
1

3.1

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

A) Isolated I/O Map: Two separate address spaces for memory and I/O
a) Two separate busses (address and data), one for memory and the other for

I/O can be used.
b) A common bus can be used both for memory and I/O units.

Memory and I/O address ranges can be of different sizes.

There are separate instructions for memory and I/O
operations. Memory: LOAD, STORE, I/O: IN, OUT

3 Input Output (I/O) Organization and Bus Operations
The I/O module manages the data transfer between internal storage (registers, memory)
and external input/output devices (keyboard, mouse, hard disk, network interface).
The computer system's I/O architecture is its interface to the outside world.

3.1 CPU – I/O Interface Connections

CPU
Address
Decoder

Address

I/O 1
CS

$00

$0F

Control

Valid address, address strobe, R/W' clock etc.

Memory
2

CS
$1000

$FFFF

I/O 2
CS

$10

$FF

CS
$0000

$0FFF

Memory
1

Memory- I/O

A control line determines the access type of the CPU:
memory or I/O.

Example:
Intel x86 processors

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

3.2

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

B) Memory-Mapped I/O: Same address space is shared by memory and I/O

• Common address and data buses for both memory and I/O units with common
control lines

• Same instructions are used for both memory and I/O operations.

MOVE, LOAD, STORE

CPU
Address
Decoder

Address

Control

Memory
1

I/O 1

Memory
2

I/O 2

CS

CS

CS

CS

$0000

$0FFF

$2000

$2FFF

$1000

$1FFF

$3000

$3FFF

Example:
Motorola 68XX, 68K processors

2

3.3

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Separate Buses for Memory and I/O units:

I/O Bus

Interface Interface

Peripheral Peripheral

Common bus for Memory and I/O:

Interface Interface

Peripheral Peripheral

CPU
Common bus for
memory and I/O

CPU Memory

Memory Bus

Memory

MemoryMemory

3.4

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

3.2 I/O Interface Module
Peripherals are connected to CPUs over an I/O interface unit. Functions:
• Checking the status of the peripheral, data buffering: Data transfer rate of a

peripheral is often much slower than that of the CPU. So, it is necessary to
check if the peripheral is ready for data transfer. The data coming from
memory or CPU are sent to an I/O interface, buffered, and then sent to the
peripheral device at its data rate.

• Data conversion: Coding, encoding, different formats
• Error detection
• Signal conversion (peripherals-CPU): Magnetic, electromechanic, electronic

Example I/O Interface:
Data Bus

Buffer

CPU
Peripheral

Control

Status

Handshaking

Port A Data

Port B
Data

Timing and
Control

CS

RS0

RS1

R/W

Control signals to all units
IRQ

3

3.5

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

3.3 Data Transfer Modes between I/O Interfaces and Memory

1.Programmed I/O (software polling): It is the responsibility of the processor

a) to periodically check the status of the I/O interface (ready/busy, complete)

b) to perform the data transfer between memory (registers) and I/O interface.

Read status

Data
Ready?No

Read data
from I/O
interface

Write data to
memory

Yes

If the I/O interface
has finished the
previous operation it
sets the "COMPLETE"
flag.

The CPU reads data
from the memory and
writes it to the I/O
interface.

Read status

Complete
?No

Read data
from memory

Write data to
I/O interface

Yes

If the I/O interface
has received data
from a peripheral it
sets the "READY"
flag.

The CPU reads data
from the I/O
interface and writes
to the memory.

Read from the I/O Interface:

The CPU runs a program to check the
status of the I/O interface.

Write to the I/O Interface:

If the CPU has data to send, it checks
the status of the I/O interface.

3.6

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Disadvantage:

The main disadvantage of this technique is the busy-waiting of the CPU while
checking the status of the I/O units.

The CPU performs both I/O operations:

a) Checking the status of the I/O units.

While checking the status, the CPU cannot run other programs (busy-waiting).

b) Data transfer is also performed by the CPU (The data goes over the CPU).

Advantage:

This technique is simple. Additional hardware units are not necessary.
• When the CPU does not have any tasks other than performing I/O operations

or
• If the CPU cannot execute another program without performing the I/O

operation,
then busy-waiting is not a problem.

For such systems, programmed I/O is a simple and suitable technique for I/O
operations.

