Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

2. The Pipeline
In pipelining, multiple tasks (for example, instructions) are executed in parallel.

To use the pipelining approach efficiently

1. We must have tasks that are repeated many times on different data.

2. Tasks must be divided into small pieces (operations or actions) that can be
performed in parallel.

Example of a pipeline: an automobile assembly line.

The task

 is the construction of a car,

+ is repeated many times for different cars,

+ consists of some operations, such as attaching the doors, attaching the tires.
Each operation

* has its own station in the pipeline (assembly line).

« is performed in parallel with other operations but on a different car.

e.g., while a worker is attaching the doors of the it car, another worker is
attaching the tires of the (i+1)s" car at the same time.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.1
hito:// www buzluca info .

Computer Architecture

Example: An automobile assembly line with three stations

Station 1 Station 2 Station 3
sep-1 (et]| |
Station 1 Station 2 Station 3
Step=2 [Car‘Z] | [Carl] |
Station 1 Station 2 Station 3
Step=3 | (crz) | [crt] == Cortisready.
Station 1 Station 2 Station 3

At the end of Step = 3 the Car 1 (Task 1) has been completed.

Step = 4 (car 4]| (car3] |[Car2] == Car2isready.
Station 1 Station 2 Station 3

After Step = 3 (the pipeline is full), at each step, a new car (task) is completed.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 22
hito:// www buzluca info .

Computer Architecture

2.1 The general structure of a pipeline:

1 1
1 1
| Resul]

(Segment, layer)

I
|
Datal processing Processin ! Processin
— S N 9 e —TO gL .
Unit 1 R 1 unit 2 R2| | Unit k Rk |
Clock ? : % : 1
! 1
1. Stage : 2. Stage : k. Stage :
I
I 1 |

+ Each processing unit performs a fixed operation.

» Ineach clock cycle, the operation is performed on different data (task).
(Refer to Digital Circuits Lecture notes, Section 6 for information about clock signal.)

+ Registers (R1, R2, ..., Rk) keep the intermediate results.

+ All stages are controlled by a common clock signal and operate synchronously.

* New inputs are accepted at one end, before previously accepted inputs appear
as outputs at the other end.

* When all stages of the pipeline are full, in each clock cycle, a new result is
produced at the output.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 23
hito:// www buzluca info .

Computer Architecture

Example: The elements of the arrays A, B, and C will be first read from memory,
and then the following operation will be performed: A*B; + C; i=1,2,3,...

A B, G

|Read memory| |Read memory|

1. Stage (layer,
segment)

Clock

Read

2. Stage
| Multiplication and read

3. Stage
Addition

Result

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 24
hito:// www buzluca info .

Computer Architecture

Example (cont'd):

+ In this example, the task is decomposed into 3 operations: Reading,
multiplication, and addition.

« We assume that arrays are in separate memory modules, which can be read in
parallel.

« We start to read elements of array C one clock cycle after reading A and B.

Functioning of the pipeline with three stages:

Clock cycle | 1. Stage (Read) 2. Stage(Multiply) | 3.Stage (Add)
R1 R2 R3 R4 R5
1 A, B, - - -
2 A, B, A*B; G, -
3 A, B, AB, G, A*B; + C; (First result)
4 A, B, As*B; Gy A,"B, + C, (2nd result)
5 Ag Bs AsB, C, A3"B; + C3 (3rd result)

Note:

+ Assuming that the fime to access the memory is significantly shorter than the
durations of the other operations and the data is always ready to be read,
reading is not treated as a separate operation.

« In this case, the pipeline could be designed with two stages which perform only
arithmetical operations: multiplication and addition.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@ 2013- 2021 Feza BUZLUGA 25
hito:// www buzluca info .

Computer Architecture

2.2 Space-Time Diagram of a pipeline with four stages

Space-time diagrams (or timing diagrams) show which task is currently being
processed in which stage of the pipeline.

In the exemplary diagram below, clock cycles (steps) are the column labels, stages
are the row labels (Si) , and task numbers (Ti) are the table entries.

Example: Time
(4 stages) —5 Clock Cycles (steps)
1 2 3 4 5 6 7
SU|TL | T2|T3|T4|T5|T6
‘g’_' S2 TL|T2 |T3|T4 |75 |T6
?fc; S3 T1 | T2|T3|T4|TH5

i The 1st task (T1) is compleTed in4 i Af’rer the kt cycle, a new task
i clock cycles (number of stages k=4). IS completed in each clock cycle.

Four tasks (T4) have been completed in 7 clock cycles.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@ 2013- 2021 Feza BUZLUGA 26
hito:// www buzluca info .

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Space-Time Diagram of a pipeline with four stages, cont'd

We could also construct the space-time diagram in an alternative way.

In the diagram below, clock cycles (steps) are the column labels, tasks (Ti) are the
row labels, and stages (Si) are the table entries.

Time The 1st task (T1) is completed in 4
—— Clock Cycles (sfeps)’,/”é clock cycles (number of stages k=4)

1 2|3 |4 |5.46 |7
Tt |s1 | 52|53 |54 After the k™" cycle, a new fask |
9 T S1 |52 | 53 | S4«j-----| [is completed in each clock cycle ;
ERE st|s2|s3|sat” I
T4 S1| 52| s3|54

Four tasks (T4) have been completed in 7 clock cycles.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 27
hito:// www buzluca info .

Computer Architecture

2.3 Throughput and Speedup provided by the pipeline

Since all stages proceed at the same time, the time (delay) required for the
slowest stage determines the length of the period of the clock signal (cycle time).

The cycle time (the period of the clock) t, can be determined as follows:

t,= max(t) +d, =1y + 4,
t,: cycle time
T; : time delay of the circuitry in the ith stage
Ty : maximum stage delay (the slowest stage)

d,: fime delay of the register

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 28
hito:// www buzluca info .

Computer Architecture

Speedup:
ki number of stages in the pipeline
t,: cycle time
n: number of tasks
t, : time required for a task without pipelining

Calculation of the total fime required for n tasks:
* kcycles required to complete the first task (T1). Time: T(1) = k-,

+ remaining n-1 tasks require (n-1) cycles. 4+ Time: (n-1)t,
= Total time required for n tasks: T(n) = (k+n-1)tp
Speedup: S - Executi.on ti.me w::thout th'e pipe/ine _ n-t,
Execution time with the pipeline (k+n-1)- l,
. . epe S p— r”
If the number of tasks increases significantly : n - o, 9 = I’
n—>w p

If we assumet, =k, ,
(If it were possible to divide the main task into k equal small operations and

ignore the register delays, the cycle fime would be t, = t,/k.)
Snax = k (Theoretical maximum speedup)

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 29

hito:// www.buzluca.info

Computer Architecture

Comments on speedup:

To improve the performance of the pipeline, fasks must be divided into small and
balanced operations with equal (or at least similar) durations.

If the durations of the operations are short, then the clock cycle (t,) can be short.

Remember: The slowest stage determines the clock cycle.

Effects of increasing the number of stages of a pipeline:

Advantage:
+ If the task can be divided into many small operations, increasing the number of
stages can lower the clock cycle (t,), and consequently the speedup increases.
!
S == Siax = k (Theoretical)
Lim {
Disadvantages: o
* The cost of the pipeline increases. At each stage of the pipeline, there is some
overhead (cost, energy, space) because of registers and additional connections.

* The completion time of the first task increases. T(1) = k-t,

+ Branch penalties in the instruction pipeline caused by control hazards increase.
We will discuss branch penalties in the section "2.5 Pipeline hazards".

While designing a pipeline, these advantages and disadvantages should be taken

into consideration.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.10

hito:// www.buzluca.info

Computer Architecture

Effects of task partitioning on the speedup:

If the task can be partitioned into small operations with small durations then a
faster clock signal (shorter cycle time) can be used.

Assume that we have a task T with a total duration of 100 ns.

Assume that we can decompose this task in different ways.

Case A: We partition the task into 2 equal stages.

S1 =50ns S2 =50ns
T | |

If the delay of the registers is 5 ns, then the clock cycle is 1, = 50+5 = 55 ns

Case B: We partition the task into 3 unbalanced stages.
S1=25ns S2 =25ns S3 = 50ns
T: | | | |
The clock cycle is t, = 50+5 = 55 ns (slowest stage 1y, =50ns)

Although the pipeline has more stages, there is no speed improvement compared
Yo case A, because t, is still 55 ns .

Besides, the cost of the pipeline has increased.
Also, the completion time of the first task has increased. T(1) = k-t,

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 211
hito:// www buzluca info .

Computer Architecture

Effects of task partitioning on the speedup: (cont'd)

Case C: We partition the task into three stages with similar durations.

S1-80ns S2-80ns S3=40ns
T | | | |

The clock cycle is t, = 40+5 = 45 ns (slowest stage T = 40ns)
The clock rate (1/1,) is higher compared to cases A and B.

Conclusion:

Pipelining has advantages if a task can be partitioned into small and balanced
operations.

