Discrete Mathematics Sets

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2023

License

© 2001-2023 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

- ▶ Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material

Under the following terms:

- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- ▶ NonCommercial You may not use the material for commercial purposes.
- ► ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

For more information:

https://creativecommons.org/licenses/by-nc-sa/4.0/

2/36

Topics

Sets

Introduction
Set Operations
Principle of Inclusion-Exclusion

Infinite Sets

Counting Sets Infinity

Set

1/36

Definition

set: a collection of elements that are

- distinct
- unordered
- non-repeating

3/36

Set Representation

- explicit representation elements are listed within braces: $\{a_1, a_2, \dots, a_n\}$
- ▶ implicit representation elements that validate a predicate: $\{x \mid x \in G, \ p(x)\}$
- ▶ Ø: empty set
- ▶ $a \in S$: a is an element of S $a \notin S$: a is not an element of S
- \triangleright |S|: number of elements in S (cardinality)

Notation Examples

$$\{3, 8, 2, 11, 5\}$$

$$\{x \mid x \in \mathbb{Z}^+, \ 20 < x^3 < 100\} \equiv \{3, 4\}$$

$$11 \in \{3, 8, 2, 11, 5\}$$

$$\{2x - 1 \mid x \in \mathbb{Z}^+, \ 20 < x^3 < 100\} \equiv \{5, 7\}$$

$$|\{3, 8, 2, 11, 5\}| = 5$$

$$\{n \mid n \in \mathbb{N}, \ \exists k \in \mathbb{N} \ [n = 2k]\}$$

6/36

Set Dilemma

- ► There is a barber who lives in a small town. He shaves all those men who don't shave themselves. He doesn't shave those men who shave themselves. Does the barber shave himself?
- ightharpoonup yes ightharpoonup but he doesn't shave men who shave themselves ightharpoonup no
- \blacktriangleright no \rightarrow but he shaves all men who don't shave themselves \rightarrow yes

Set Dilemma

- S: set of sets that are not an element of themselves $S = \{A \mid A \notin A\}$
 - $S \stackrel{?}{\in} S$
- $\blacktriangleright \ \ \mathcal{S} \in \mathcal{S} \to \mathsf{but} \ \mathsf{the} \ \mathsf{predicate} \ \mathsf{is} \ \mathsf{not} \ \mathsf{valid} \to \mathsf{no}$
- ▶ $S \notin S$ → but the predicate is valid → yes

7 / 36

5/36

Subset

Definition

 $A \subseteq B \Leftrightarrow \forall x \ [x \in A \to x \in B]$

set equality:

$$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

proper subset:

$$A \subset B \Leftrightarrow (A \subseteq B) \land (A \neq B)$$

 $ightharpoonup \forall S \ [\emptyset \subseteq S]$

Subset

 $A \nsubseteq B$

$$A \nsubseteq B \Leftrightarrow \neg \forall x \ [x \in A \to x \in B]$$

$$\Leftrightarrow \exists x \ \neg [x \in A \to x \in B]$$

$$\Leftrightarrow \exists x \ \neg [\neg (x \in A) \lor (x \in B)]$$

$$\Leftrightarrow \exists x \ [(x \in A) \land \neg (x \in B)]$$

$$\Leftrightarrow \exists x \ [(x \in A) \land (x \notin B)]$$

10 / 36

Power Set

Definition

power set $\mathcal{P}(S)$: set of all subsets of S, including \emptyset and S

example

 $\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

 $|S| = n \Rightarrow |\mathcal{P}(S)| = 2^n$

Set Operations

complement

$$\overline{A} = \{x \mid x \notin A\}$$

intersection

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}\$$

▶ if $A \cap B = \emptyset$ then A and B are disjoint

union

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$$

11 / 36

9/36

Set Operations

difference

$$A - B = \{x \mid (x \in A) \land (x \notin B)\}\$$

- $ightharpoonup A B = A \cap \overline{B}$
- > symmetric difference:

$$A \triangle B = \{x \mid (x \in A \cup B) \land (x \notin A \cap B)\}$$

Cartesian Product

Cartesian product

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

$$A \times B \times C \times \cdots \times K = \{(a, b, \dots, k) \mid a \in A, b \in B, \dots, k \in K\}$$

$$|A \times B \times C \times \cdots \times K| = |A| \cdot |B| \cdot |C| \cdots |K|$$