1. Programmed I/O cont'd:

4

3.7

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

In the interrupt-driven technique, the CPU sets the I/O interface to send an
interrupt request if it is ready.

Advantage:

The CPU does not need to check the status continuously. The "busy- waiting"
problem does not exist.

The CPU can run other programs while the I/O interface is receiving data from
or sending to a peripheral.

The I/O interface will then interrupt the processor to request service when it is
ready to exchange data with the CPU.

The processor interrupts its current program, runs the interrupt service routine
in which the data transfer is executed, and then resumes its former processing.

In this technique, the CPU does not check the status, but it is still the
responsibility of the processor to perform the data transfer.

Disadvantage:
Interrupt processing has its own overhead (saving the return address, program
status, and registers, as well as performing some other operations) (Section 4).

At the end of the service routine, return address and program status are read.

Interrupt-driven I/O is not suitable for applications where I/O operations are
performed very frequently.

2. Interrupt-Driven I/O:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

3.8

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

3.Direct Memory Access (DMA):

In the programmed and interrupt-driven techniques, the CPU is responsible for
transferring data between memory and I/O interfaces.
The CPU must execute a number of instructions for each I/O transfer.

The direct memory access (DMA) technique involves an additional hardware
module on the system bus, called the DMA controller (DMAC).

The DMAC is capable of acting as the CPU and of taking over control of the
system bus from the processor.

When the CPU needs to read or write a block of data, it initializes the DMAC by
sending the necessary information (address, size, transfer mode etc.).

Thus, it delegates responsibility for the I/O operation to the DMAC.

The CPU can continue with its other programs during the transfer of data.

The data does not go through the CPU.

The DMAC uses the system bus only when the processor does not need it, or it
must force the processor to suspend the bus operations temporarily.

The DMA technique is suitable for applications where large volumes of data are
transferred and I/O operations are performed very frequently.

An additional hardware module (DMAC) is necessary.

DMA is explained in Section 5.

5

3.9

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Summary of Data Transfer Modes:

Task

Method

Check the status of
the I/O interface

Data transfer between I/O
interface and memory

Programmed I/O: CPU (Program)

Direct Memory Access:

The table below shows which device is responsible for checking the status of
the I/O interface and which device is responsible for transferring the data.

CPU (Program)

Interrupt driven I/O: Interrupt Mechanism CPU (ISR)

DMAC DMAC

3.10

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Problems:
a) Has the sender sent the data (Is the data on the data bus valid)?
b) Has the receiver received the data (Is the receiver busy)?

Strobe

3.4 Asynchronous Data Transfer:

1. Strobe Control:

Source Destination

Data
Data Valid Data

Strobe (Source)

1

2
3

4a) Source-initiated strobe :

StrobeSource Destination

Data

Data Valid Data

Strobe
(Destination)

1

2

3

4

b) Destination-initiated strobe:

The duration of valid data is predetermined according the speed of the destination.
The source does not know whether the destination has really received the data.

Time to transfer (sample) the data from the bus is predetermined according the
speed of the source.
The destination does not know whether the source has really sent the data.

6

3.11

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Data valid

2. Handshaking:

Source Destination

Data

Data Valid Data

Data valid
(Source)

1

2

3

4

a) Source-initiated:

Data accepted

5

6Data accepted
(Destination)

Data validSource Destination

Data
Data Valid Data

Ready
(Destination)

1

2

3

4b) Destination-initiated:

Ready/busy
5

6

Data valid
(Source)

The source waits for the “Data accepted" signal.
To avoid "infinite waiting" when the destination does not respond with a “Data
accepted" signal due to an error, a time-out mechanism must be used.

The destination waits until the “Data valid" signal is received.
To avoid infinite waiting, a time-out mechanism is necessary.

3.12

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

3.5 Data Transfer between the CPU – Memory (or I/O Interface)
CPUs also use synchronous or asynchronous data transfer mechanisms to access
the memory.

3.5.1 Synchronous bus operation with strobe

For example, MC 6802 uses a
strobe mechanism in memory
access.

This operation is also
synchronized with the clock
signal (E) of the processor.

The Valid Memory Address
(VMA) signal indicates that
the address on the bus is
valid and initiates the bus
cycle (strobe).

When the clock signal goes
from 1 to 0, data is latched,
and the bus cycle is
terminated.

Read cycle of MC6802:

7

3.13

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Chip select is sent to the memory via the address decoder.
When the clock signal goes from 1 to 0, the bus cycle is terminated.