It is important to decrease the length of the clock cycle (t,).

For example, if we could partition the task into five operations, each having the
duration of 20ns, we would have a clock cycle of 25ns.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.12
hito:// www buzluca info .

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

2.4 Instruction Pipeline (Instruction-Level Parallelism)
During the execution of each instruction the CPU repeats some operations.
The processing required for a single instruction is called an instruction cycle.

An instruction cycle is generally composed of these stages: instruction fetch and
decoding, operand fetch, execution, interrupt. (See the figure on 1.18)

The simplest instruction pipeline can be constructed with fwo stages:
1) Fetch and decode instruction 2) Fetch operands and execute instruction

When the main memory is not being accessed during the execution of an
instruction, this time can be used to fetch the next instruction in parallel with
the execution of the current one.

Example:

Cycle: 1 2 3 4

Instr. 1 | Fetch, decode | Operand, exec.

Instr. 2 Fetch, decode | Operand, exec.

Instr. 3 “~..__ | Fetch, decode | Operand, exec. |
N A

The potential overlap among instructions is called instruction-level parallelism.

Remember: To gain more speedup, the pipeline must have more stages with short
durations.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 213
hito:// www buzluca info .

Computer Architecture

Instruction Pipeline (cont'd)

The instruction cycle can be decomposed into 6 operations to gain more speedup:
. Fetch instruction (FI): Read the next expected instruction into a buffer.

. Decode instruction (DI): Determine the opcode and the operand specifiers.
. Calculate addresses of operands (CO): Calculate the effective address.

. Fetch operands (FO): Fetch each operand from memory.

. Execute instruction (EI): Perform the indicated operation.

. Write operand (WO): Store the result in memory.

D WN =

Such fine-grained decomposition may not significantly increase the performance

because of the following problems :

* The various stages will be of different durations (unbalanced).

» Some instructions do not need all stages.

+ Different segments may need the same resources (e.g., memory) at the same
time.

Therefore, some operations can be combined into the same stage so that a pipeline
with fewer (for example 4 or 5), balanced stages is constructed.
For example, the 80486 had 5 stages.

There are also processors that include instruction pipelines with more stages.
For example, Pentium 4 family processors have a pipeline with 20 stages. In these
processors, internal operations are decomposed into microoperations.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 214
hito:// www buzluca info .

Computer Architecture

2.4.1 An (exemplary) instruction pipeline (with 4 stages)

1. FI (Fetch Instruction): Read the next instruction the PC points to into a
buffer.

2. DA (Decode, Address): Decode instruction, calculate operand addresses

3. FO (Fetch Operand): Read operands (memory/register)

4. EX (Execution): Perform the operation and update the registers (including
the PC in branch/jump instructions)

+ Inorder to perform instruction and operand fetch operations at the same
time, we assume that the processor has separate instruction and data
memories.

* Memory-write operations are ignored in these examples.

+ This an exemplary pipelined CPU. More realistic examples are given in section
"2.4.2 An Exemplary RISC Processor with Pipelining".

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.15
hito:// www buzluca info .

Computer Architecture

2.4.1 An (exemplary) instruction pipeline (cont'd)
A) Ideal Case: No branches, no operand dependencies in the program
Timing diagram for the exemplary instruction pipeline (ideal case):

i The first instruction

Clock cycles

Instructions (Tasks) 1 2] 3|4 | ¢ - ! e t;,acsyttz;aeesn completec.
1 ___-—"'_-_— : :

FI | DA| FO| EX4 : The pipeline is full.

2 FI | DA| FO |EX |

3 FL | DA | FO | B After just one cycle,

B the second instruction ;

4 FI |DA] FO[EX | i hasbeen completed. |

The first instruction was completed in 4 cycles (k=4).
After the 4'h cycle, a new instruction is completed in each cycle.

If the number of instructions approaches infinity, the completion time of an
instruction approaches 1 cycle (slide 2.9 "Speedup").

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 216
hito:// www buzluca info .

Computer Architecture

2.4.1 An (exemplary) instruction pipeline (cont'd)
B) Pipeline Hazards (Conflicts)
B.1 Data Conflict (Operand dependency):

The operand of an instruction depends on the result of another instruction
Example :

Clock cycles i R2 is updaTed
Instructions 1] 2]3]4 5_

ADD Ri,R2 (R2 — R1+R2)| FI | DA| FO EXA 0 'Operand

SUB R2,R3(R3 *R2-R3) FI | DA|\FO [EX : dependency

i Prevnous value (not valld)
i of R2 is being fetched.

To prevent the program from running incorrectly, a solution mechanism must be
applied.

For example: The pipeline can be stopped (stall), or NOOP (No Operation)
instructions can be inserted.

We will discuss possible solutions in the section "2.5 Pipeline Hazards (Conflicts)
and Solutions".

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 217
hito:// www buzluca info .

Computer Architecture

2.4.1 An (exemplary) instruction pipeline (cont'd)
B.2 Control Hazards (Branches, Interrupts):
Since a pipeline processes instructions in parallel, during the processing of a

branch instruction, the next instruction in the memory that should be actually
skipped also enters the pipeline.

Here, a solution mechanism is necessary; otherwise, the instruction(s) that should
be skipped according to the program will also be executed.

Example:

1. Instruction_1 . Uncondmonal branch (or Jump) ms*rruchon (BRA/ JUMP)

2. JUMP Target FRrenra— " -
___________ ext instruction in the memory

3 Instruct|on 3¢ Accor‘dmg to the program, it should be sklpped

4. Target Instruction |4 < ' Target of the branch (‘rar‘ge‘r ms'rr‘uc‘rlon)

During the processing of the unconditional branch instruction JUMP, Instruction_3
is also fetched into the pipeline.

To prevent the program from running incorrectly, the pipeline must be stopped
(stall) or emptied before Instruction_3 is executed.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 218
hito:// www buzluca info .

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

a. Unconditional Branch i AfTer decoding, the
Type of the instruction

St P

Clock cycles £p2 —r=“—i is determined: branch!
I X 1 2| 3|4 |5 |6 |7 '-'.-_'.-_'_-_'_-_'_-_'_-_'_-_'_-_'_'_'.'_'.-_'.-_'.-_'.-_'_-_'_-_'_-_'_-_"__
nstructions P i :
, FI | DA| FO : The branch address is |
Instruction 1 . St I N - fetched (absolute or |
Instruction 2 i i relative).
JUmP FI |DA|FO Ean_‘_‘_ :.:’.:ﬁ:ﬁ:ﬁ:ﬁ:ﬁ:Z:Z:Z:Z:Z:ﬁ:ﬁ:ﬁ:ﬁ:ﬁ:i"

Instruction 3 }({ _ - ~--}-.i Updating the PC i

" L i (program counter)

Target Instr. 4 P -7 ‘\:\‘ N \‘ FI‘ ‘DA i PC = Target :

: _(Targe‘r of branch)

Hazar‘d This ms‘rruchon is | anch penalty!

: fetched unnecessarily. | It is necessary N The new instruction

i afTer‘ branch operation
(Targe‘r of branch)

i Tt must not be executed. ' to stall or empty '
i I‘r will (must) be discarded. | ; fhe pipeline. i

After decoding (identification) of the unconditional branch instruction, one
possible solution is to stop the "Fetch Instruction” stage (FI) of the pipeline.

After the execution of the branch instruction, the target address is written to
the program counter (PC), and the pipeline is enabled to fetch new instructions.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.19

hito:// www.buzluca.info

Computer Architecture

b. Conditional Branch:
For a conditional branch instruction, there are two cases:
1. condition is false (branch is not taken), 2. condition is true (branch is taken)

bl. Conditional Branch (if the condition is false):

If the condition is not true, it is not necessary to stop or empty the pipeline
because the execution will continue with the next instruction.

..

Clockcycles |4 | 5 | 314 | 5| ¢ | ! | The previous instruction sets

Instructions —_L ==l the conditions (flags).
Instruction 1| FT | DA| FO | EX¢[" ST
Conditional bra. 2 FI | DA| FO | Ex4-— " PC is not changed. No branching.
Instruction 3 FI | bA | FO Ex¢._--J'fh'é"(hé%'éi}&[b'h'?Jl'l'c{v'v]'r{cj'%Hé"";
e i branch is executed. !

£ ______‘\ Ty

| Without considering the condition, | | No need to empty
i nex‘r instruction is fetched. P No branch penalty

................................

Here, the problem is that the prewous instruction must be executed to determine
if the condition is true or not (depends on the flags of the CPU).

« If condition is false (branch is not taken), there is no branch penalty.

» If condition is true, a solution mechanism is necessary (next slide).

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.90
hito:// www buzluca info .

