∈ A m � x

m(A): set of lower bound of A

inf (A) is the infimum of A:
∀m ∈ m(A) m � inf (A)
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Bound Example

Example (factors of 36)

inf = greatest common divisor
sup = least common multiple
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Lattice

Definition
lattice: < L,∧,∨ >
∧: meet, ∨: join

I a ∧ b = b ∧ a
a ∨ b = b ∨ a

I (a ∧ b) ∧ c = a ∧ (b ∧ c)
(a ∨ b) ∨ c = a ∨ (b ∨ c)

I a ∧ (a ∨ b) = a
a ∨ (a ∧ b) = a
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Poset - Lattice Relationship

I If P is a poset, then < P, inf , sup > is a lattice.
I a ∧ b = inf (a, b)
I a ∨ b = sup(a, b)

I Every lattice is a poset where these definitions hold.
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Duality

Definition
dual:
∧ instead of ∨, ∨ instead of ∧

Theorem (Duality Theorem)

Every theorem has a dual theorem in lattices.
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Lattice Theorems

Theorem
a ∧ a = a

Proof.
a ∧ a = a ∧ (a ∨ (a ∧ b))
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Lattice Theorems

Theorem
a � b ⇔ a ∧ b = a ⇔ a ∨ b = b
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Lattice Examples

Example

< P{a, b, c},∩,∪ >

⊆ relation
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Bounded Lattice

Definition
lower bound of lattice L: 0
∀x ∈ L 0 � x

Definition
upper bound of lattice L: I
∀x ∈ L x � I

Theorem
Every finite lattice is bounded.
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Distributive Lattice

I distributive lattice:
I ∀a, b, c ∈ L a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
I ∀a, b, c ∈ L a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
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Counterexamples

Example

a ∨ (b ∧ c) = a ∨ 0 = a
(a ∨ b) ∧ (a ∨ c) = I ∧ c = c
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Counterexamples

Example

a ∨ (b ∧ c) = a ∨ 0 = a
(a ∨ b) ∧ (a ∨ c) = I ∧ I = I
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Distributive Lattice

Theorem
A lattice is nondistributive if and only if it has a sublattice
isomorphic to any of these two structures.
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Join Irreducible

Definition
join irreducible element:
a = x ∨ y ⇒ a = x ∨ a = y

I atom: a join irreducible element
which immediately succeeds the minimum
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Join Irreducible Example

Example (divisibility relation)

I prime numbers and 1 are join irreducible

I 1 is the minimum, the prime numbers are the atoms
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Join Irreducible

Theorem
Every element in a lattice can be written
as the join of join irreducible elements.
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Complement

Definition
a and x are complements:
a ∧ x = 0 and a ∨ x = I

64 / 71



Complemented Lattice

Theorem
In a bounded, distributive lattice
the complement is unique, if it exists.

Proof.
a ∧ x = 0, a ∨ x = I , a ∧ y = 0, a ∨ y = I

x = x ∨ 0 = x ∨ (a ∧ y) = (x ∨ a) ∧ (x ∨ y) = I ∧ (x ∨ y)

= x ∨ y = y ∨ x = I ∧ (y ∨ x)

= (y ∨ a) ∧ (y ∨ x) = y ∨ (a ∧ x) = y ∨ 0 = y
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Boolean Algebra

Definition
Boolean algebra:
< B,+, ·, x , 1, 0 >

a + b = b + a a · b = b · a
(a + b) + c = a + (b + c) (a · b) · c = a · (b · c)
a + 0 = a a · 1 = a
a + a = 1 a · a = 0
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Boolean Algebra - Lattice Relationship

Definition
A Boolean algebra is a finite, distributive, complemented lattice.
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Duality

Definition
dual:
+ instead of ·, · instead of +
0 instead of 1, 1 instead of 0

Example

(1 + a) · (b + 0) = b
dual of the theorem:
(0 · a) + (b · 1) = b
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Boolean Algebra Examples

Example

B = {0, 1},+ = ∨, · = ∧

Example

B = { factors of 70 }, + = lcm, · = gcd
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Boolean Algebra Theorems

a + a = a a · a = a
a + 1 = 1 a · 0 = 0
a + (a · b) = a a · (a + b) = a
(a + b) + c = a + (b + c) (a · b) · c = a · (b · c)

a = a
a + b = a · b a · b = a + b
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