
This tutorial explains how to use the Stdm1 software for checking the validity of proofs.

1 Installation

Install the Glasgow Haskell Compiler (version 7.10.3):

• On a Fedora Linux machine, run the following command as root:
yum install ghc

• On an Ubuntu-based Linux machine (Ubuntu, Xubuntu, Linux Mint), run:
sudo apt-get install ghc

• For other systems, check the main site:
http://www.haskell.org/ghc/download

Download the Stdm.lhs �le from the course �les section on Ninova:
http://ninova.itu.edu.tr/Ders/142/Dosyalar

Using the �le manager, right-click on the Stdm.lhs �le and open it with GHCi. If that is not
available on your system, start a terminal emulator and type the command: ghci Stdm.lhs. You
should see an output like this:

GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

[1 of 1] Compiling Stdm (Stdm.lhs, interpreted)

Ok, modules loaded: Stdm.

*Stdm>

Here, *Stdm> is a prompt, indicating that the system is expecting input.

You can exit the program by pressing Ctrl-D.

2 Syntax

The names of proposition variables are uppercase letters. The truth values are TRUE and FALSE.
The propositional operators are: Not, And, Or, and Imp. These operators are written before their
operands. For example, the proposition P ∧Q is written as And P Q.

A theorem consists of a list of assumptions and a conclusion. The assumptions are a comma-
separated list of propositions written in square brackets. The conclusion is a proposition.

Theorem [assumption1, assumption2, ...] conclusion

Examples:

Theorem [P, Imp P Q] Q -- P, P -> Q |- Q

Theorem [P, Q] (And P Q) -- P, Q |- P /\ Q

1http://www.dcs.gla.ac.uk/ jtod/discrete-mathematics/

1

3 Proofs

Proofs consist of assumptions and rules of inference. A proposition can be converted into a proof
by assuming it. For example:

Assume P

Assume (And P Q)

Whether a proof really proves a theorem or not can be checked as follows:
check_proof theorem proof

*Stdm> let thPP = Theorem [P] P

*Stdm> let prAP = Assume P

*Stdm> check_proof thPP prAP

The proof is valid

Note the di�erence between a proposition and a proof. For example, And P Q is a proposition
but Assume (And P Q) is a proof (or a stage in a proof). Assuming a proposition converts it into
a proof but of course that proof is not necessarily valid for the theorem at hand. The following
proof is invalid because it does not reach the conclusion of the theorem:

*Stdm> let thPQ = Theorem [P] Q

*Stdm> check_proof thPQ prAP

*** The proof is NOT valid ***

The proof does not match the sequent.

.what is actually proved is:

P |- P

And this proof is invalid because it assumes a proposition which was not supplied:

*Stdm> let prAQ = Assume Q

*Stdm> check_proof thPQ prAQ

*** The proof is NOT valid ***

The proof does not match the sequent.

.what is actually proved is:

Q |- Q

.these assumptions are used but not part of the sequent:

Q

The rules of inference take a number of already proven propositions and a conclusion and check
whether the conclusion really follows from those propositions. They are explained below.

Identity.

*Stdm> let prID = ID prAP P

*Stdm> check_proof thPP prID

The proof is valid

Note that the identity rule has to be applied to a proof, not a proposition:

2

*Stdm> let prIDX = ID P P

<interactive>:3:16:

Couldn't match expected type `Proof' with actual type `Prop'

In the first argument of `ID', namely `P'

In the expression: ID P P

In an equation for `prIDX': prIDX = ID P P

Contradiction.

*Stdm> let thFP = Theorem [FALSE] P

*Stdm> let prCV1 = Assume FALSE

*Stdm> let prCV = CTR prCTR1 P

*Stdm> check_proof thFP prCV

The proof is valid

And here are some incorrect applications of the rule:

*Stdm> let thTP = Theorem [TRUE] P

*Stdm> let prCX1 = Assume TRUE

*Stdm> let prCX = CTR prCX1 P

*Stdm> check_proof thTP prCX

*** The proof is NOT valid ***

Reported errors:

.CTR: the antecedent (TRUE) is not FALSE

*Stdm> let thEP = Theorem [] P

*Stdm> check_proof thEP prCV

*** The proof is NOT valid ***

The proof does not match the sequent.

.what is actually proved is:

FALSE |- P

.these assumptions are used but not part of the sequent:

FALSE

Or Introduction. This rule has two variants, OrIL and OrIR, which add new operands to the
left and right operands, respectively.

*Stdm> let thOI = Theorem [P] (Or P Q)

*Stdm> let prOI1 = Assume P

*Stdm> let prOI = OrIL prOI1 (Or P Q)

*Stdm> check_proof thOI prOI

The proof is valid

Examples of incorrect applications:

*Stdm> let thOIR = Theorem [P] (Or Q P)

*Stdm> check_proof thOIR prOI

*** The proof is NOT valid ***

The proof does not match the sequent.

.what is actually proved is:

P |- Or P Q

3

*Stdm> let prOIR1 = Assume P

*Stdm> let prOIR = OrIR prOIR1 (Or P Q)

*Stdm> check_proof thOIR prOIR

*** The proof is NOT valid ***

Reported errors:

.OrIL: the right term of OR conclusion (Or P Q) doesn't match the assumption (P)

And Elimination. This rule has two variants, AndEL and AndER, which eliminate to the left
and right operands, respectively.