10

Computer Architecture

b2. Conditional Branch (if the condition is true):

Clock cycles Condition is true. ;
Insfruc*rion); 11213415617 i The branch address is
1 EX _.-=""| twritten to PC. i
FI| DA| FO = i PC = Target
Conditional bra. 2 FI | DA| FO | EX i The pipeline must be |
i emptied. ;
3 FI\ DA /FO -

4 N DA

R — ___. The pipeline is |

5 . FL i emptied. ;

Target 6 FI | DA
'Branchpenalty: | | Thetarget |

instruction of branch |

: 3 clock cycles

The duration of the branch penalty depends on the number and the operations of
the stages in the pipeline.
In this exemplary pipeline, the branch penalty is 3 clock cycles; however, it may

be different in other types of pipelines (2.5.3. Control Hazards).

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 201
hito:// www.buzluca.info .

Computer Architecture

2.4.2 An Exemplary RISC Processor with Pipelining
« Instructions are fixed-length (commonly 32 bits).
This simplifies fetch and decode operations (advantage in pipelining).
* Most instructions are register-to-register. Only for load and store operations
memory-to-register and register-to-memory instructions are necessary.
+ There are few addressing modes.
+ Some exemplary instructions:

- ADD Rs1,Rs2,Rd Rd ~ Rs1 + Rs2
ADD R3, R4, R12 R12 —« R3+ R4

« ADD Rs,S2,Rd Rd — Rs+ S2 (S2: immediate data)
ADD R1, #$1A, R2 R2 - R1+ $1A

« LDL S2(Rs),Rd Rd ~M|Rs + S2] Load long (32 bits)
LDL $500(R4), R5 R5 — M[R4 + $500]

« STL S2(Rs), Rm M[Rs + S2] — Rm Store long (32 bits)
STL $504(R6), R7 M[R6 + $504] — R7

- BRU Y PC-PC+Y Unconditional branch
BRU $0A PC~PC + $0A Branch relative (Y: Offset)

* Bcc Y If (cc) then PC ~PC + Y Conditional branch
BGT $0A If greater, then PC — PC + $0A

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 292
hito:// www.buzluca.info .

1

Computer Architecture

Instruction Formats of the Exemplary RISC Processor
+ Three different instruction types:

1. Register mode

Bit number
ADD Rs1, Rs2, Rd Rd — Rs1+ Rs2
31 2625 2120 16 1514 54 0°
Opcode | Rd | Rst|0| Notused | Rs2 |
. A 6 5 <___\5 T\\!‘\ 10 _,,}5 <--m--- Lengfh
Fixed-length: Easy to decode 32reg|sTers
2. Immediate mode
« ADD Rs, S2, Rd Rd ~ Rs + S2 (S2: immediate data)
« LDL S2(Rs), Rd Rd ~M|[Rs + S2] Load long (32 bits)
31 2625 2120 16 1514 0
| Opcode ‘ Rd | Rs ‘1 ‘ S2 o~ ‘
6 5 5 1 15 ™

Immediate data

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 203
hito:// www.buzluca.info .

Computer Architecture

Instruction Formats of the Exemplary RISC Processor (cont'd)

3. Relative
- BRU Y PC-PC+Y Unconditional branch
* Bcc Y If (cc) then PC~PC + Y Conditional branch
31 2625 2120 0
Opcode |1CC | Y w,
6 5 21 :
Condition Signed offset

CC = 0: BRU (unconditional)

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 204
hito:// www.buzluca.info .

12

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

A Basic RISC Processor

Instruction | Instruction Data
memory (OpCode, Rs1, Rs2, Rd, Offset/Immediate) memory
O] > Din Dout
Addr Addr R/W|
N
| Actually Register
! the N
instr. ! RD ALU
Llength | RB Flags (C, Z, V, N) R_Sel
N 4 WE Ra Rb Rd @
| bytes
: Rs1, Rs2, Rd _
—— (Control Logic
1 OPCode OPCode
Offset / Immediate
IP_CI CL: Control Logic
Next Instruction Address A digital circuit that
0 Branch? decodes the
1} Branch Address instructions and
generates the control
PC_Select signals.
http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 205
hito:// www buzluca info .

Computer Architecture

Pipelined RISC Alternatives

There are different ways of designing pipelined RISC processors.
For example;
* ARM7 has 3 stages

IF: Instruction fetch;

DR: Decode and read registers;

EX: ALU Operation; access memory (if necessary), write the result to the
registers

+ MIPS R3000 has 5 stages
+ MIPS R4000 has 8 stages (superpipelined)
* ARM Cortex-A8 has 13 stages.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 296
hito:// www buzluca info .

13

Computer Architecture

An Exemplary 5-Stage RISC Pipeline
In this course, to explain the concepts, we will use an exemplary five-stage RISC
load-store architecture :
1. Instruction fetch (IF):

Get instruction from memory, increment PC (depending on the instruction
length).

If instruction length is 4 bytes, PC — PC + 4.
2. Instruction Decode, Read registers (DR)
Translate opcode into control signals and read registers (operands).
3. Execute (EX)
Perform ALU operation, compute jump/branch targets.
4. Memory (ME)
Access memory if needed (only load/store instructions).
5. Write back (WB)
Update register file (write results).

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013 - 2021 Feza BUZLUCA 207
htto:// www buzluca info .
Computer Architecture A 5-Stage RISC Pipeline

Instruction Fetch (IF) Decode, Read (DR) Execute (EX) Memory (ME) Write

Instruction Data (B\;\/c;)
memory i : ;| memory | -
N] _'> Din Dout]
Addr Addr rR/W|
N
Cacruily | RegeTer |
v aif File A
i the 1
instr. RD
i length RB |- D_Se|
Lis 4 '
| bytes. | WE Ra ?\b r}rd @
5 | T
1
[pc] ||
0] Branch?\
1
PC_Select TF/DR Register DR/EX Register X7\ i E,

http://akademi.itu.edu.tr/en/buzluca/
hito:// www.buzluca.info

@ 2013 - 2021 Fez

14

Computer Architecture

Stage 1: Instruction Fetch (IF)

Instruction | Instruction
memory |(OpCode, Rs1, Rs2, Rd, Offset,
D

Addr

Actually + 4,
{if the instr.

{ lengthis 4

; by'res

L STt DR

Instruction

Next Instruction.._
Address

PC+1

PC_Select IF/DR Register

http://akademi.itu.edu.tr/en/buzluca/
hito:// www.buzluca.info

Immedlate)

Current PC points to the instruction in
the instruction memory.

Fetch instruction from the instruction
memory.

Increment the PC (PC_Select=0,
assume no branches for now).

Write the instruction bits (op code,
Rs1, Rs2, Rd, offset/immediate) to the
pipeline register (IF/DR).

Write PC+1 to the pipeline register
(for calculating the branch address in
other stages).

In case of branch, PC_Select=1, branch

target address is written to PC.

@ G)@@I 2013 - 2021 Feza BUZLUCA 2.29

Computer Architecture

 registers is a !
part (the task) | e

f Wr'|1'mg to [\ RESLIHS / Data

'->|WE ;

--> Rd i Register
' File

1
i
I

Ra Rb

of the 5. stage |

L-->RD

RA

RB

Stage 2: Instruction Decode and Register Read (DR)

* Read the msTruc’rlon

register (IF/DR).

B

« Decode instruction,
generate control

Rs1, Rs2, Rd

OPCode

offset/imm.

Decoding

Instruction

Control Logic ‘

Source | signals.
“1 register |
numbers :

i+ Read (RA, RB) from
the register file.

off/imm

PC+1

« Write the following
data to the pipeline
register (DR/EX).
o control bits

PC+1

o offset/immediate

o PC+1

http://akademi.itu.edu.tr/en/buzluca/
hito:// www.buzluca.info

Control bits that control all
----- ' IF/DR operational units in the processor

Control

DR/EX Register

< bits from the pipeline !

o contents of RA, RB :

@ 2013 - 2021 Feza BUZLUCA 2.30

15

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Stage 3: Execute (EX)

i+ Read the control bits and data (offset/immediate, RA, RB) from the pipeline
register (DR/EX).

+ Perform the ALU operation.
The ALU also calculates memory addresses for LOAD/STORE instructions.
For example; LDL $500(R4), R5 R5 — M[R4 + $500]
The immediate value $500 is added to the contents of R4 in the ALU.

+ Compute target addresses for the branch instructions

' For example: BGT $0A If greater, then PC — PC + $0A

In this exemplary processor, an additional adder is used for target address

calculation.

i » Decide if the jump/branch should be taken (control bits and flags from the
ALU are used)

« Write the following data to the pipeline register (EX/ME):
o Control bits
o Result of the ALU (D) and flags (F)
o RB for memory store operations (B)
o Branch target address

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.31
hito:// www buzluca info .

Computer Architecture

______ Stage 3: Execute (EX)

< IA\ A_Out o)

ALU| Flags Flags (C, Z, V, N)
0 S

o w

0 B pL
1 ALU
c - 1 Operation
elect R
£ _ +, -, shift, ... I _Io_ _s
S [|fo : Data
o i Relative branch Memory
{ address calculation !

(JS Branch % ;
o Address & [
1
g — |1
: S| ,
S 8 I B h?
' rancne
DR/EX Branch Address EX/ME| O X

To Stage 1< PC_Select i

__ 4

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 232
hito:// www buzluca info .

Computer Architecture

Stage 4: Memory (ME)

!

m Din

Address
Data

memory

R/W CS

D

out

Stage 3: Execute (EX)

— = ==>To Stage 1

Target

Control

EX/ME Register

http://akademi.itu.edu.tr/en/buzluca/
hito:// www.buzluca.info

S
>

Control

Read address (result

of the ALU) D from
the pipeline register
(EX/ME).

Read data B (for
STORE) from the
pipeline register.
Perform memory
load/store if needed.

Write the following

data to the pipeline

register (WE/WB).

o Control bits

o Result of memory
operation (M)

o Result of ALU

ME/WB Register

@ G)@@I 2013 - 2021 Feza BUZLUCA 2.33

Computer Architecture

Stage 5: Write B
Io Register File Result/Data

ack (WB)

i* Read result of the ALU (I5) from

the pipeline register (ME/WB).

+ Read the result of the memory
operation (M) from the pipeline
register (ME/WB).

« Select value (D or M) and write to

Send control information (Rd, WE) |

* Write to register file.
+ Stage 2 reads the register file,

part (the task) of the 5.
| stage (WB).
i (Slide 2.30)

: ‘g s > register file.

: \;i —7 Data_Select .

LS to register file.

P E

LS

P

< ads the
N i stage 5 writes to it.
DS e - -
T !

L0 Destination register Rd
o To|Register File JWE E

: : ° (Write T

P 2 enable) :

: i Q

(RN ' O | me/we Register

http://akademi.itu.edu.tr/en/buzluca/
hito:// www.buzluca.info

@ @ 2013 - 2021 Feza BUZLUCA 2.34
BY NC ND

17

Computer Architecture

Timing diagram for the exemplary RISC pipeline (ideal case):
Ideal Case: No branches, no conflicts

i The first instruction !
e -rcr-lscch ;r)]/scles 112 3|4 |5|6|7|8 i gas b;aesn completed. :
PR BeeRE Sl ----15 cycle !
1| IF | DR| EX| ME|WB : Pipeline is full. i
2 IF | DR| EX | ME| wB
S L ; Just after one cycle, the i
3 IF | DR | EX| ME|WB "% second instruction has |

4 IF [DR | EX [ME|WB| =r=-mtmmmimmmmen!

The first instruction was completed in 5 cycles (k = 5).
After the 5™ cycle, a new instruction is completed in each cycle.

If the number of instructions approaches infinity, the completion time of an
instruction approaches 1 cycle (see slide 2.9 "Speedup").

IF and ME stages try to access the memory at the same time.

To solve the resource conflict problem, separate memories for instruction and
data are used (Harvard architecture).

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 235
hito:// www buzluca info .

Computer Architecture

2.5 Pipeline Hazards (Conflicts) and Solutions
There are three types of hazards
1. Resource Conflict (Structural hazard):
A resource hazard occurs when two (or more) instructions that are already in the
pipeline need the same resource (memory, functional unit).
2. Data Conflict (Hazard)
Data hazards occur when data is used before it is ready.

3. Control Hazards (Branch, Jump, Interrupt):

During the processing of a branch instruction, the next instruction in the memory
that should actually be skipped also enters the pipeline.

Which target instruction should be fetched into the pipeline is unknown, unless
the CPU executes the branch instruction (updating the PC).

Conditional branch problem: Until the actual execution of the instruction that
alters the flag values, the flag values are unknown (greater?, equal?), so it is
impossible to determine if the branch will be taken.

Stalling solves all these conflicts but it reduces the performance of the system.
There are more efficient solutions.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 236
hito:// www buzluca info .

18

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

2.5.1. Resource Conflict (Structural hazard):

A resource hazard occurs when two (or more) instructions that are already in the
pipeline need the same resource (memory, functional unit).

a) Memory conflict: "An operand read to or write from memory cannot be
performed in parallel with an instruction fetch."

Solutions:

+ Instructions must be executed serially rather than in parallel for a portion of
the pipeline (stall). (Performance drops.)

* Harvard architecture: Separate memories for instructions and data.

+ Instruction queue or cache memory: There are times during the execution of
an instruction when main memory is not being accessed. This time could be used
to prefetch the next instruction and write it to a queue (instruction buffer).

b) Functional unit (ALU, FPU) conflict.

Solutions:

 Increasing available functional units and using multiple ALUs.

For example, different ALUs can be used address calculation and data operations.
+ Fully pipelining a functional unit (for example, a floating point unit FPU)

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 237
hito:// www buzluca info .

Computer Architecture

2.5.2. Data Conflict (Hazard):
Data hazards occur when data is used before it is ready.

If the problem is not solved, the program may produce an incorrect result
because of the use of pipelining.

Example:
ADDR1,R2,R3 R3 -~ R1+R2
SUBR3,R4,R5 AR5 — R3-R4 'Result of ADD is

! written to the

Data dependency in the pipeline ~;.registerfile (R3).

Clock cycles ,
Instructions 112 3 4|5 /6

ADD R1,R2,R3 | 1F| pr | EX| ME | WBT
SUB R3,R4,R5 IF | DR |EX |ME [WB

| SUB reads R3 before it has been updated. !
i R3 does not contain the result of the
! previous ADD instruction; it has not been

processed in WB yet.

i
L :

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 238
hito:// www buzluca info .

19

Computer Architecture

2.5.2. Data Conflict (cont'd):

There are three types of data hazards:

* Read after write (RAW), or true dependency: An instruction modifies a
register or memory location, and a succeeding instruction reads the data in
that memory or register location.

A hazard occurs if the read takes place before the write operation is
complete.

* Write after read (WAR), or antidependency: An instruction reads a
register or memory location, and a succeeding instruction writes to the
location.

A hazard occurs if the write operation completes before the read operation
takes place.

* Write after write (WAW), or output dependency: Two instructions both
write to the same location.

A hazard occurs if the write operations take place in the reverse order of the
intended sequence.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 239
hito:// www buzluca info .

Computer Architecture

Solutions to Data Hazards:
A) Stalling, Hardware interlock (Hardware-based solution):
An additional hardware unit tracks all instructions (control bits) in the pipeline
registers and stops (stalls) the instruction fetch (IF) stage of the pipeline when
a hazard is detected.

The instruction that causes the hazard is delayed (not fetched) until the conflict
is solved.

Example: Clock cycles
Instructions 1]2 3 4|5 |6 |7]|8]9 i First write to R3, |

i then read it. ;
ADD R1,R2,R3 [IF DR [EX |ME |[WB{ |- — L Wite and read |

SUB R3,R4,R5 IF | - - |- |DRYEX|ME w8/ | indifferent clock |
Az i cycles i

! Data conflict is de‘rec‘red i Pipeline is stalled. !
IF/DR Rs1 == DR/EX.Rd i 3-clock-cycles delay

Stallmg the pipeline:

« IF/DR register is disabled (no update).

« Control bits of the NOOP (No Operation) instruction are inserted into the DR stage
 The PC is not updated.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.40
hito:// www buzluca info .

20

Computer Architecture

Solutions to Data Hazards (cont'd):
Fixing the register file access hazard:
The register file can be accessed in the same cycle for reading and writing.

Data can be written in the first half of the cycle (rising edge) and read in the
second half (falling edge).

This method reduces the waiting (stalling) time from 3 cycles to 2 cycles.

Clock cycles
Instructions 1 2 3 4 516 |7 |8 ! !’:lr‘ST write o R3 :
___iinthe first half,
ADD R1,R2,R3 |[TF | DR | EX | ME I\A(B_- ————— == [2272F77 i thenread it in the !
SUB R3,R4,R5 | - | - [ibr4ex|mE|we second half. E
z 1
..................................... » A
! Data conflict is de‘rec‘red b 2z ﬂ e
| IF/DR.Rs1 == DRIEXRd . | Write | | Read |
o uen/buzlucal @G)@@l 2013-2021 FezaBUZLUGA 2.41

Computer Architecture

Solutions to Data Hazards (cont'd):
B) Operand forwarding (Bypassing) (Hardware-based):

An optional direct connection is established between the output of the EX stage
(EX/ME register) and the inputs of the ALU.

A_Select and B_Select are controlled by the hazard detection unit |
t of the pipeline. It selects either the value from the register | ;- oo
i flle or the forwarded result (bypass) as the ALU input. L

id x

P

oL

¥

- < > A_Out a

P

Pa o S Flags

Q.

-3 -

1 8 E ALU

VO Operation

1 I e

P& | E | B_Select +oshift .|

Do =

=L S \ |

L

LV DR/EX Stage 3: Execute (EX) EX/ME
http://akademi.itu.edu.tr/en/buzluca/ @@@@I 2013- 2021 Feza BUZLUGA 2.42
hito:// www.buzluca.info

21

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Operand forwarding (Bypassing) from EX/ME to ALU (cont'd):

If the hazard unit detects that the destination of the previous ALU operation is
the same register as the source of the current ALU operation, the control logic
selects the forwarded result (bypass) as the ALU input, rather than the value
from the register.