14 / 36

Cartesian Product Example

$$A = \{a_1, a_2, a_3, a_4\}$$

$$B = \{b_1, b_2, b_3\}$$

$$A \times B = \{ (a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_1), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_2), (a_3, b_3), (a_4, b_1), (a_4, b_2), (a_4, b_3) \}$$

Equivalences

Double Complement

$$\overline{\overline{A}} = A$$

Commutativity

$$A \cap B = B \cap A$$
 $A \cup B = B \cup A$

Associativity

$$(A \cap B) \cap C = A \cap (B \cap C)$$
 $(A \cup B) \cup C = A \cup (B \cup C)$

Idempotence

$$A \cap A = A$$
 $A \cup A = A$

Inverse

$$A \cap \overline{A} = \emptyset$$
 $A \cup \overline{A} = \mathcal{U}$

15 / 36

13/36

Equivalences

Identity

$$A \cap \mathcal{U} = A$$

$$A \cup \emptyset = A$$

Domination

$$A \cap \emptyset = \emptyset$$

$$A \cup \mathcal{U} = \mathcal{U}$$

Distributivity

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Absorption

$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

DeMorgan's Laws

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

DeMorgan's Law

Theorem

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Proof.

$$\overline{A \cap B} = \{x | x \notin (A \cap B)\}$$

$$= \{x | \neg (x \in (A \cap B))\}$$

$$= \{x | \neg ((x \in A) \land (x \in B))\}$$

$$= \{x | \neg (x \in A) \lor \neg (x \in B)\}$$

$$= \{x | (x \notin A) \lor (x \notin B)\}$$

$$= \{x | (x \in \overline{A}) \lor (x \in \overline{B})\}$$

$$= \{x | x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

18 / 36

Example

Theorem

$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

Proof.

$$(A \cap B) - (A \cap C) = (A \cap B) \cap \overline{(A \cap C)}$$

$$= (A \cap B) \cap \overline{(A \cup \overline{C})}$$

$$= ((A \cap B) \cap \overline{A}) \cup ((A \cap B) \cap \overline{C}))$$

$$= \emptyset \cup ((A \cap B) \cap \overline{C})$$

$$= (A \cap B) \cap \overline{C}$$

$$= A \cap (B \cap \overline{C})$$

$$= A \cap (B - C)$$

Example

Theorem

$$A \subseteq B$$

$$\Leftrightarrow A \cup B = B$$

$$\Leftrightarrow A \cap B = A$$

$$\Leftrightarrow \overline{B} \subset \overline{A}$$

19 / 36

17 / 36

Example

$$A \subseteq B \Rightarrow A \cup B = B.$$

$$A \cup B = B \Leftrightarrow A \cup B \subseteq B \land B \subseteq A \cup B$$

$$B \subseteq A \cup B$$

$$x \in A \cup B \Rightarrow x \in A \lor x \in B$$

 $A \subseteq B \Rightarrow x \in B$
 $\Rightarrow A \cup B \subseteq B$

21 / 36

Example

$$A \cup B = B \Rightarrow A \cap B = A$$
.
 $A \cap B = A \Leftrightarrow A \cap B \subseteq A \land A \subseteq A \cap B$

$$A \cap B \subseteq A$$

$$y \in A \Rightarrow y \in A \cup B$$

 $A \cup B = B \Rightarrow y \in B$
 $\Rightarrow y \in A \cap B$
 $\Rightarrow A \subseteq A \cap B$

22 / 36

Example

$$A \cap B = A \Rightarrow \overline{B} \subseteq \overline{A}$$
.

$$z \in \overline{B} \implies z \notin B$$

$$\Rightarrow z \notin A \cap B$$

$$A \cap B = A \implies z \notin A$$

$$\Rightarrow z \in \overline{A}$$

$$\Rightarrow \overline{B} \subseteq \overline{A}$$

Example

$$\overline{B} \subset \overline{A} \Rightarrow A \subset B$$
.

$$\neg (A \subseteq B) \Rightarrow \exists w \ [w \in A \land w \notin B]$$
$$\Rightarrow \exists w \ [w \notin \overline{A} \land w \in \overline{B}]$$
$$\Rightarrow \neg (\overline{B} \subseteq \overline{A})$$

23 / 36

Principle of Inclusion-Exclusion

- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \cup B \cup C| = |A| + |B| + |C| (|A \cap B| + |A \cap C| + |B \cap C|) + |A \cap B \cap C|$

Theorem

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i} |A_i| - \sum_{i,j} |A_i \cap A_j|$$

$$+ \sum_{i,j,k} |A_i \cap A_j \cap A_k|$$

$$\dots + -1^{n-1} |A_i \cap A_j \cap \dots \cap A_n|$$

Inclusion-Exclusion Example

- sieve of Eratosthenes
- ▶ a method to identify prime numbers

26 / 36

25 / 36

Inclusion-Exclusion Example

- ▶ number of primes between 1 and 100
- ▶ numbers that are not divisible by 2, 3, 5 and 7
- \triangleright A_2 : set of numbers divisible by 2
- \triangleright A_3 : set of numbers divisible by 3
- \triangleright A_5 : set of numbers divisible by 5
- \triangleright A_7 : set of numbers divisible by 7
- \triangleright $|A_2 \cup A_3 \cup A_5 \cup A_7|$

Inclusion-Exclusion Example

$$|A_2| = |100/2| = 50$$

$$|A_3| = \lfloor 100/3 \rfloor = 33$$

$$|A_5| = \lfloor 100/5 \rfloor = 20$$

$$|A_7| = \lfloor 100/7 \rfloor = 14$$

$$|A_2 \cap A_3| = |100/6| = 16$$

▶
$$|A_2| = \lfloor 100/2 \rfloor = 50$$

▶ $|A_2 \cap A_3| = \lfloor 100/6 \rfloor = 16$
▶ $|A_3| = \lfloor 100/3 \rfloor = 33$
▶ $|A_5| = \lfloor 100/5 \rfloor = 20$
▶ $|A_7| = \lfloor 100/7 \rfloor = 14$
▶ $|A_3 \cap A_5| = \lfloor 100/15 \rfloor = 6$

$$|A_2 \cap A_7| = \lfloor 100/14 \rfloor = 7$$

$$|A_3 \cap A_5| = \lfloor 100/15 \rfloor = 6$$

$$|A_3 \cap A_7| = |100/21| = 4$$

$$|A_5 \cap A_7| = \lfloor 100/35 \rfloor = 2$$

27 / 36

Inclusion-Exclusion Example

- $|A_2 \cap A_3 \cap A_5| = |100/30| = 3$
- $|A_2 \cap A_3 \cap A_7| = |100/42| = 2$
- $|A_2 \cap A_5 \cap A_7| = |100/70| = 1$
- $|A_3 \cap A_5 \cap A_7| = \lfloor 100/105 \rfloor = 0$
- $|A_2 \cap A_3 \cap A_5 \cap A_7| = \lfloor 100/210 \rfloor = 0$

Inclusion-Exclusion Example

$$|A_2 \cup A_3 \cup A_5 \cup A_7| = (50 + 33 + 20 + 14)$$
 $- (16 + 10 + 7 + 6 + 4 + 2)$
 $+ (3 + 2 + 1 + 0)$
 $- (0)$
 $= 78$

▶ number of primes: (100 - 78) + 4 - 1 = 25

30 / 36

Subset Cardinality

- $ightharpoonup A \subset B \Rightarrow |A| < |B|$
- ▶ not necessarily true for infinite sets

example

$$\mathbb{Z}^+\subset \mathbb{N}$$

but

$$|\mathbb{Z}^+| = |\mathbb{N}|$$

▶ how can we compare the cardinalities of infinite sets?

Counting Sets

29 / 36

31 / 36

- ▶ to compare $|S_1|$ and $|S_2|$, pair off elements of S_1 and S_2
- lacktriangle if all elements can be paired, then $|S_1|=|S_2|$

$$|\mathbb{Z}^+| = |\mathbb{N}|$$
 \mathbb{Z}^+ 1 2 3 4 5 6 7 ...
 \mathbb{N} 0 1 2 3 4 5 6 ...

Counting Sets Example

$$|\mathbb{Q}| = |\mathbb{N}|$$

	1	2	3	4	5	
1	1/1	2/1	3/1	4/1	5/1	• • • •
2	1/2	2/2	3/2	4/2	5/2	
3	1/3	2/3	3/3	4/3	5/3	
4	1/4	2/4	3/4	4/4	5/4	
5	1/5	2/5	3/5	4/5	5/5	
:	:	:	:	:	•	

pair off row-wise:

$$1/1 \rightarrow 0 \hspace{0.5cm} 2/1 \rightarrow 1 \hspace{0.5cm} 3/1 \rightarrow 2 \hspace{0.5cm} 4/1 \rightarrow 3 \hspace{0.5cm} 5/1 \rightarrow 4 \hspace{0.5cm} \ldots$$

pair off diagonally:

$$1/1 \to 0$$
 $2/1 \to 1$ $1/2 \to 2$ $3/1 \to 3$ $2/2 \to 4$ $1/3 \to 5$ $4/1 \to 6$ $3/2 \to 7$ $2/3 \to 8$ $1/4 \to 9$...

Uncountable Sets

$$|\mathbb{R}| \stackrel{?}{=} |\mathbb{N}|$$

- ▶ $\{x \mid x \in \mathbb{R}, \ 0 < x \le 1\}$
- elements represented by non-terminating expansions: $0.4\overline{9}$ instead of 0.5

$$0.a_{11}a_{12}a_{13}a_{14}... \rightarrow 0$$

$$0.a_{21}a_{22}a_{23}a_{24}\ldots \rightarrow 1$$

 $0.a_{31}a_{32}a_{33}a_{34}... \rightarrow 2$

$$0.a_{n1}a_{n2}a_{n3}a_{n4}\ldots \rightarrow n-1$$

$$b_k = \begin{cases} 3 & \text{if } a_{kk} \neq 3 \\ 7 & \text{if } a_{kk} = 3 \end{cases}$$

ightharpoonup consider $0.b_1b_2b_3...$ where

- $ightharpoonup \forall k \in \mathbb{N} \ r \neq r_k$
- Cantor's Diagonal Construction

33 / 36

Infinity

- $ightharpoonup |\mathbb{R}|$ is uncountable
- $ightharpoonup |\mathbb{R}| > |\mathbb{N}|$
- C: set of all possible computer programs
- P: set of all possible problems
- $|C| = |\mathbb{N}|$
- $|P| = |\mathbb{R}|$
- ▶ there are problems which cannot be solved using computers

References

Required reading: Grimaldi

- ► Chapter 3: Set Theory
 - ▶ 3.1. Sets and Subsets
 - ▶ 3.2. Set Operations and the Laws of Set Theory
- ► Chapter 8: The Principle of Inclusion and Exclusion
 - ▶ 8.1. The Principle of Inclusion and Exclusion
- ► Appendix 3: Countable and Uncountable Sets

34 / 36