Write cycle of MC6802:

Similarly, the "write cycle" also starts with the activation of the VMA.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

3.14

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

3.5.2 Asynchronous bus operations with handshaking

For example, the MC68000 access the memory (and I/O interfaces) using the
asynchronous handshaking mechanism.

It can also use the strobe mechanism that is synchronized with the clock signal (E)
like the processors of the 68xx family.

MC68000

Data Bus D15-D0

AS

UDS

LDS

VMA

VPA

E

Asynchronous
Bus
Control

6800
Peripheral/memory
control

Address Bus A23-A1

R/W

DTACK

Address line A0 is used inside the processor
to control two other signals: UDS' and LDS'.

The data bus is 16 bits wide.
However, its upper and lower 8-bit parts can
also be used separately.

8

3.15

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• AS' (Address Strobe): It is asserted (active low) by the processor to
indicate that a valid memory address exists on the address bus.

It starts the bus cycle. First handshaking signal.

• UDS' (Upper Data Strobe) and LDS’ (Lower Data Strobe): They determine
the size of the data being accessed (word or byte).

Word: Both are asserted (low).

Byte (odd address): LDS' asserted, D0-D7 used

Byte (even address): UDS' asserted, D8-D15 used

• DTACK' (Data Transfer Acknowledge): Handshaking input pin of 68000

Handshake signal generated by the device (memory/interface) being
accessed indicates that the data bus contents are valid and that the 68000
may proceed with the data transfer.

• VPA' (Valid Peripheral Address): This input informs the 68k that it has
addressed a 6800 peripheral and that the data transfer should be
synchronized with the E clock.

If VPA' is asserted during a bus operation (AS' is active), the 68000 acts
like a 68xx and uses VMA and E signals to access the peripheral.

Control Signals of MC68000 used for memory access

3.16

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

MC68000 - Memory (I/O Interface) Connection

The MC68000 accesses memory (and I/O interfaces) using the asynchronous
handshaking mechanism.
It can also act like a processor of the 68xx family and perform a synchronous bus
operation that starts with a strobe (VMA).

68000

Memory
or

I/O
Interface

CSAddress1

Address2

VPA

If the device itself (memory)
cannot generate the DTACK signal.
The delay depends on memory
access time.

A device that is
accessed using
asynchronous

handshaking mechanism

Memory
or

I/O
Interface

Decoder
E

VMA

CS Synchronous
device

DTACK is not used

UDS,LDS

Address
Decoder

Address

AS

DTACK
DTACK

Delay
:

From other
asynchronous
devices

9

3.17

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

DTACK
(from device)

(Must be negated)

Ready ReadyW W

Address is valid Address is validAS

Bus Cycle
Memory I/O Read

Bus Cycle
(Slow) Memory / I/O Read

Valid Address Valid AddressA(23 -1)

ReadR/W Read

MC68000 Asynchronous Read-Cycle Timing

States

S0 S2 S4S1 S3 S5 S6 S7 S0 S1 S2 S3 S4 W W W W S5 S6 S7

CLK

Data from Memo DataD(15 - 0)

If the DTACK is not asserted the
processor inserts wait states.

On the falling edge at the end of
S6 (start of S7), data is latched
from the bus.

LDS

UDS

3.18

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

CLK

WriteR/W Write

Ready ReadyW
DTACK

MC68000 Asynchronous Write-Cycle Timing

Bus Cycle
Memory/I/O Write

Bus Cycle
(Slow) Memory / I/O Write

S0 S2 S4S1 S3 S5 S6 S7 S0 S1 S2 S3 S4 W WS5 S6 S7

Valid Address Valid AddressA(23 -1)

Data DataD(15 - 0)

Address is valid Address is validAS

LDS

UDS

At the end of S6, DTACK’ is checked. If it is not asserted (memory could not latch data),
wait states are inserted.

10

3.19

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Avoiding Infinite Waiting
MC68000 has an exception input called BERR’ (Bus Error) that can be asserted by
an external logic if an error in the current bus cycle is detected.

If this input is asserted (active 0) the 68000 terminates the current bus cycle,
saves the current status into the stack (accessed address, current instruction
etc.), and jumps to an exception handler program.

BERR' will be explained in the chapter “Exceptions”.