Example: Clock cycles

Instructions 1 2 314 5
ADDR1,R2,R3; R3.-R1+R2| IF| DR| EX|ME | WB
SUB R3, R4, R5; R5-R3- R4 IF | DR ‘E;(ME

i Prevuous value (nof valid) of R3is ! ! : The control unn‘ of the pipeline

fe‘rched i
i Th:s invalid value will not be used | : ALU operation (bypass) as the
i m the EX cycle. o

If it is possible o solve the register conflict by forwarding, it is not necessary
to stall the pipeline.

The performance does not drop.

i selects the output of the previous !

i input, not the value that has been !
""""""""""""""""""""""""""""" i r'ead in the DR stage (A_Select = 0).

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 243
hito:// www buzluca info .

Computer Architecture

Solution to load-use data hazard using Operand forwarding (Bypassing)

Load-use data hazard:
Load instructions may also cause data hazards. ~ comeemmimmeon
) ' Data from memory is :
Example: wrl‘r‘ren to the i
i r‘eng’rer‘ flle R1.

Load-use data hazard/

Clock cycles
Instructions 112 3 4 5‘“' 6
LDL $500(R4), R1 R7 — MR4 + $500] | IF | DR| EX|ME|WB
ADD R1,R2,R3 R3 -~ R1+R2 IF | DR|EX | ME |WB

ADD reads R1 before it has
! been updated. ;
The value in R1 is not valid. !

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.44
hito:// www buzluca info .

22

Computer Architecture

Operand forwarding (Bypassing) from ME/WB to ALU:

To decrease the waiting time caused by load-use hazard, an optional direct
connection can be established between the output of the ME stage (WE/WB
register) and the inputs of the ALU.

However, one clock cycle delay is still needed.

--

. ! Forwarding (Bypass) ! ! Forwarding (Bypass) !
1o Register From ME/WB o ALU | From EX/ME to ALU |
| e P R I e e ety
€--=== IS -
-
~yOperandSelect s
—>
<C > A _Out =) l > a
m Flags > w Address
ALU Data
S Operation memory Dout—> =
E B_Select +, -, shift, |
= | | > @ —> D, R/W CS
DR/EX EX/ME ME/WB
http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2 45
hito:// www.buzluca.info

Computer Architecture

Load_use data hazard (cont'd):

Solution with forwarding + 1 cycle stalling
Example:

Solution with forwarding (+stalling)

Clock cycles
Instructions 1)2 3 45167

LDL $500(R4),R1 |IF|DR|EX ME|WB
ADD R1,R2, R3 IF| - D)R E>$ ME |wB

i The previous value (not valid) of

i R1 is fetched.

i Thus invalid value will not be used
m the EX cycle.

i The con’rrol umT of the pipeline |
i selec’rs the forwarding path as !
i The input, not the value that
has been read in the DR stage. !

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.46
hito:// www.buzluca.info .

23

Computer Architecture

Solutions to Data Hazards (cont'd):

C) Inserting NOOP (No Operation) instructions (Software-based):
The effect of this solution is similar to stalling the pipeline.

The compiler inserts NOOP instructions between the instructions that cause the
data hazard.

Example:

Clock cycles
Instructions 1 2|3 |4 516 |7 |8

ADD R1,R2,R3) S .
IF | DR| EX | ME <W!_B_ S i First write to R3 |

' by ! i then read it in the !
; The compiler | NooP IF | DR| EX |ME |wal" : second half. i

SUB R3,R4,R5

IF | DR4EX|ME W8

Since NOOP is a machine language instruction of the processor, it is processed in
the pipeline just like other instructions.

The performance drops because of the delay caused by the NOOP instructions.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.47
hito:// www.buzluca.info .
Computer Architecture

Solutions to Data Hazards (cont'd):
D) Optimized Solution (Software-based):

The compiler rearranges the program and moves certain instructions (if possible)
between the instructions that cause the data hazard.

This rearrangement must not change the algorithm or cause new conflicts.
Example:

TL $00(R6), R1 M/[R6 + $00] — R1 {Write to
STL $04(R6), R2 M[R6 + $04] — R2 i R3 in the
C[ZDD R1,R2,R3 R3 - R1+R2 i first half,
SUB R3,R4,R5 AR5 - R3-R4 _--/ireaditin
Clock cycles A the second
Instructions 1] 2 3] 4 5 6, A

ADDR1,R2R3 | IF| DR| EX | ME|WBL™

poicimcoen, STL $00(R6), R IF | DR |EX | ME |WB|~

! Moved by ! .

 The compiler 1 STL $04(R6), R2 IF | DR| EX |ME |wB
SUB R3,R4,R5

IF | DRY EX |ME|WB

The performance is improved.
There is no delay caused by NOOP instructions (or stalling).

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.48
hito:// www.buzluca.info .

24

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

2.5.3. Control Hazards (Branches, Interrupts):

In the exemplary RISC processor, the following operations are performed for the

branch/jump instructions:

+ The target address for the branch (jump) instruction is calculated in the
Execution (EX) stage (slide 2.32).

+ The target address is written to the EX/ME pipeline register.

+ The branch decision is made in the Memory (ME) stage based on the values of
flags that are determined after the execution in the EX stage (slide 2.32).

+ After the EX stage, the result of the decision (PC_Select) and the target
address are sent to Stage 1 (IF).

+ Inthe IF stage, the next instruction the PC points to is fetched first, then the
PC is updated (slide 2.29).

During these operations, the next instructions in sequence (not the target of

branch) are fetched into the pipeline.

However, if the branch is taken, these instructions should be skipped.

In this case, either a hardware unit must empty the pipeline, or compiler-based

solutions (delayed branch) must be applied.

The unnecessary instructions must be stopped before they are processed in the
WB stage because the registers of the CPU are changed in that stage.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.49
hito:// www buzluca info .

Computer Architecture

Conditional Branch Hazards:

Example:
100 SUB R1, R2, R1 R1 « R1-R2
104 BGT $1C. Branch if greater ($108 + $1C = $124 Target address)

108 ADD Bf;R1,R2
10C ADD -R3,R4,R2 | |
110 STL-" $00(R5), R2 | |
114 LOL $0A(R6), R1 i

124 STL $00(R6), R2 Target of BGT

Remember: Bcc conditional branch instructions check the flag values generated
by the last ALU operation.

For example, the BGT instruction (signed comparison) checks the flags N
(Negative), V (Overflow), and Z (Zero).

. Overflow (V Sign (N Zero (Z) | Comparison
After the operation X (not impért;nt) Possthivfa ()0) YES ((1)) X=B
R=A-B . ' NO (0) Positive (0) | NO (0) A>B
the table on the right is NO (0) Negative (1) [NO (0) A<B
u;ed to compare the YES (1) Positive (0) | NO (0) A<B
signed integers. (0) A>B

YES (1 Negative (1) | NO
http://akademi.itu.edu.tr/en/buzluca/ @ @@@ 2013- 2021 Feza BUZLUGA 250
hito:// www buzluca info .

25

Computer Architecture

Conditional Branch Hazards (cont'd):
Example (conT d): If the br‘anch is taken

' The target address ($108 + $1C = $124) e

' has been calculated in EX and writtento | | The branch decision | The-rarge'raddressus
 The EX/ME r‘egls'rer‘ . = P ,',S made (After E>,(,) | sent from the EX/ME |
e L,Iﬂ‘_‘_e__jrhfe_\,t,’,rfﬂ'?_c_h _______ r‘egls‘rer‘ ‘ro IF stage.
Ins‘rr‘uc‘rlons T N
SUB R1,R2, R1 |IF-{bR |EX |ME |WB
BGT $1C IF |DR [EX*|MEWB| -
| These i ADD R1,R1,R2 TF DR [ExmEMeE] | |
| instructions | ADD R3.R4.R2 IF |DRIEX [ME[wE !
i shouldbe o L e '
| skipped. | STL $00(RS).R2 | | 4 TF-|DR [EX MEWS |
“Ta‘rget: STL $00(R6), R2 | el IF |DR|EX|MEWB
| The pipeline must be stalied i
i (emptied by hardware), or a I:::: dlf) fugﬁgffg at i TheBéc?ge‘r mer‘udc‘rlon
: compiler-based solution must be /| {of BGTis fefche

| applied. i i PC $124 (Target)

In the case of a stall, the branch penal'ry is 3 cycles for this exemplary CPU.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 251
hito:// www.buzluca.info .

Computer Architecture

Conditional Branch Hazards (cont'd): . . S
Example (cont'd): If the branch is NOT taken | The target address is |

: i sent from the EX/ME |
| The target address ($108 + $1 C- $124) |, E register to IF stage. :
has been calculated in EX and writtento | | The branch decrsron ’

: i This address is not
| the EX/ME register. | | is made (After EX). | co4 because branch |
""" - T "NO branch" - :

: {is NOT taken. ;
Ins‘rr‘uc‘rlons < S ;

SUB R1,R2,R1 [IF|DR]EX ME\ wB
BGT $1C IF |DR [EX*[MEWB| -
ADD R1, R1, R2 IF DR [EX|ME[WB
ADD R3, R4, R2 IF |DR{EX |ME/WB
STL $00(R5), R2 TE-| DR| EX|ME/WB
LDL $0A(R6), R1 7] |IF |DR|EX|MEwB

| The PC is up_&a‘red aftthe | . I ;
! end of the IF. i i Nextinstruction in

| PC— PC+1 (Next instruction) | | Sequence.

i Not the target address of

; the branch.

If the branch is not taken, there is no branch penah‘y.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 252
hito:// www.buzluca.info .

26

Computer Architecture

Reducing the branch penalty:
Conditional branch:

The Execute (EX) stage is modified. Execute (EX) stage
Branch target address ,\
calculation and decision < A YA Out a
operations are performed in
the EX stage, and results o ALU[Flags = N
are sent directly fo the IF R
stage. 1
In the case of a stall, we £
will have 2 cycles (instead | E |— =~ L—— o
of 3) of branch penalty, if | 5 | Relative branch
The bf‘anCh iS Taken (S“de addr‘ess Calcula*hon
254). L |t
The decision operation will S {* Teraer 1 Branch?
increase the delay of the a >
EX stage Target | i
’ Address 1 .
1 i
To Stage 1 (IF) © o PCSelect |
o uen/buzlucal @G)@@l 2013-2021 FezaBUZLUCA 2.53

Computer Architecture

Reducing the branch penalty (cont'd):
Conditional branch (cont'd) : If branch is taken

; The TGY‘QCT addr‘ess ($1 08 + $1 C $1 24) has E The Tar‘gef address is

Example: | been calculated. sen'r to the IF stage.
The branch decrsron has been made (In EX). |

Instructions ‘ T

SUB R1,R2,R1 |IF |DR.[EX |ME WB| -

BGT $1C IF [DR'/EX ME WB
| These instructions {ADD R1, R1, R2 [TF [DRI [EX|ME [WB
| should be skipped: [ADD R3, R4, R2 | |TF/BR|EX[MEMWS

Target STL $00(R6), R2..|—1 | |~ |IF{DR [EXMEWB

i'-'—l:ﬁe-ialpelme musT be sTalled { | ThePC is upda‘red at --i:ﬁe-'-rar‘gef instruction
i (emptied by hardware), or a ‘rhe end of the IF. | of BGT is fetched.
i compiler-based solution must be {PC . $124 (Target) -
i applied. P :

In the case of a stall, The branch penalty is 2 cycles for this exemplary pipeline.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 254
hito:// www.buzluca.info .

27

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Reducing the branch penalty (cont'd):
Unconditional branch:
Because the flag values are not needed, the branch target address calculation can

be moved into the DR stage. Stage 2: Instruction Decode and
Register Read (DR)

After this improvement,
the br‘c_m_ch penalty for the Register > <
unconditional branch File
instruction BRU is 1 cycle. o
<
o
= Control Logic
[S] .
£ £
H | Offset/imm. 5

PC+1
21T
S
e

- _"‘_Igl
<
S

PC+1

To SL(_]ge 1(IF) 1

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 255
hito:// www buzluca info .

Computer Architecture

Reducing the branch penalty (cont'd):
Unconditional branch (cont'd) :

Example: - - - - o
The target address ($108 + $1C = $124) has | The target address is
i been calc_gla‘red. _____ : sent ‘ro__'rhe IF stage.
Instructions S L .
SUB R1,R2,R1 |IF'|DR |[EX |ME (WB}~
BRU $1C IF [DR [EX.ME WB
| Should be skipped. ADD R1, R1, R2 {IFy[BR [EX [ME [WB |
“Target: STL $00(R6),R2_|—| | /|IF <PR [EX [MEWB
| The pipeline must be stalled The PC is updated at ' The Tar;qef instruction
| (emptied by hardware), or a ;| The end of the IF. | | of BRU is fetched.
| compiler-based solutionmust be | { PC— $124 (Target) "7~ -
! applied. :

For the unconditional branch instruction, the branch penalty is 1 cycle after
moving the address calculation operation to the DR stage.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 256
hito:// www buzluca info .

28

Computer Architecture

Solutions to Control (Branch) Hazards:
A) Stalling/flushing (hardware-based):

A hardware unit detects the hazards and stalls the pipeline until the target
instruction is fetched.

Stalling can be applied to both unconditional and conditional branch hazards.

Example: Unconditional branch, target address calculation is in DR

{:BRU (hClZCEf:‘d) is de‘feé:fed- ' The target address is | ' The target address is

! calculated. i | sent to the IF stage.
Instructions-—.__ T
SUB R1,R2, R1 IIF.[DR [EX [ME [WBL~
BRU $1C IF [DR [EX-ME WB
[ADD RURLRZ]| | JTRl- |- [- |- |
Target: STL $00(R6), R2-{" | / |TF <PR |EX [ME |wB

E__This instruction is-rer;_oved from _ :
i the pipeline. { | theendof the IF. | .of BRU s fetched.
P = cremm e | PC— $124 (Target)) "

The PC is updated at { The ‘rar‘ge‘;ins‘rr‘uc‘rioﬁni

http://akademi.itu.edu.tr/en/buzluca/ o @ @@@I 2013- 2021 Feza BUZLUGA 257
hito:// www.buzluca.info .
Computer Architecture

Solutions to Control (Branch) Hazards (cont'd):

B) Inserting NOOP (No Operation) instructions (Software-based):
The compiler inserts NOOP instructions after the branch instruction.
The effect of this solution is similar to stalling the pipeline.

Example: Unconditional branch, address calculation is in DR stage

i The target address 205 been calculated. | The Tar‘ét-a‘r address is |
i sent to the IF stage.

Instructions

SUB R, R2, R1 |IF DR |EX |ME WB[
BRU $1C IF |DR |EX-ME WB
raciedby s i NOOP TRy D8 EX| nE WS
Target: STL $00(R6), R2 {7 |IF <R [EX ME|wWB
i-zl'he PCis u-F-)da'red at The Tar‘gef‘ instruction
i the end of the IF. i i of BRU is fetched. :
{PC - Target P -
o en/buzlucal @G)@@l 2013-2021 FezaBUZLUCA 2.58

29

Computer Architecture

B) Inserting NOOP (No Operation) instructions (cont'd):
The number of NOOP instructions that need to be inserted depend on the
number of stall cycles required.

Example: Conditional branch;
address calculation and branch decisions are in EX (slide 2.53).

In this case, 2 stall cycles are necessary. Therefore, 2 NOOPs are inserted.

| The target address ($108 + $1C = $124) has | The target address is
| been calculated. § | sent to the IF stage.
The br‘anch decusuon has been made (InEX).

Instructions

SUB R1,R2, Ri IF‘ BRJEX [ME [we| -
BGT $1C IF |DR EX ME w8
| Inserted by the {NOOP IF [DR1 EX ME [WB
_compiler. ____INOOP IFgDR [EX ME B
Target: STL $00(R6), R2 17 |IF DR [EX ME wB

The PCis updated at the end The ‘rar‘ge'r instruction
i of theIF. PC - Target ; ! of BGT is fe’rche_gi

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 259

hito:// www.buzluca.info

Computer Architecture
Solutions to Control (Branch) Hazards (cont'd):
C) Optimized Solution (Software-based):

The compiler rearranges the program and moves certain instructions (if possible)
to immediately after the branch instruction.

This rearrangement must not change the algorithm or cause new conflicts.
Example: Unconditional branch, address calculation is in DR stage

SUB R1,R2,R1

BRU $1C - The target address | '?HZ%H&;Q?&E&%EEQI?'
ADD R3,R4,R2 has been calcula‘red | sent to ‘rhe IF stage. !
STL $00(R6), R2 Instructions -
___________________________ BRU $1C IF | BRLEX|ME WB
[Moved by the compiler. |, SUB_R1,R2,R1| | TFy| DR| EX|ME/WB
_________ _Target: STL $00(R6), R2| |~ |IF ‘DB EX [ME wB
{ This instruction is fetched - A e
i before the branch instruction | i The PCis updated at The 'rar‘ge‘r instruction |
i updates the PC. | i the end of the IF. 5 ! of BRU is fetched. i
| The program is not changed. | | PC - Target P

If the optimized solution is possible, there is no branch penalty.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.60
hito:// www.buzluca.info .

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

C) Optimized Solution (cont'd):
The number of instructions to be moved depends on the number of necessary
stall cycles.
This rearrangement must not change the algorithm or cause new conflicts.

Example: Conditional branch, address calculation and branch decisions are in EX.

In this case 2 stall cycles are necessary. Therefore, 2 instructions must be
moved after the branch instruction.

{0F8 LDL $00(R5),R7 ;= _

"7 because it alters the
104 BGT $1C i condition bits

108 ADD R1,R1,R2 ‘- -
10C ADD R3,R4,R2
110 STL $00(R5), R2
114 LDL $0A(R6), R1

can be moved to
immediately after the
branch instruction

i This insTrucTioﬁ cannot |
. . OFC ADD RO, R7, R7 ; :
These 2 instructions <1 00 SUB R1 R2. R{ <---- be moved after BGT,

124 ST $00(R6), R2

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 261
hito:// www buzluca info .

Computer Architecture

Important points about changing the order of the instructions:

+ Aninstruction from before the branch can be placed immediately after the
branch.
- The branch (condition or address) must not depend on the moved instruction.

- This method (if possible) always improves the performance (compared to
inserting NOOP).

- Especially for conditional branches, this procedure must be applied carefully.

If the condition that is tested for the branch is altered by the immediately
preceding instruction, then the complier cannot move this instruction to after
the branch.

Other possibilities:
The compiler can select instructions o move

* From branch target
- Must be OK to execute moved instruction even if the branch is not taken
- Improves performance when branch is taken

* From fall through (else)
- Must be OK to execute moved instruction even if the branch is taken
- Improves performance when branch is not taken

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 262
hito:// www buzluca info .

31

Computer Architecture

Solutions to Control (Branch) Hazards (cont'd):
D) Branch Prediction:

Remember: The existence of branch/jump instructions in the program causes two
main problems:
1. The CPU does not know the target instruction to fetch into the pipeline until
it calculates the target address of the branch instruction.
PC ~ PC + offset
Later stages of the pipeline (not IF stage) carry out this calculation. Options:
a) If address calculation is in EX and result is sent from EX/ME register to IF
stage (slide 2.32), branch penalty = 3 cycles.
b) If address calculation is in EX and result is directly sent to IF stage (slide
2.53), branch penalty = 2 cycles.

c) If address calculation is in DR and result is directly sent to IF stage (slide
2.55), branch penalty = 1 cycle (valid for unconditional branch/jump
instructions).

To solve this problem, a branch target table (slide 2.66) is used to determine
the target address in advance.

The branch target table is a cache memory in the IF stage that keeps the
addresses of the branch instructions and their farget addresses.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 263
hito:// www buzluca info .

Computer Architecture

Branch/jump instructions in the program cause two main problems (cont'd):

2. Conditional branch problem: Until the previous instruction is actually executed,
it is impossible to determine whether the branch will be taken or not because
the values of the flags are not known.

If the branch is not taken, PC — PC + 4 (1 instruction = 4 bytes for the
exemplary RISC processor)

If the branch is taken, PC —~ PC + offset
a) If the branch decision logic is in ME stage (after EX) (slide 2.32), branch
penalty = 3 cycles.
b) If the branch decision logic is in EX (slide 2.53), branch penalty = 2 cycles.
To solve this problem, prediction mechanisms are used.
When a conditional branch is recognized, a branch prediction mechanism
predicts whether the branch will be taken or not.

According to the prediction, either the next instruction in the memory or the
target instruction of the branch is prefetched.

If the prediction is correct, there is no branch penalty.
In case of misprediction, the pipeline must be stopped and emptied.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 264
hito:// www buzluca info .

32

Computer Architecture

D) Branch Prediction (cont'd):

There are two types of branch prediction mechanisms: static and dynamic.
Static branch prediction strategies:

a) Always predict not taken: Always assumes that the branch will not be taken
and fetches the next instruction in sequence.

b) Always predict taken: Always predicts that the branch will be taken and
fetches the target instruction of the branch.

To determine the target of the branch in advance (without calculation), the
branch target table is used (slide 2.66).

Studies analyzing program behavior have shown that conditional branches are
taken more than 50% of the time.

Therefore, always prefetching from the branch target address should give better
performance than always prefetching from the sequential path.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 265
hito:// www buzluca info .

Computer Architecture

Branch target table (BTT): Target Instruction prefetch
"Always predict taken" strategy: Always fetches target instruction of the branch.

However, the CPU does not know the target instruction to fetch into the pipeline
until it calculates the target address of the branch instruction.

To determine the target of the branch in advance, the branch target table
(BTT) is used.

In the branch target table, addresses of recent branch instructions and their
target addresses (where they jump) are kept in a cache memory (Chapter 6).

The BTT makes it possible for the target instruction to be prefetched in the
1. stage (IF) without calculating the branch target address.

There is a separate row for each branch instruction that has recently run.
The number of recent branch instructions stored is limited by the size of the table

When a branch instruction runs for the first time, its target address is calculated
and written into the BTT.
Branch instruction addr. Target address Example:

$A000 $B000

One row for
each branch _
instruction that
has recently run.

[S

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 266
hito:// www buzluca info .

33

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

D) Branch Prediction (cont'd):
Dynamic branch prediction strategies:

Dynamic branch strategies record the history of all conditional branch
instructions in the active program to predict whether the condition will be true
or not.

One or more prediction bits (or counters) are associated with each conditional
branch instruction in a program that reflect the recent history of the
instruction.

These prediction bits are kept in a branch history table - BHT (slide 2.69)
and they provide information about the branch history of the instruction
(branch was taken or not in previous runs).

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 267
hito:// www buzluca info .

Computer Architecture

1-bit dynamic prediction scheme:

For each conditional branch instruction (i), a single individual prediction bit (p;) is
stored in the branch history table (BHT).

The prediction bit p;records only whether the last execution of this instruction (i)
resulted in a branch or not.

If the branch was taken last time, the system predicts that the branch will be
taken next time.

Algorithm:
Fetch the i" conditional branch instruction
If (p;= 0) then predict not to take the branch, fetch the next instruction in sequence
If (p;= 1) then predict to take the branch, prefetch the target instruction of the branch
If the branch is really taken, then p; —1
If the branch is not really taken, then p; <0
The initial value of p; is determined depending on the case in the first run of the
conditional branch instruction.
In the first run, the target address is calculated and stored in the BHT.

During the calculation of the target address, next instructions in sequence (hot the
target of branch) are fetched into the pipeline. In case of a branch, there will be a
branch penalty.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 268
hito:// www buzluca info .

34

Computer Architecture

Branch target buffer and branch history table (BHT):

Prediction bits are kept in a high-speed memory location called the branch history
table (BHT).

For each recent branch instruction in the current program, the BHT stores the
address of the instruction, the target address, and the state (prediction) bits.
Each time a conditional branch instruction is executed the associated prediction
bits are updated according to whether the branch is taken or not.

These prediction bits direct the pipeline control unit to make the decision the
next time the branch instruction is encountered.

If the prediction is that "the branch will be taken", with the help of the target
buffer, the target instruction of the branch can be prefetched without calculating

the branch address. State

Branch instructionaddr. Target address (prediction) bits
Recent :
conditional ! BHT:
branch Branch history
instructions in: table
the current |
program !
http://akademi.itu.edu.tr/en/buzluca/ @ @é@l 2013- 2021 Feza BUZLUGA 2.69
hito:// www.buzluca.info

Computer Architecture

Example: 1-bit dynamic prediction scheme and loops:
Prediction mechanisms are advantageous if there are loops in the program.
Example:

counter — 100 ; register or memory location
LOOP ; instructions in the loop

Decrement counter ; counter — counter - 1
BNZ LOOP ; Branch if not zero (conditional branch, it has a p bit)
; Next instruction after the loop

A) We assume that in the beginning of the given piece of code, the BNZ instruction
is in the BHT and the value of its p bit is 1 (predict to take the branch

In the first iteration (step) of the loop, the prediction at BNZ will be correct and
the pipeline will prefetch the correct instruction (beginning of the loop).

The p bit (p=1) is not changed until the last iteration of the loop.
In the last iteration of the loop, the p bit is still 1, and the prediction is to take the
branch; however, as the counter is zero, the program will not jump, and it will
instead continue with the next instruction following the branch (misprediction).
The p bit of BNZ is cleared (p — 0) because the branch is not taken in the last step
As a result, in a loop with 100 iterations, there are 99 correct predictions and only
one incorrect prediction.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.70
hito:// www buzluca info .

35

Computer Architecture

Example: 1-bit dynamic prediction scheme and loops (cont'd):
B) If in the beginning of the given piece of code, the BNZ instruction is not in the

BHT, the system cannot make a prediction in the first run.

After the calculation of the target address of the BNZ, the related information is
written into the BHT.

During the calculation of the target address, next instructions in sequence (not
the target of branch) are fetched into the pipeline.

In the first run, the branch is taken, and the program jumps to the beginning of
the loop, so there will be a branch penalty.

The initial value of p becomes 1 (predict that the branch will be taken).

The value of p (p = 1) does not change until the last iteration (step) of the loop.
In the last iteration of the loop, the p bit is still 1, and the prediction is that the
branch will be taken; however, as the counter is zero, the program will not jump,
and it will instead continue with the next instruction following the branch
(misprediction).

The p bit of BNZ is cleared (p ~ 0).

As a result, in a loop with 100 iterations, in the first iteration, a prediction cannot

be made. Then, there are 98 correct predictions and one incorrect prediction. In
total, there are 2 branch penalties.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.71
hito:// www buzluca info .

Computer Architecture

Problem with the 1-bit dynamic prediction scheme:

LOOP_EX
(Nested loops: the same loop is executed many times) T
In nested loops, a one-bit prediction scheme will cause two LOOP
mispredictions for the inner loop:
- one in the first iteration, and
- BNZ LOOP
* onhe on exiting o
BNZ LOOP_EX

Remember: in the previous example, after exiting the loop, the p bit of the inner
BNZ LOOP was O ("don't take the branch") (p=0) .

Now, if the same loop runs again (2nd run), in the first iteration (step), the
prediction about the BNZ will be "not to take the branch" (p=0).

However, the program will jump to the beginning of the loop (first misprediction).
Now, the p bit will be 1 because branch is taken (p ~ 1).
Until the last iteration of the loop, predictions will be correct.

In the last iteration of the loop, there will be a misprediction as in the previous
example (second misprediction).

Hence, misprediction will occur twice for each full iteration of the inner loop.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 272
hito:// www buzluca info .

36

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

2-bit Branch prediction scheme:
Two prediction bits are associated with each conditional branch instruction.
+ If the instruction is in states 11 or 10, the scheme predicts that the branch will
be taken.
+ If the instruction is in states 00 or 01, the scheme predicts that the branch
will not be taken.

~ Taken Predict Not taken Predict
Wha‘rJreally _7taken) (taken
' hapensat | oou 10
run-time Taken
' Preduc‘rlon Not taken
i | of the
i machine
""""""""""" Predict Not taken Predict
not not
taken taken Not taken
01 Taken 00

In this scheme, the prediction changes only if it misses twice.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 273
hito:// www.buzluca.info .

Computer Architecture

Example: 2-bit Branch prediction

T Branch is Taken e ,

: | From "Take" : i From "Not take"

N Br‘anch is Not Tal_(_e_v_'l__‘: LTo"NoT’rake" ' o "Take" i
\4 //,’ \\\&
State: 11 11 10 M 10 00 00 01 00 o1 1

Prediction: T T T T T N N N N N T
Actual: TV NO_ TV NO NO NvV TO NV TO TO TV
A R, A RS

Thebr‘anchls 4 The branch £ gf'gfep;g;‘de'gns 2 mlspredlchons
actudlly taken | | | isactually S pxtarechan 9es | State changes
j actually Taken . o ! not taken
oo e | Prediction was
i Prediction was ! hot correct
jcorrecty i ' Misprediction: [
http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 274
hito:// www.buzluca.info .

37

Computer Architecture

Saturating counter: Another 2-bit Branch prediction strategy
There are different ways of implementing the finite state machine for branch
prediction strategies.
A Saturating counter is one of these alternatives.
+ If the instruction is in states 11 or 10, the scheme predicts that the branch
will be taken.
» If the instruction is in states 00 or 01, the scheme predicts that the branch
will not be taken.

Not taken Not taken Not taken

Predict
taken
10

Predict
taken
11

Taken _/

Taken Taken Taken

In this scheme, the prediction is changed only if it misses twice after one
correct prediction.

Not taken

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.75
hito:// www buzluca info .

Computer Architecture

Problem: Example:
A CPU has an instruction pipeline, where hardware-based mechanisms are used

to solve branch hazards.
This CPU runs the given piece of code below, which includes two nested loops.

Counter1 —~ 10
_____ > LOOP1 ; Any instruction

' ,-->L00P2 - ; Any instruction

______ ; Any instruction
Counter2 — Counter2 - 1

b BNZ LOOP2 ; Branch if not zero
______ ; Instruction after loop2
Counter1 — Counter1 - 1

LR R BNZ LOOP1 ; Branch if not zero
______ ; Instruction after loop1

For each branch prediction mechanism, give the number of correct predictions
and mispredictions for the two branch instructions (BNZ) in the given piece of
code.

Briefly explain your results.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 276
hito:// www buzluca info .

38

Computer Architecture

Solution:

a. Static prediction

i) Always predict not taken (For this method, a BTT (branch target table) is
not necessary)

BNZ LOOP1: There is a correct prediction only in the last iteration (exit).
Other predictions are incorrect.
Correct : 1 Incorrect: 9

BNZ LOOP2: There is a correct prediction only in the last iteration (exit).
Other predictions are incorrect.
Correct : 10x1 =10 Incorrect : 10x9 = 90

Total: Correct : 11 Incorrect : 99

This method is not suitable for loops.

http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 277
hito:// www buzluca info .

Computer Architecture

a. Static prediction (cont'd)
ii-1) Always predict taken under the assumption that instructions are in the BTT
BNZ LOOP1: There is a misprediction only in the last iteration (exit).
Other predictions are correct.
Correct: 9 Incorrect: 1
BNZ LOOP2: There is a misprediction only in the last iteration (exit).
Other predictions are correct.
Correct : 10x9 = 90 Incorrect : 10x1 = 10
Total: Correct: 99 Incorrect: 11

ii-2) Always predict taken under the assumption that instr. are NOT in the BTT
BNZ LOOP1: There are mispredictions only in the first and last iterations.
Other predictions are correct.
Correct: 8 Incorrect: 2

BNZ LOOP2: In the first run of the loop, there are mispredictions only in the
first and last iterations; other predictions are correct.
In the 2nd -10th runs, there is a misprediction only in the last
iteration (exit).
Correct : 8+9x9 = 89 Incorrect: 2+9x1 =11

Total: Correct: 97 Incorrect: 13
http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 278
hito:// www buzluca info .

39

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Solution (cont'd):
b. Dynamic prediction with one bit

Note: Different prediction bits are used for each branch instruction (Slides 2.68,
2.69).

i) Assumption: In the beginning, instructions are in the BHT, and initial decision
is to take the branch

BNZ LOOP1: There is a misprediction only in the last iteration (exit). Other
predictions are correct.
Correct: 9 Incorrect: 1

BNZ LOOP2: In the first run of the loop, there is a misprediction only in the
last iteration (exit).

Other predictions are correct.

After the first run, the prediction bit "p" changes to "branch

will not be taken”.

Therefore, in the 2nd-10th runs, there are mispredictions in both
the first and last iterations (Slide 2.71).

Correct: 9 + 9x8 = 81 Incorrect: 1+ 9x2 =19

Total: Correct: 90 Incorrect: 20
http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.79
hito:// www buzluca info .

Computer Architecture

b. Dynamic prediction with one bit (cont'd):

ii) In the beginning instructions are NOT in the BHT, or the initial decision is NOT
to take the branch

BNZ LOOP1: There are mispredictions in the first and last iterations.
Other predictions are correct.
Correct: 8 Incorrect: 2
BNZ LOOP2: There are mispredictions in the first and last iterations.
Other predictions are correct.

Correct: 10x8 = 80 Incorrect: 10x2 =20
Total: Correct: 88 Incorrect: 22
http://akademi.itu.edu.tr/en/buzluca/ @ G)_@@I 2013- 2021 Feza BUZLUGA 2.80
hito:// www buzluca info .

40

Computer Architecture

c. Dynamic prediction with two bits:

i) Assumption: In the beginning, instructions are in the BHT, and the initial
decision is to take the branch, prediction bits are 11.

BNZ LOOP1: There is a misprediction only in the last iteration (exit).
Other predictions are correct.
Correct: 9 Incorrect: 1

BNZ LOOP2: There is a misprediction only in the last iteration (exit).
Other predictions are correct.

Correct: 10x9 = 90 Incorrect: 10x1 =10
Total: Correct: 99 Incorrect: 11
http://akademi.itu.edu.tr/en/buzluca/ @ G)_@@ 2013- 2021 Feza BUZLUGA 2.81
hitp/ www.buzluca info L mmJ i

Computer Architecture

c. Dynamic prediction with two bits (cont'd):
ii) In the beginning, instructions are NOT in the BHT

In the first run of the BNZ instructions, since the target address is unknown,
next instructions in sequence (not the target of the branch) are fetched into
the pipeline.

Hence, there is a misprediction in the first iteration.

After the CPU has decided to branch and the target address has been
calculated, information about the BNZ is stored in the BHT, and prediction bits
are set to 11.

BNZ LOOP1: There are mispredictions in the first and last iterations.
Correct: 8 Incorrect: 2
BNZ LOOP2: In the first run, there are mispredictions in the first and last
iterations.
After the first run the decision is still "branch will be taken”.
Therefore, in the 2nd - 10th runs, there will be a misprediction only
in the last iteration.
Correct: 8 + 9x9 = 89 Incorrect: 2 + 9x1 =11

Total: Correct: 97 Incorrect: 13
http://akademi.itu.edu.tr/en/buzluca/ @ @@@I 2013- 2021 Feza BUZLUGA 2.82
hito:// www buzluca info .

41