*Stdm> let thAE = Theorem [And P Q] P

*Stdm> let prAE1 = Assume (And P Q)

*Stdm> let prAE = AndEL prAE1 P

*Stdm> check_proof thAE prAE

The proof is valid

Example of incorrect application:

*Stdm> let prAER = AndER prAE1 P

*Stdm> check_proof thAE prAER

*** The proof is NOT valid ***

Reported errors:

.AndER: the right term of And assumption (And P Q) doesn't match the conclusion (P)

Here is another invalid proof and a possible correction:

*Stdm> let thPQP = Theorem [P, Q] P

*Stdm> let prPQP1 = Assume P

*Stdm> let prPQP = AndEL prPQP1 P

*Stdm> check_proof thPQP prPQP

*** The proof is NOT valid ***

Reported errors:

.AndEL: the assumption (P) is not an And expression

*Stdm> let prPQP2 = Assume (And P Q)

*Stdm> let prPQPX = AndEL prPQP2 P

*Stdm> check_proof thPQP prPQPX

*** The proof is NOT valid ***

The proof does not match the sequent.

.what is actually proved is:

And P Q |- P

.these assumptions are used but not part of the sequent:

And P Q

*Stdm> check_proof thPQP prAP

The proof is valid

notice: these assumptions are useless: Q

And Introduction.

*Stdm> let thAI = Theorem [P, Q] (And P Q)

*Stdm> let prAI1 = Assume P

*Stdm> let prAI2 = Assume Q

4

*Stdm> let prAI = AndI (prAI1, prAI2) (And P Q)

*Stdm> check_proof thAI prAI

The proof is valid

*Stdm> let prPQPV = AndEL prAI P

*Stdm> check_proof thPQP prPQPV

The proof is valid

Implication Elimination.

*Stdm> let thMP = Theorem [P, Imp P Q] Q

*Stdm> let prMP1 = Assume P

*Stdm> let prMP2 = Assume (Imp P Q)

*Stdm> let prMP = ImpE (prMP1, prMP2) Q

*Stdm> check_proof thMP prMP

The proof is valid

Implication Introduction. Note that the equivalence Not P⇔ Imp P FALSE is already estab-
lished.

*Stdm> let thMT = Theorem [Imp P Q, Not Q] (Not P)

*Stdm> let prMT1 = Assume P

*Stdm> let prMT2 = Assume (Imp P Q)

*Stdm> let prMT3 = ImpE (prMT1, prMT2) Q

*Stdm> let prMT4 = Assume (Not Q)

*Stdm> let prMT5 = ID prMT4 (Imp Q FALSE)

*Stdm> let prMT6 = ImpE (prMT3, prMT5) FALSE

*Stdm> let prMT7 = ImpI prMT6 (Imp P FALSE)

*Stdm> let prMT = ID prMT7 (Not P)

*Stdm> check_proof thMT prMT

The proof is valid

Note that all the provisional assumptions have to be discharged. So, the following proof is not
valid:

*Stdm> let prMTX = CTR prMT6 (Not Q)

*Stdm> check_proof thMT prMTX

*** The proof is NOT valid ***

The proof does not match the sequent.

.what is actually proved is:

P, Imp P Q, Imp Q FALSE |- Not Q

.these assumptions are used but not part of the sequent:

P

Or Elimination. Example: proof of disjunctive syllogism

*Stdm> let thDS = Theorem [Or P Q, Not P] Q

*Stdm> let prDS1 = Assume (Or P Q)

*Stdm> let prDS2 = Assume (Not P)

*Stdm> let prDS3 = ID prDS2 (Imp P FALSE)

*Stdm> let prDS4a1 = Assume P

*Stdm> let prDS4a2 = ImpE (prDS4a1, prDS3) FALSE

5

*Stdm> let prDS4a = CTR prDS3a2 Q

*Stdm> let prDS4b1 = Assume Q

*Stdm> let prDS4b = ID prDS3b1 Q

*Stdm> let prDS = OrE (prDS1, prDS3a, prDS3b) Q

*Stdm> check_proof thDS prDS

The proof is valid

Example: proof of hypothetical syllogism

*Stdm> let thHS = Theorem [Imp P Q, Imp Q R] (Imp P R)

*Stdm> let prHS1 = Assume P

*Stdm> let prHS2 = Assume (Imp P Q)

*Stdm> let prHS3 = ImpE (prHS1, prHS2) Q

*Stdm> let prHS4 = Assume (Imp Q R)

*Stdm> let prHS5 = ImpE (prHS3, prHS4) R

*Stdm> let prHS = ImpI prHS5 (Imp P R)

*Stdm> check_proof thHS prHS

The proof is valid

Example: the use of a theorem

*Stdm> let thSpock = Theorem [P, Imp P Q, Imp Q R, Imp R S] S

*Stdm> let prSpock1 = Assume (Imp P Q)

*Stdm> let prSpock2 = Assume (Imp Q R)

*Stdm> let prSpock3 = Use thHS [prSpock1, prSpock2] (Imp P R)

*Stdm> let prSpock4 = Assume (Imp R S)

*Stdm> let prSpock5 = Use thHS [prSpock3, prSpock4] (Imp P S)

*Stdm> let prSpock6 = Assume P

*Stdm> let prSpock = ImpE (prSpock6, prSpock5) S

*Stdm> check_proof thSpock prSpock

The proof is valid

6