To avoid infinite waiting a counter can be connected to the BERR' as shown below:

If the bus cycle takes (AS' stays active) longer than expected, BERR' is asserted.

AS

CLR

68000

BERR

In this example:
Counts up to 10
(1010) (10µs)

If no bus (AS'=1) operation,
the counter is cleared.

E (enable) Vcc
Continuously

enabled
4-bit

CounterQ3

Q2

Q1

Q0

1 MhzCLK

3.20

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8/16-bit Bus operations in MC68000 (access to odd/even addresses)

In MC68000, the width of the data bus is 16 bits.
Instructions can operate on 8, 16 or 32-bit operands (bus operations).
Therefore, 8-bit memories are connected to the 16-bit data bus in parallel.

68000

Memory1
(Even)

Memory2
(Odd)

D15-D8

D7-D0

0
2
4
:

1
3
5
:

8-bit memories

To specify which memory is being accessed the MC68000 has two outputs:
UDS' (Upper Data Strobe) and LDS' (Lower Data Strobe).
The value of internal address line A0 determines the values of UDS' and LDS'.

UDS LDS D15-D8 D7-D0 Description:
H H --- --- No bus operation
H L --- Data Byte access to an odd address A0=1
L H Data --- Byte access to an even address A0=0
L L Data Data Word access to an even address A0=0

UDS

LDS

11

3.21

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Address: (A0 is in the processor)
A23A22 A1 A0 UDS LDS

MOVE.B ($000000),D1 0 0 0 0 0 1
MOVE.B ($000001),D1 0 0 0 1 1 0
MOVE.W ($000000),D1 0 0 0 0 0 0
MOVE.W ($000001),D1 Exception: Address error

Example:

D15-D8

D7-D0

Address
Decoder

A23-A1 (as necessary)

AS
EN

Memory1
(Even)

0
2
4
:

A23-A1 Memory2
(odd)

1
3
5
:

LDS

CS

Example: $000000
Address1

Ex: $100000
Address2

DTACK

to 68000

Delay
1

8-bit memories

UDS

CS

3.22

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

3.22

E

In the example on the right
the following units are
connected to the MC68000 :
One serial communication
interface (MC6850), a total of
4Kx8 ROM (2x 2716) and a
total of 4Kx8 SRAM (2x4016) .
Only two address lines, A13
and A12, are used for address
decoding.
The serial communication
interface (MC6850) is
connected as a synchronous
unit (VMA and E are used).
Note: It communicates with its
peer interface using the
asynchronous mechanism.
Between the CPU and
memories, data transfer occurs
according to the asynchronous
handshaking mechanism (AS
and DTACK are used).
Since ROMs are not written to,
UDS/LDS lines are not used to
select these units.

Example:

12

3.23

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Function Code Outputs in MC68000

MC68000 has 3 outputs that indicate the type of the operations:

Function Codes Outputs: FC2, FC1, FC0.

These outputs get valid values in each bus cycle (when AS' is asserted) and
indicate the type of the operation.

FC2 FC1 FC0 Description:
0 0 0 Undefined (Reserved)
0 0 1 User Mode, Data access (User Data)
0 1 0 User Mode, Program access (User Program)
0 1 1 Undefined (Reserved)
1 0 0 Undefined (Reserved)
1 0 1 Supervisor Mode, Data access (Supervisor Data)
1 1 0 Supervisor Mode, Program access (Supervisor Program)
1 1 1 Interrupt Acknowledge

These outputs can be used in address decoding.

• Access to specific devices and memory addresses can be restricted. These
addresses can be accessed only in supervisor mode.

• Separate memory spaces can be created for programs and data.

User and supervisor modes are
explained in section 4.5.1 Privilege
Modes.

3.24

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

DataProgram

Placing separate program and data memories to the same address space
In this example, by using the FC0 output of the MC68000, two separate memory
modules are placed into the same address space.
The first module is selected when FC0 = 0 (program access).
The second one is selected if FC0 = 1 (data access).

D15-D8

D7-D0

Address
Decoder

A23-A1 (as necessary)

AS
EN

Address 1

LDS

UDS

Mem. 2a

Data
(Even)

A23-A1 Mem. 2b

Data
(odd)

CSCS

A23-A1

FC0

Memory 1a

Program
(Even)

CS

A23-A1

CS

Mem. 1b

Program
(odd)

Address 2

Address 3

Example:

