
1

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.1http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

2. The Pipeline

In pipelining, multiple tasks (for example, instructions) are executed in parallel.

To use the pipelining approach efficiently

1. We must have tasks that are repeated many times on different data.

2. Tasks must be divided into small pieces (operations or actions) that can be
performed in parallel.

Example of a pipeline: an automobile assembly line.

The task

• is the construction of a car,

• is repeated many times for different cars,

• consists of some operations, such as attaching the doors, attaching the tires.

Each operation

• has its own station in the pipeline (assembly line).

• is performed in parallel with other operations but on a different car.

e.g., while a worker is attaching the doors of the ith car, another worker is
attaching the tires of the (i+1)st car at the same time.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.2http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Example: An automobile assembly line with three stations

Station 1 Station 2 Station 3

Car 1

Car 2 Car 1

Step = 1

Step = 2

Car 2 Car 1Step = 3 Car 3

Step = 4

Station 1 Station 2 Station 3

Station 1 Station 2 Station 3

Station 1 Station 2 Station 3

At the end of Step = 3 the Car 1 (Task 1) has been completed.

Car 1 is ready.

Car 3 Car 2Car 4

Station 1 Station 2 Station 3

After Step = 3 (the pipeline is full), at each step, a new car (task) is completed.

Car 2 is ready.

2

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.3http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

2.1 The general structure of a pipeline:

Clock

Processing
Unit 1 R1

Processing
Unit 2 R2

Processing
Unit k Rk....Data Result

1. Stage
(Segment, layer)

2. Stage k. Stage

• Each processing unit performs a fixed operation.

• In each clock cycle, the operation is performed on different data (task).
(Refer to Digital Circuits Lecture notes, Section 6 for information about clock signal.)

• Registers (R1, R2, …, Rk) keep the intermediate results.

• All stages are controlled by a common clock signal and operate synchronously.

• New inputs are accepted at one end, before previously accepted inputs appear
as outputs at the other end.

• When all stages of the pipeline are full, in each clock cycle, a new result is
produced at the output.

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.4http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Example: The elements of the arrays A, B, and C will be first read from memory,
and then the following operation will be performed: Ai*Bi + Ci i=1,2,3,...

1. Stage (layer,
segment)

Read

2. Stage
Multiplication and read

3. Stage
Addition

Multiplication

R3 R4

Ci

Read memory

R1

Ai

R2

Bi

Clock

Read memoryRead memory

Addition

R5

Result

3

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.5http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Clock cycle 1. Stage (Read) 2. Stage(Multiply) 3.Stage (Add)
R1 R2 R3 R4 R5

1 A1 B1 - - -
2 A2 B2 A1*B1 C1 -
3 A3 B3 A2*B2 C2 A1*B1 + C1 (First result)
4 A4 B4 A3*B3 C3 A2*B2 + C2 (2nd result)
5 A5 B5 A4*B4 C4 A3*B3 + C3 (3rd result)

• In this example, the task is decomposed into 3 operations: Reading,
multiplication, and addition.

• We assume that arrays are in separate memory modules, which can be read in
parallel.

• We start to read elements of array C one clock cycle after reading A and B.

Functioning of the pipeline with three stages:

Note:
• Assuming that the time to access the memory is significantly shorter than the

durations of the other operations and the data is always ready to be read,
reading is not treated as a separate operation.

• In this case, the pipeline could be designed with two stages which perform only
arithmetical operations: multiplication and addition.

Example (cont'd):

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.6http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

T1

Clock Cycles (steps)

S
ta

ge
s

6

S4

S3

S2

S1

754321

Time

T2
T1

T3

T2

T1

T6

T5

T4

T3

T6

T5

T4

2.2 Space-Time Diagram of a pipeline with four stages

T4

T3

T2

T1

The 1st task (T1) is completed in 4
clock cycles (number of stages k=4).

T5

T4

T3

T2

After the kth cycle, a new task
is completed in each clock cycle.

Space-time diagrams (or timing diagrams) show which task is currently being
processed in which stage of the pipeline.

In the exemplary diagram below, clock cycles (steps) are the column labels, stages
are the row labels (Si) , and task numbers (Ti) are the table entries.

Example:
(4 stages)

Four tasks (T4) have been completed in 7 clock cycles.

4

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.7http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Clock Cycles (steps)

T
as

ks

6

T4

T3

T2

S1T1

754321

S2
S1

S3

S2

S1 S4

S3 S4

S4

S3

S2

S1

The 1st task (T1) is completed in 4
clock cycles (number of stages k=4)

S4

S3

S2

After the kth cycle, a new task
is completed in each clock cycle

We could also construct the space-time diagram in an alternative way.

In the diagram below, clock cycles (steps) are the column labels, tasks (Ti) are the
row labels, and stages (Si) are the table entries.

Space-Time Diagram of a pipeline with four stages, cont’d

Four tasks (T4) have been completed in 7 clock cycles.

Time

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.8http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

2.3 Throughput and Speedup provided by the pipeline

Since all stages proceed at the same time, the time (delay) required for the
slowest stage determines the length of the period of the clock signal (cycle time).

The cycle time (the period of the clock) tp can be determined as follows:

tp= max(τi) + dr = τM + dr

tp: cycle time

τi : time delay of the circuitry in the ith stage

τM : maximum stage delay (the slowest stage)

dr : time delay of the register

5

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.9http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

k: number of stages in the pipeline
tp: cycle time
n: number of tasks
tn : time required for a task without pipelining

If we assume tn = k·tp ,
(If it were possible to divide the main task into k equal small operations and
ignore the register delays, the cycle time would be tp = tn / k.)

Smax = k (Theoretical maximum speedup)

If the number of tasks increases significantly : n → ∞,

Speedup:

Speedup:
Execution time without the pipeline

Execution time with the pipeline
S =

Calculation of the total time required for n tasks:

• k cycles required to complete the first task (T1). Time: T(1) = k·tp
• remaining n-1 tasks require (n-1) cycles. Time: (n-1)tp
 Total time required for n tasks: T(n) = (k+n-1)tp

+

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.10http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

To improve the performance of the pipeline, tasks must be divided into small and
balanced operations with equal (or at least similar) durations.

If the durations of the operations are short, then the clock cycle (tp) can be short.

Remember: The slowest stage determines the clock cycle.

Effects of increasing the number of stages of a pipeline:

Advantage:

• If the task can be divided into many small operations, increasing the number of
stages can lower the clock cycle (tp), and consequently the speedup increases.

Smax = k (Theoretical)

Disadvantages:

• The cost of the pipeline increases. At each stage of the pipeline, there is some
overhead (cost, energy, space) because of registers and additional connections.

• The completion time of the first task increases. T(1) = k·tp
• Branch penalties in the instruction pipeline caused by control hazards increase.

We will discuss branch penalties in the section "2.5 Pipeline hazards".

While designing a pipeline, these advantages and disadvantages should be taken
into consideration.

Comments on speedup:

6

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.11http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

If the task can be partitioned into small operations with small durations then a
faster clock signal (shorter cycle time) can be used.

Assume that we have a task T with a total duration of 100 ns.

Assume that we can decompose this task in different ways.

Case A: We partition the task into 2 equal stages.

Effects of task partitioning on the speedup:

T:

S1 = 50ns S2 = 50ns

If the delay of the registers is 5 ns, then the clock cycle is tp = 50+5 = 55 ns

Case B: We partition the task into 3 unbalanced stages.

The clock cycle is tp = 50+5 = 55 ns (slowest stage τM =50ns)

Although the pipeline has more stages, there is no speed improvement compared
to case A, because tp is still 55 ns .

Besides, the cost of the pipeline has increased.

Also, the completion time of the first task has increased. T(1) = k·tp

T:

S1 = 25ns S3 = 50nsS2 = 25ns

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.12http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Case C: We partition the task into three stages with similar durations.

The clock cycle is tp = 40+5 = 45 ns (slowest stage τM = 40ns)

The clock rate (1 / tp) is higher compared to cases A and B.

Conclusion:

Pipelining has advantages if a task can be partitioned into small and balanced
operations.

It is important to decrease the length of the clock cycle (tp).

For example, if we could partition the task into five operations, each having the
duration of 20ns, we would have a clock cycle of 25ns.

T:
S1 = 30ns S3 = 40nsS2 = 30ns

Effects of task partitioning on the speedup: (cont'd)

7

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.13http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

2.4 Instruction Pipeline (Instruction-Level Parallelism)

During the execution of each instruction the CPU repeats some operations.

The processing required for a single instruction is called an instruction cycle.

An instruction cycle is generally composed of these stages: instruction fetch and
decoding, operand fetch, execution, interrupt. (See the figure on 1.18)

The simplest instruction pipeline can be constructed with two stages:

1) Fetch and decode instruction 2) Fetch operands and execute instruction

When the main memory is not being accessed during the execution of an
instruction, this time can be used to fetch the next instruction in parallel with
the execution of the current one.

Example:

The potential overlap among instructions is called instruction-level parallelism.

Remember: To gain more speedup, the pipeline must have more stages with short
durations.

Fetch, decode Operand, exec.
Fetch, decode Operand, exec.

Fetch, decode Operand, exec.

Instr. 1

Instr. 2

Instr. 3

Cycle: 1 2 3 4

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.14http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Instruction Pipeline (cont’d)

The instruction cycle can be decomposed into 6 operations to gain more speedup:
1. Fetch instruction (FI): Read the next expected instruction into a buffer.
2. Decode instruction (DI): Determine the opcode and the operand specifiers.
3. Calculate addresses of operands (CO): Calculate the effective address.
4. Fetch operands (FO): Fetch each operand from memory.
5. Execute instruction (EI): Perform the indicated operation.
6. Write operand (WO): Store the result in memory.

Such fine-grained decomposition may not significantly increase the performance
because of the following problems :
• The various stages will be of different durations (unbalanced).
• Some instructions do not need all stages.
• Different segments may need the same resources (e.g., memory) at the same

time.

Therefore, some operations can be combined into the same stage so that a pipeline
with fewer (for example 4 or 5), balanced stages is constructed.
For example, the 80486 had 5 stages.

There are also processors that include instruction pipelines with more stages.
For example, Pentium 4 family processors have a pipeline with 20 stages. In these
processors, internal operations are decomposed into microoperations.

8

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.15http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

2.4.1 An (exemplary) instruction pipeline (with 4 stages)

1. FI (Fetch Instruction): Read the next instruction the PC points to into a
buffer.

2. DA (Decode, Address): Decode instruction, calculate operand addresses

3. FO (Fetch Operand): Read operands (memory/register)

4. EX (Execution): Perform the operation and update the registers (including
the PC in branch/jump instructions)

• In order to perform instruction and operand fetch operations at the same
time, we assume that the processor has separate instruction and data
memories.

• Memory-write operations are ignored in these examples.

• This an exemplary pipelined CPU. More realistic examples are given in section
"2.4.2 An Exemplary RISC Processor with Pipelining".

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.16http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

1

2

3

4

Instructions (Tasks)
Clock cycles

1

FI

2

DA

FI

3

FO

DA

FI

FO

DA

FI

EX

4

FO

EX

EX

5 6 7
The first instruction
has been completed.
4 cycles
The pipeline is full.

DA FO EX

After just one cycle,
the second instruction
has been completed.

A) Ideal Case: No branches, no operand dependencies in the program

Timing diagram for the exemplary instruction pipeline (ideal case):

2.4.1 An (exemplary) instruction pipeline (cont'd)

The first instruction was completed in 4 cycles (k=4).

After the 4th cycle, a new instruction is completed in each cycle.

If the number of instructions approaches infinity, the completion time of an
instruction approaches 1 cycle (slide 2.9 "Speedup").

9

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.17http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

B) Pipeline Hazards (Conflicts)

2.4.1 An (exemplary) instruction pipeline (cont'd)

B.1 Data Conflict (Operand dependency):

The operand of an instruction depends on the result of another instruction

Example :

ADD R1, R2 (R2 ← R1+R2)

SUB R2, R3 (R3 ← R2-R3)

To prevent the program from running incorrectly, a solution mechanism must be
applied.

For example: The pipeline can be stopped (stall), or NOOP (No Operation)
instructions can be inserted.

We will discuss possible solutions in the section "2.5 Pipeline Hazards (Conflicts)
and Solutions".

Instructions
Clock cycles

1

FI

2

DA

FI

3

FO

DA FO

EX

4

EX

5

Previous value (not valid)
of R2 is being fetched.

R2 is updated.

Operand
dependency

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.18http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

B.2 Control Hazards (Branches, Interrupts):

Since a pipeline processes instructions in parallel, during the processing of a
branch instruction, the next instruction in the memory that should be actually
skipped also enters the pipeline.

Here, a solution mechanism is necessary; otherwise, the instruction(s) that should
be skipped according to the program will also be executed.

Example:

1. Instruction_1
2. JUMP Target
3. Instruction_3

:
4. Target Instruction_4

During the processing of the unconditional branch instruction JUMP, Instruction_3
is also fetched into the pipeline.

To prevent the program from running incorrectly, the pipeline must be stopped
(stall) or emptied before Instruction_3 is executed.

Unconditional branch (or jump) instruction (BRA / JUMP)

Next instruction in the memory
According to the program, it should be skipped.

Target of the branch (target instruction)

2.4.1 An (exemplary) instruction pipeline (cont'd)

10

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.19http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Instruction 1

Instruction 2

JUMP

Instruction 3

Target Instr. 4

Instructions
Clock cycles

Steps

2

FI

3

DA

FI

FO

DA

FI

4

FO

EX

-

EX

-

FI DA

5 6 7

The new instruction
after branch operation
(Target of branch)

After decoding, the
type of the instruction
is determined: branch!

The branch address is
fetched (absolute or
relative).

Hazard: This instruction is
fetched unnecessarily.
It must not be executed.
It will (must) be discarded.

Branch penalty!
It is necessary
to stall or empty
the pipeline.

Updating the PC
(program counter)
PC = Target
(Target of branch)

a. Unconditional Branch

After decoding (identification) of the unconditional branch instruction, one
possible solution is to stop the "Fetch Instruction" stage (FI) of the pipeline.

After the execution of the branch instruction, the target address is written to
the program counter (PC), and the pipeline is enabled to fetch new instructions.

1

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.20http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Instruction 1

Conditional bra. 2

Instruction 3

Instructions
Clock cycles

1

FI

2

DA

FI

3

FO

DA

FI

FO

DA

EX

4

FO

EX

EX

5 6

Without considering the condition,
next instruction is fetched.

b. Conditional Branch:

The previous instruction sets
the conditions (flags).

PC is not changed. No branching.

b1. Conditional Branch (if the condition is false):

If the condition is not true, it is not necessary to stop or empty the pipeline
because the execution will continue with the next instruction.

For a conditional branch instruction, there are two cases:

1. condition is false (branch is not taken), 2. condition is true (branch is taken)

Here, the problem is that the previous instruction must be executed to determine
if the condition is true or not (depends on the flags of the CPU).
• If condition is false (branch is not taken), there is no branch penalty.
• If condition is true, a solution mechanism is necessary (next slide).

No need to empty
No branch penalty

The instruction following the
branch is executed.

11

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.21http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

1

Conditional bra. 2

3

4

5

Target 6

Instructions
Clock cycles

1

FI

2

DA

FI

3

FO

DA

FI

FO

DA

FI

EX

4

FO

EX

FI DA

5 6 7

The target
instruction of branch

b2. Conditional Branch (if the condition is true):

DA

FI
The pipeline is
emptied.

Condition is true.
The branch address is
written to PC.
PC = Target
The pipeline must be
emptied.

Branch penalty:
3 clock cycles

The duration of the branch penalty depends on the number and the operations of
the stages in the pipeline.
In this exemplary pipeline, the branch penalty is 3 clock cycles; however, it may
be different in other types of pipelines (2.5.3. Control Hazards).

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.22http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

2.4.2 An Exemplary RISC Processor with Pipelining
• Instructions are fixed-length (commonly 32 bits).

This simplifies fetch and decode operations (advantage in pipelining).
• Most instructions are register-to-register. Only for load and store operations

memory-to-register and register-to-memory instructions are necessary.
• There are few addressing modes.
• Some exemplary instructions:

• ADD Rs1,Rs2,Rd Rd ← Rs1 + Rs2
ADD R3, R4, R12 R12 ← R3 + R4

• ADD Rs,S2,Rd Rd ← Rs + S2 (S2: immediate data)
ADD R1, #$1A, R2 R2 ← R1 + $1A

• LDL S2(Rs),Rd Rd←M[Rs + S2] Load long (32 bits)
LDL $500(R4), R5 R5 ← M[R4 + $500]

• STL S2(Rs), Rm M[Rs + S2] ← Rm Store long (32 bits)
STL $504(R6), R7 M[R6 + $504] ← R7

• BRU Y PC←PC + Y Unconditional branch
BRU $0A PC←PC + $0A Branch relative (Y: Offset)

• Bcc Y If (cc) then PC←PC + Y Conditional branch
BGT $0A If greater, then PC←PC + $0A

12

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.23http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Instruction Formats of the Exemplary RISC Processor

• Three different instruction types:

1. Register mode

ADD Rs1, Rs2, Rd Rd ← Rs1 + Rs2

2. Immediate mode

• ADD Rs, S2, Rd Rd ← Rs + S2 (S2: immediate data)
• LDL S2(Rs), Rd Rd←M[Rs + S2] Load long (32 bits)

Opcode Rd Rs1 0 Not used Rs2

31 26 25 21 20 16 15 14 5 4 0

6 5 5 1 10 5

Opcode Rd Rs 1 S2

31 26 25 21 20 16 15 14 0

6 5 5 1 15

Immediate data

Fixed-length: Easy to decode 32 registers

Bit number

Length

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.24http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Instruction Formats of the Exemplary RISC Processor (cont'd)

3. Relative

• BRU Y PC←PC + Y Unconditional branch
• Bcc Y If (cc) then PC←PC + Y Conditional branch

Opcode CC Y

31 26 25 21 20 0

6 5 21

Signed offset
Condition

CC = 0: BRU (unconditional)

13

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.25http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

PC

Instruction

(OpCode, Rs1, Rs2, Rd, Offset/Immediate)

CL

Branch?

PC_Select

Actually
+ 4, if
the
instr.
length
is 4
bytes.

1
+

Next Instruction Address

+
PC_Rel

Branch Address

D

Addr

Instruction
memory

ALU

Opr

A

B

OPCode

A_Out

Flags (C, Z, V, N)

RA

RB

Register
File

WE Ra Rb Rd

RD

A Basic RISC Processor

Control Logic
Rs1, Rs2, Rd

OPCode

Offset / Immediate

CL

B_Sel

CL

R_Sel
0

1

0

1

0

1

CL

Data
memory

Din
Dout

Addr R/W

CL: Control Logic
A digital circuit that
decodes the
instructions and
generates the control
signals.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.26http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Pipelined RISC Alternatives

There are different ways of designing pipelined RISC processors.

For example;

• ARM7 has 3 stages
IF: Instruction fetch;
DR: Decode and read registers;
EX: ALU Operation; access memory (if necessary), write the result to the
registers

• MIPS R3000 has 5 stages

• MIPS R4000 has 8 stages (superpipelined)

• ARM Cortex-A8 has 13 stages.

14

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.27http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

In this course, to explain the concepts, we will use an exemplary five-stage RISC
load-store architecture :

1. Instruction fetch (IF):

Get instruction from memory, increment PC (depending on the instruction
length).

If instruction length is 4 bytes, PC ← PC + 4.

2. Instruction Decode, Read registers (DR)

Translate opcode into control signals and read registers (operands).

3. Execute (EX)

Perform ALU operation, compute jump/branch targets.

4. Memory (ME)

Access memory if needed (only load/store instructions).

5. Write back (WB)

Update register file (write results).

An Exemplary 5-Stage RISC Pipeline

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.28http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

A 5-Stage RISC Pipeline

PC

CL

Branch ?

PC_Select

Actually
+ 4, if
the
instr.
length
is 4
bytes.

1
+

+
PC_Rel

D

Addr

Instruction
memory

ALU

Opr

A

B

A_Out

Flags

RA

RB

Register
File

WE Ra Rb Rd

RD

Control Logic CL

B_Sel

CL

D_Sel
0

1

0

1

0

1

CL

Data
memory

Din
Dout

Addr R/W

Instruction Fetch (IF) Decode, Read (DR) Execute (EX) Memory (ME) Write
Back
(WB)

IF/DR Register DR/EX Register EX/ME Register ME/WB R.

15

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.29http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

P
C

+
1

In
st

ru
ct

io
n

IF/DR Register

Stage 1: Instruction Fetch (IF)

PC

1
+

Next Instruction
Address

D

Addr

Instruction
memory

0

1

Instruction

(OpCode, Rs1, Rs2, Rd, Offset/Immediate)

PC_Select

Branch Target Address

From other stages

Actually + 4,
if the instr.
length is 4
bytes.

Current PC points to the instruction in
the instruction memory.

• Fetch instruction from the instruction
memory.

• Increment the PC (PC_Select=0,
assume no branches for now).

• Write the instruction bits (op code,
Rs1, Rs2, Rd, offset/immediate) to the
pipeline register (IF/DR).

• Write PC+1 to the pipeline register
(for calculating the branch address in
other stages).

• In case of branch, PC_Select=1, branch
target address is written to PC.

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.30http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Stage 2: Instruction Decode and Register Read (DR)

RA

RB

Register
File

Ra Rb

RD

WE

Rd

Control Logic

Decoding

Rs1, Rs2, Rd

OPCode

P
C

+
1

 I

ns
tr

uc
ti

on

C
o

n
tr

o
l

P

C
+

1

o

ff
/i
m

m
B

 A

offset/imm.

Control bits that control all
operational units in the processor

Result / Data

Destination register From Stage 5 (WB)

S
ta

ge
 1

:
In

st
ru

ct
io

n
F

et
ch

 (
IF

)

• Read the instruction
bits from the pipeline
register (IF/DR).

• Decode instruction,
generate control
signals.

• Read (RA, RB) from
the register file.

• Write the following
data to the pipeline
register (DR/EX).
o control bits
o offset/immediate
o contents of RA, RB
o PC+1

DR/EX RegisterIF/DR

Writing to
registers is a
part (the task)
of the 5. stage
(WB).

Source
register
numbers

16

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.31http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Stage 3: Execute (EX)

• Read the control bits and data (offset/immediate, RA, RB) from the pipeline
register (DR/EX).

• Perform the ALU operation.
The ALU also calculates memory addresses for LOAD/STORE instructions.
For example; LDL $500(R4), R5 R5 ← M[R4 + $500]

The immediate value $500 is added to the contents of R4 in the ALU.

• Compute target addresses for the branch instructions
For example: BGT $0A If greater, then PC←PC + $0A

In this exemplary processor, an additional adder is used for target address
calculation.

• Decide if the jump/branch should be taken (control bits and flags from the
ALU are used)

• Write the following data to the pipeline register (EX/ME):
o Control bits
o Result of the ALU (D) and flags (F)
o RB for memory store operations (B)
o Branch target address

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.32http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Stage 3: Execute (EX)

S
ta

ge
 2

:
In

st
ru

ct
io

n
D

ec
od

e
an

d
 R

eg
is

te
r

R
ea

d
 (

D
R

)

C
o

n
tr

o
l

P

C
+

1

o

ff
/i
m

m
B

A

ALU

Opr

A

B

A_Out

Flags

0

1

B_Select

ALU

Operation

+, -, shift, …

C
o

n
tr

o
l

Ta

rg
e

t

B

F

D

Flags (C, Z, V, N)

Branch?

PC_Select

+

Relative branch
address calculation

Branch
Address

Branch Address

To Stage 1

To
Data
Memory

DR/EX
EX/ME

17

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.33http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Data
memory

Din

Dout

Address

R/W CS

Stage 4: Memory (ME)

S
ta

ge
 3

:
E

x
ec

ut
e

(E
X

)

To Stage 1

• Read address (result
of the ALU) D from
the pipeline register
(EX/ME).

• Read data B (for
STORE) from the
pipeline register.

• Perform memory
load/store if needed.

• Write the following
data to the pipeline
register (ME/WB).
o Control bits
o Result of memory

operation (M)
o Result of ALU

operation (D) (pass)

C
o

n
tr

o
l

Ta

rg
e

t

B

F

D

EX/ME Register

C
o

n
tr

o
l

M

 D

ME/WB Register

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.34http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Stage 5: Write Back (WB)

S
ta

ge
 4

:
M

em
or

y
(M

E
)

C
o

n
tr

o
l

M

 D

Data_Select

To Register File

0

1

Result/Data

To Register File
Destination register Rd

WE

(Write

enable)

• Read result of the ALU (D) from
the pipeline register (ME/WB).

• Read the result of the memory
operation (M) from the pipeline
register (ME/WB).

• Select value (D or M) and write to
register file.

• Send control information (Rd, WE)
to register file.

• Write to register file.

• Stage 2 reads the register file,
stage 5 writes to it.

ME/WB Register

Writing to registers is a
part (the task) of the 5.
stage (WB).
(Slide 2.30)

18

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.35http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

1

2

3

4

Instructions
Clock cycles

1

IF

2

DR

IF

3

EX

DR

IF

EX

DR

ME

4

EX

ME

ME

5 6 7
The first instruction
has been completed.
5 cycles
Pipeline is full.

Just after one cycle, the
second instruction has
been completed.

Ideal Case: No branches, no conflicts

Timing diagram for the exemplary RISC pipeline (ideal case):

The first instruction was completed in 5 cycles (k = 5).

After the 5th cycle, a new instruction is completed in each cycle.

If the number of instructions approaches infinity, the completion time of an
instruction approaches 1 cycle (see slide 2.9 "Speedup").

WB

WB

WB

8

IF DR EX ME WB

IF and ME stages try to access the memory at the same time.

To solve the resource conflict problem, separate memories for instruction and
data are used (Harvard architecture).

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.36http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

2.5 Pipeline Hazards (Conflicts) and Solutions

There are three types of hazards

1. Resource Conflict (Structural hazard):

A resource hazard occurs when two (or more) instructions that are already in the
pipeline need the same resource (memory, functional unit).

2. Data Conflict (Hazard)

Data hazards occur when data is used before it is ready.

3. Control Hazards (Branch, Jump, Interrupt):

During the processing of a branch instruction, the next instruction in the memory
that should actually be skipped also enters the pipeline.

Which target instruction should be fetched into the pipeline is unknown, unless
the CPU executes the branch instruction (updating the PC).

Conditional branch problem: Until the actual execution of the instruction that
alters the flag values, the flag values are unknown (greater?, equal?), so it is
impossible to determine if the branch will be taken.

Stalling solves all these conflicts but it reduces the performance of the system.

There are more efficient solutions.

19

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.37http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

A resource hazard occurs when two (or more) instructions that are already in the
pipeline need the same resource (memory, functional unit).

a) Memory conflict: "An operand read to or write from memory cannot be
performed in parallel with an instruction fetch."

Solutions:

• Instructions must be executed serially rather than in parallel for a portion of
the pipeline (stall). (Performance drops.)

• Harvard architecture: Separate memories for instructions and data.

• Instruction queue or cache memory: There are times during the execution of
an instruction when main memory is not being accessed. This time could be used
to prefetch the next instruction and write it to a queue (instruction buffer).

b) Functional unit (ALU, FPU) conflict.
Solutions:
• Increasing available functional units and using multiple ALUs.
For example, different ALUs can be used address calculation and data operations.
• Fully pipelining a functional unit (for example, a floating point unit FPU)

2.5.1. Resource Conflict (Structural hazard):

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.38http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Data hazards occur when data is used before it is ready.

If the problem is not solved, the program may produce an incorrect result
because of the use of pipelining.

Example:

2.5.2. Data Conflict (Hazard):

ADD R1,R2,R3

SUB R3,R4,R5

1

IF

2

DR

IF

3

EX

DR EX

4 5 6

Data dependency in the pipeline

Clock cycles
Instructions

ME WB

ME WB

ADD R1, R2, R3 R3 ← R1 + R2

SUB R3, R4, R5 R5 ← R3 – R4 Result of ADD is
written to the
register file (R3).

SUB reads R3 before it has been updated.
R3 does not contain the result of the
previous ADD instruction; it has not been
processed in WB yet.

20

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.39http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

There are three types of data hazards:

• Read after write (RAW), or true dependency: An instruction modifies a
register or memory location, and a succeeding instruction reads the data in
that memory or register location.

A hazard occurs if the read takes place before the write operation is
complete.

• Write after read (WAR), or antidependency: An instruction reads a
register or memory location, and a succeeding instruction writes to the
location.

A hazard occurs if the write operation completes before the read operation
takes place.

• Write after write (WAW), or output dependency: Two instructions both
write to the same location.

A hazard occurs if the write operations take place in the reverse order of the
intended sequence.

2.5.2. Data Conflict (cont’d):

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.40http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solutions to Data Hazards:

A) Stalling, Hardware interlock (Hardware-based solution):

An additional hardware unit tracks all instructions (control bits) in the pipeline
registers and stops (stalls) the instruction fetch (IF) stage of the pipeline when
a hazard is detected.

The instruction that causes the hazard is delayed (not fetched) until the conflict
is solved.

Example:

ADD R1,R2,R3

SUB R3,R4,R5

1

IF

2

DR

3

EX

4 5 6
Clock cycles

Instructions

ME WB

First write to R3,
then read it.
Write and read
in different clock
cycles.

IF DR EX ME WB

7 8 9

- - -

Data conflict is detected.
IF/DR.Rs1 == DR/EX.Rd

Pipeline is stalled.
3-clock-cycles delay

Stalling the pipeline:

• IF/DR register is disabled (no update).

• Control bits of the NOOP (No Operation) instruction are inserted into the DR stage.

• The PC is not updated.

21

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.41http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Fixing the register file access hazard:

The register file can be accessed in the same cycle for reading and writing.

Data can be written in the first half of the cycle (rising edge) and read in the
second half (falling edge).

This method reduces the waiting (stalling) time from 3 cycles to 2 cycles.

Solutions to Data Hazards (cont'd):

First write to R3
in the first half,
then read it in the
second half.

Write Read

1

IF

2

DR

3

EX

4 5 6Clock cycles
Instructions

ME WB

IF DR EX ME WB

7 8

- -

ADD R1,R2,R3

SUB R3,R4,R5

Data conflict is detected.
IF/DR.Rs1 == DR/EX.Rd

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.42http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solutions to Data Hazards (cont'd):

B) Operand forwarding (Bypassing) (Hardware-based):

An optional direct connection is established between the output of the EX stage
(EX/ME register) and the inputs of the ALU.

Stage 3: Execute (EX)S
ta

ge
 2

:
D

ec
od

e
R

ea
d
 (

D
R

)

B_Select

ALU

Opr

A

B

A_Out

Flags

ALU

Operation

+, -, shift, …

0

1

A_Select

Forwarding (Bypass)

A_Select and B_Select are controlled by the hazard detection unit
of the pipeline. It selects either the value from the register
file or the forwarded result (bypass) as the ALU input.

o
ff
/i
m

m
B

A

DR/EX

B

 F

 D

EX/ME

22

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.43http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Operand forwarding (Bypassing) from EX/ME to ALU (cont'd):

If the hazard unit detects that the destination of the previous ALU operation is
the same register as the source of the current ALU operation, the control logic
selects the forwarded result (bypass) as the ALU input, rather than the value
from the register.

Example:

ADD R1, R2, R3; R3←R1 + R2

SUB R3, R4, R5; R5←R3 - R4

Instructions
Clock cycles

1

IF

2

DR

IF

3

EX

DR EX

ME

4

ME

5

Previous value (not valid) of R3 is
fetched.
This invalid value will not be used
in the EX cycle.

The control unit of the pipeline
selects the output of the previous
ALU operation (bypass) as the
input, not the value that has been
read in the DR stage (A_Select = 0).

If it is possible to solve the register conflict by forwarding, it is not necessary
to stall the pipeline.

The performance does not drop.

WB

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.44http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solution to load-use data hazard using Operand forwarding (Bypassing)

Load-use data hazard:

Load instructions may also cause data hazards.

Example:

1

IF

2

DR

IF

3

EX

DR EX

4 5 6
Clock cycles

Instructions

ME WB

ME WB

LDL $500(R4), R1 R1 ← M[R4 + $500]

ADD R1, R2, R3 R3 ← R1 + R2

Data from memory is
written to the
register file (R1).

ADD reads R1 before it has
been updated.
The value in R1 is not valid.

Load-use data hazard

23

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.45http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Forwarding (Bypass)
From EX/ME to ALU

Forwarding (Bypass)
From ME/WB to ALU

Operand forwarding (Bypassing) from ME/WB to ALU:

To decrease the waiting time caused by load-use hazard, an optional direct
connection can be established between the output of the ME stage (ME/WB
register) and the inputs of the ALU.

However, one clock cycle delay is still needed.

Data
memory

Din

Dout

Address

R/W CS

M

 D

To Register
File

ME/WB

ALU

Opr

A

B

A_Out

Flags

B_Select

ALU

Operation

+, -, shift, …

B

 F

 D

OperandSelect

EX/ME

o
ff
/i
m

m
B

A

DR/EX

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.46http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solution with forwarding + 1 cycle stalling

Example:

Solution with forwarding (+stalling)

Load_use data hazard (cont'd):

The previous value (not valid) of
R1 is fetched.
This invalid value will not be used
in the EX cycle.

The control unit of the pipeline
selects the forwarding path as
the input, not the value that
has been read in the DR stage.

1

IF

2

DR

IF

3

EX

DR EX

4 5 6
Clock cycles

Instructions

ME WB

ME WB

LDL $500(R4), R1

ADD R1, R2, R3

7

-

24

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.47http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solutions to Data Hazards (cont'd):

C) Inserting NOOP (No Operation) instructions (Software-based):

The effect of this solution is similar to stalling the pipeline.

The compiler inserts NOOP instructions between the instructions that cause the
data hazard.

Example:

ADD R1,R2,R3

NOOP

NOOP

SUB R3,R4,R5

1

IF

2

DR

3

EX

4 5 6Clock cycles
Instructions

ME WB First write to R3
in the first half,
then read it in the
second half.

IF DR EX ME WB

7 8

Inserted by
the compiler

IF DR EX ME WB

IF DR EX ME WB

Since NOOP is a machine language instruction of the processor, it is processed in
the pipeline just like other instructions.

The performance drops because of the delay caused by the NOOP instructions.

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.48http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solutions to Data Hazards (cont'd):
D) Optimized Solution (Software-based):

The compiler rearranges the program and moves certain instructions (if possible)
between the instructions that cause the data hazard.

This rearrangement must not change the algorithm or cause new conflicts.

Example:
STL $00(R6), R1 M[R6 + $00] ← R1
STL $04(R6), R2 M[R6 + $04] ← R2
ADD R1, R2, R3 R3 ← R1 + R2
SUB R3, R4, R5 R5 ← R3 – R4

ADD R1,R2,R3

STL $00(R6), R1

STL $04(R6), R2

SUB R3,R4,R5

1

IF

2

DR

3

EX

4 5 6Clock cycles
Instructions

ME WB

Write to
R3 in the
first half,
read it in
the second
half.

IF DR EX ME WB

7 8

IF DR EX ME WB

IF DR EX ME WB

Moved by
the compiler

The performance is improved.
There is no delay caused by NOOP instructions (or stalling).

25

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.49http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

2.5.3. Control Hazards (Branches, Interrupts):

In the exemplary RISC processor, the following operations are performed for the
branch/jump instructions:

• The target address for the branch (jump) instruction is calculated in the
Execution (EX) stage (slide 2.32).

• The target address is written to the EX/ME pipeline register.

• The branch decision is made in the Memory (ME) stage based on the values of
flags that are determined after the execution in the EX stage (slide 2.32).

• After the EX stage, the result of the decision (PC_Select) and the target
address are sent to Stage 1 (IF).

• In the IF stage, the next instruction the PC points to is fetched first, then the
PC is updated (slide 2.29).

During these operations, the next instructions in sequence (not the target of
branch) are fetched into the pipeline.

However, if the branch is taken, these instructions should be skipped.

In this case, either a hardware unit must empty the pipeline, or compiler-based
solutions (delayed branch) must be applied.

The unnecessary instructions must be stopped before they are processed in the
WB stage because the registers of the CPU are changed in that stage.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.50http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Conditional Branch Hazards:

Example:

100 SUB R1, R2, R1 R1 ← R1 - R2
104 BGT $1C Branch if greater ($108 + $1C = $124 Target address)
108 ADD R1, R1, R2
10C ADD R3, R4, R2
110 STL $00(R5), R2
114 LDL $0A(R6), R1
…
124 STL $00(R6), R2 Target of BGT
--

These instructions should be skipped
if the branch is taken.

Remember: Bcc conditional branch instructions check the flag values generated
by the last ALU operation.

For example, the BGT instruction (signed comparison) checks the flags N
(Negative), V (Overflow), and Z (Zero).

Overflow (V) Sign (N) Zero (Z) Comparison

X (not important) Positive (0) YES (1) A=B

NO (0) Positive (0) NO (0) A>B

NO (0) Negative (1) NO (0) A<B

YES (1) Positive (0) NO (0) A<B

YES (1) Negative (1) NO (0) A>B

After the operation

R = A – B

the table on the right is
used to compare the
signed integers.

26

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.51http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Instructions

SUB R1, R2, R1 IF

BGT $1C

DR EX ME WB

IF DR EX ME WB

ADD R1, R1, R2

ADD R3, R4, R2

IF DR EX ME WB

IF DR EX ME WB

STL $00(R5), R2 IF DR EX ME WB

Target: STL $00(R6), R2 IF DR EX ME WB

The target address ($108 + $1C = $124)
has been calculated in EX and written to
the EX/ME register.

The target address is
sent from the EX/ME
register to IF stage.

Conditional Branch Hazards (cont'd):

Example (cont'd): If the branch is taken

The PC is updated at
the end of the IF.
PC← $124 (Target)

The target instruction
of BGT is fetched.

These
instructions
should be
skipped.

The pipeline must be stalled
(emptied by hardware), or a
compiler-based solution must be
applied.

In the case of a stall, the branch penalty is 3 cycles for this exemplary CPU.

The branch decision
is made (After EX).
"Take the branch"

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.52http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Instructions

SUB R1, R2, R1 IF

BGT $1C

DR EX ME WB

IF DR EX ME WB

ADD R1, R1, R2

ADD R3, R4, R2

IF DR EX ME WB

IF DR EX ME WB

STL $00(R5), R2 IF DR EX ME WB

LDL $0A(R6), R1 IF DR EX ME WB

The target address ($108 + $1C = $124)
has been calculated in EX and written to
the EX/ME register.

The target address is
sent from the EX/ME
register to IF stage.
This address is not
used, because branch
is NOT taken.

Conditional Branch Hazards (cont'd):

Example (cont'd): If the branch is NOT taken

The PC is updated at the
end of the IF.
PC← PC+1 (Next instruction)
Not the target address of
the branch.

Next instruction in
sequence.

If the branch is not taken, there is no branch penalty.

The branch decision
is made (After EX).
"NO branch"

27

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.53http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Reducing the branch penalty:

Branch target address
calculation and decision
operations are performed in
the EX stage, and results
are sent directly to the IF
stage.

In the case of a stall, we
will have 2 cycles (instead
of 3) of branch penalty, if
the branch is taken (slide
2.54).

The decision operation will
increase the delay of the
EX stage.

P
C

+
1

o
ff
/i
m

m
B

 A

B

F

D

ALU

Opr

A

B

A_Out

Flags

0

1

PC_Select

Branch?+

Relative branch
address calculation

Branch
Target

Address

To Stage 1 (IF)

Conditional branch:

The Execute (EX) stage is modified. Execute (EX) stage

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.54http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Reducing the branch penalty (cont'd):

Conditional branch (cont'd) : If branch is taken

Example:

Instructions

SUB R1, R2, R1 IF

BGT $1C

DR EX ME WB

IF DR EX ME WB

ADD R1, R1, R2

ADD R3, R4, R2

IF DR EX ME WB

IF DR EX ME WB

IF DR EX ME WBTarget: STL $00(R6), R2

The target address ($108 + $1C = $124) has
been calculated.
The branch decision has been made (In EX).

The target address is
sent to the IF stage.

The PC is updated at
the end of the IF.
PC← $124 (Target)

The target instruction
of BGT is fetched.

These instructions
should be skipped.

The pipeline must be stalled
(emptied by hardware), or a
compiler-based solution must be
applied.

In the case of a stall, the branch penalty is 2 cycles for this exemplary pipeline.

28

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.55http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Reducing the branch penalty (cont'd):

Unconditional branch:

Because the flag values are not needed, the branch target address calculation can
be moved into the DR stage.

Register
File

Control Logic

Decoding

P
C

+
1

In

st
ru

ct
io

n

P
C

+
1

 o
ff
/i
m

m
B

 A

Offset/imm.

+
Branch Target
Address

To Stage 1 (IF)

Stage 2: Instruction Decode and
Register Read (DR)

After this improvement,
the branch penalty for the
unconditional branch
instruction BRU is 1 cycle.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.56http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Reducing the branch penalty (cont'd):

Unconditional branch (cont'd) :

Example:

Instructions

SUB R1, R2, R1 IF

BRU $1C

DR EX ME WB

IF DR EX ME WB

ADD R1, R1, R2 IF DR EX ME WB

IF DR EX ME WBTarget: STL $00(R6), R2

The target address ($108 + $1C = $124) has
been calculated.

The target address is
sent to the IF stage.

The PC is updated at
the end of the IF.
PC← $124 (Target)

The target instruction
of BRU is fetched.

Should be skipped.

The pipeline must be stalled
(emptied by hardware), or a
compiler-based solution must be
applied.

For the unconditional branch instruction, the branch penalty is 1 cycle after
moving the address calculation operation to the DR stage.

29

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.57http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solutions to Control (Branch) Hazards:
A) Stalling/flushing (hardware-based):

A hardware unit detects the hazards and stalls the pipeline until the target
instruction is fetched.

Stalling can be applied to both unconditional and conditional branch hazards.

Example: Unconditional branch, target address calculation is in DR

Instructions

SUB R1, R2, R1 IF

BRU $1C

DR EX ME WB

IF DR EX ME WB

ADD R1, R1, R2 IF - - - -

IF DR EX ME WBTarget: STL $00(R6), R2

The target address is
calculated.

The target address is
sent to the IF stage.

The PC is updated at
the end of the IF.
PC← $124 (Target)

The target instruction
of BRU is fetched.

BRU (hazard) is detected.

This instruction is removed from
the pipeline.

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.58http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solutions to Control (Branch) Hazards (cont'd):

B) Inserting NOOP (No Operation) instructions (Software-based):

The compiler inserts NOOP instructions after the branch instruction.

The effect of this solution is similar to stalling the pipeline.

Example: Unconditional branch, address calculation is in DR stage

Instructions

SUB R1, R2, R1 IF

BRU $1C

DR EX ME WB

IF DR EX ME WB

NOOP IF EX ME WB

IF DR EX ME WBTarget: STL $00(R6), R2

The target address has been calculated. The target address is
sent to the IF stage.

The PC is updated at
the end of the IF.
PC ← Target

The target instruction
of BRU is fetched.

DRInserted by the compiler.

30

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.59http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

The number of NOOP instructions that need to be inserted depend on the
number of stall cycles required.

Example: Conditional branch;
address calculation and branch decisions are in EX (slide 2.53).

In this case, 2 stall cycles are necessary. Therefore, 2 NOOPs are inserted.

B) Inserting NOOP (No Operation) instructions (cont'd):

Instructions

SUB R1, R2, R1 IF

BGT $1C

DR EX ME WB

IF DR EX ME WB

NOOP

NOOP

IF DR EX ME WB

IF DR EX ME WB

IF DR EX ME WBTarget: STL $00(R6), R2

The target address ($108 + $1C = $124) has
been calculated.
The branch decision has been made (In EX).

The target address is
sent to the IF stage.

The PC is updated at the end
of the IF. PC ← Target

The target instruction
of BGT is fetched.

Inserted by the
compiler.

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.60http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

C) Optimized Solution (Software-based):

The compiler rearranges the program and moves certain instructions (if possible)
to immediately after the branch instruction.

This rearrangement must not change the algorithm or cause new conflicts.

Solutions to Control (Branch) Hazards (cont'd):

Example: Unconditional branch, address calculation is in DR stage

Instructions

BRU $1C IF DR EX ME WB

IF EX ME WB

IF DR EX ME WBTarget: STL $00(R6), R2

The target address
has been calculated.

The target address is
sent to the IF stage.

The PC is updated at
the end of the IF.
PC ← Target

The target instruction
of BRU is fetched.

DR

SUB R1, R2, R1
BRU $1C
ADD R3, R4, R2
STL $00(R6), R2

SUB R1, R2, R1 Moved by the compiler.

If the optimized solution is possible, there is no branch penalty.

This instruction is fetched
before the branch instruction
updates the PC.
The program is not changed.

31

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.61http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

The number of instructions to be moved depends on the number of necessary
stall cycles.

This rearrangement must not change the algorithm or cause new conflicts.

C) Optimized Solution (cont'd):

Example: Conditional branch, address calculation and branch decisions are in EX.

In this case 2 stall cycles are necessary. Therefore, 2 instructions must be
moved after the branch instruction.

0F8 LDL $00(R5), R7
0FC ADD R0, R7, R7
100 SUB R1, R2, R1
104 BGT $1C
108 ADD R1, R1, R2
10C ADD R3, R4, R2
110 STL $00(R5), R2
114 LDL $0A(R6), R1
…
124 STL $00(R6), R2

These 2 instructions
can be moved to
immediately after the
branch instruction

This instruction cannot
be moved after BGT,
because it alters the
condition bits.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.62http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Important points about changing the order of the instructions:

• An instruction from before the branch can be placed immediately after the
branch.

- The branch (condition or address) must not depend on the moved instruction.

- This method (if possible) always improves the performance (compared to
inserting NOOP).

- Especially for conditional branches, this procedure must be applied carefully.

If the condition that is tested for the branch is altered by the immediately
preceding instruction, then the complier cannot move this instruction to after
the branch.

Other possibilities:

The compiler can select instructions to move

• From branch target

- Must be OK to execute moved instruction even if the branch is not taken

- Improves performance when branch is taken

• From fall through (else)

- Must be OK to execute moved instruction even if the branch is taken

- Improves performance when branch is not taken

32

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.63http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

D) Branch Prediction:

Remember: The existence of branch/jump instructions in the program causes two
main problems:

1. The CPU does not know the target instruction to fetch into the pipeline until
it calculates the target address of the branch instruction.

PC ← PC + offset

Later stages of the pipeline (not IF stage) carry out this calculation. Options:

a) If address calculation is in EX and result is sent from EX/ME register to IF
stage (slide 2.32), branch penalty = 3 cycles.

b) If address calculation is in EX and result is directly sent to IF stage (slide
2.53), branch penalty = 2 cycles.

c) If address calculation is in DR and result is directly sent to IF stage (slide
2.55), branch penalty = 1 cycle (valid for unconditional branch/jump
instructions).

To solve this problem, a branch target table (slide 2.66) is used to determine
the target address in advance.

The branch target table is a cache memory in the IF stage that keeps the
addresses of the branch instructions and their target addresses.

Solutions to Control (Branch) Hazards (cont'd):

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.64http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

2. Conditional branch problem: Until the previous instruction is actually executed,
it is impossible to determine whether the branch will be taken or not because
the values of the flags are not known.

If the branch is not taken, PC ← PC + 4 (1 instruction = 4 bytes for the
exemplary RISC processor)

If the branch is taken, PC ← PC + offset

a) If the branch decision logic is in ME stage (after EX) (slide 2.32), branch
penalty = 3 cycles.

b) If the branch decision logic is in EX (slide 2.53), branch penalty = 2 cycles.

To solve this problem, prediction mechanisms are used.

When a conditional branch is recognized, a branch prediction mechanism
predicts whether the branch will be taken or not.

According to the prediction, either the next instruction in the memory or the
target instruction of the branch is prefetched.

If the prediction is correct, there is no branch penalty.

In case of misprediction, the pipeline must be stopped and emptied.

Branch/jump instructions in the program cause two main problems (cont'd):

33

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.65http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

There are two types of branch prediction mechanisms: static and dynamic.

Static branch prediction strategies:

a) Always predict not taken: Always assumes that the branch will not be taken
and fetches the next instruction in sequence.

b) Always predict taken: Always predicts that the branch will be taken and
fetches the target instruction of the branch.

To determine the target of the branch in advance (without calculation), the
branch target table is used (slide 2.66).

Studies analyzing program behavior have shown that conditional branches are
taken more than 50% of the time.

Therefore, always prefetching from the branch target address should give better
performance than always prefetching from the sequential path.

D) Branch Prediction (cont'd):

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.66http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

"Always predict taken" strategy: Always fetches target instruction of the branch.

However, the CPU does not know the target instruction to fetch into the pipeline
until it calculates the target address of the branch instruction.

To determine the target of the branch in advance, the branch target table
(BTT) is used.

$A000 $B000

Branch instruction addr. Target address

In the branch target table, addresses of recent branch instructions and their
target addresses (where they jump) are kept in a cache memory (Chapter 6).

The BTT makes it possible for the target instruction to be prefetched in the
1. stage (IF) without calculating the branch target address.

There is a separate row for each branch instruction that has recently run.

The number of recent branch instructions stored is limited by the size of the table.

When a branch instruction runs for the first time, its target address is calculated
and written into the BTT.

One row for
each branch
instruction that
has recently run.

Example:
….
$A000 BGT Target
…. …..
…. …..
$B000 Target ADD …

Branch target table (BTT): Target Instruction prefetch

34

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.67http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Dynamic branch strategies record the history of all conditional branch
instructions in the active program to predict whether the condition will be true
or not.

One or more prediction bits (or counters) are associated with each conditional
branch instruction in a program that reflect the recent history of the
instruction.

These prediction bits are kept in a branch history table – BHT (slide 2.69)
and they provide information about the branch history of the instruction
(branch was taken or not in previous runs).

Dynamic branch prediction strategies:

D) Branch Prediction (cont'd):

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.68http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

For each conditional branch instruction (i), a single individual prediction bit (pi) is
stored in the branch history table (BHT).

The prediction bit pi records only whether the last execution of this instruction (i)
resulted in a branch or not.

If the branch was taken last time, the system predicts that the branch will be
taken next time.

Algorithm:

Fetch the ith conditional branch instruction

If (pi = 0) then predict not to take the branch, fetch the next instruction in sequence

If (pi = 1) then predict to take the branch, prefetch the target instruction of the branch

If the branch is really taken, then pi ←1

If the branch is not really taken, then pi ←0

The initial value of pi is determined depending on the case in the first run of the
conditional branch instruction.
In the first run, the target address is calculated and stored in the BHT.
During the calculation of the target address, next instructions in sequence (not the
target of branch) are fetched into the pipeline. In case of a branch, there will be a
branch penalty.

1-bit dynamic prediction scheme:

35

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.69http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Branch target buffer and branch history table (BHT):

Prediction bits are kept in a high-speed memory location called the branch history
table (BHT).

For each recent branch instruction in the current program, the BHT stores the
address of the instruction, the target address, and the state (prediction) bits.

Each time a conditional branch instruction is executed the associated prediction
bits are updated according to whether the branch is taken or not.

These prediction bits direct the pipeline control unit to make the decision the
next time the branch instruction is encountered.

If the prediction is that "the branch will be taken", with the help of the target
buffer, the target instruction of the branch can be prefetched without calculating
the branch address.

Branch instruction addr. Target address
State
(prediction) bits

BHT:
Branch history
table

Recent
conditional
branch
instructions in
the current
program

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.70http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Prediction mechanisms are advantageous if there are loops in the program.

Example:
counter ← 100 ; register or memory location

LOOP ---- ; instructions in the loop

Decrement counter ; counter ← counter - 1
BNZ LOOP ; Branch if not zero (conditional branch, it has a p bit)

---- ; Next instruction after the loop

A) We assume that in the beginning of the given piece of code, the BNZ instruction
is in the BHT and the value of its p bit is 1 (predict to take the branch).

In the first iteration (step) of the loop, the prediction at BNZ will be correct and
the pipeline will prefetch the correct instruction (beginning of the loop).

The p bit (p=1) is not changed until the last iteration of the loop.

In the last iteration of the loop, the p bit is still 1, and the prediction is to take the
branch; however, as the counter is zero, the program will not jump, and it will
instead continue with the next instruction following the branch (misprediction).

The p bit of BNZ is cleared (p ← 0) because the branch is not taken in the last step.

As a result, in a loop with 100 iterations, there are 99 correct predictions and only
one incorrect prediction.

Example: 1-bit dynamic prediction scheme and loops:

36

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.71http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Example: 1-bit dynamic prediction scheme and loops (cont'd):

B) If in the beginning of the given piece of code, the BNZ instruction is not in the
BHT, the system cannot make a prediction in the first run.

After the calculation of the target address of the BNZ, the related information is
written into the BHT.

During the calculation of the target address, next instructions in sequence (not
the target of branch) are fetched into the pipeline.

In the first run, the branch is taken, and the program jumps to the beginning of
the loop, so there will be a branch penalty.

The initial value of p becomes 1 (predict that the branch will be taken).

The value of p (p = 1) does not change until the last iteration (step) of the loop.

In the last iteration of the loop, the p bit is still 1, and the prediction is that the
branch will be taken; however, as the counter is zero, the program will not jump,
and it will instead continue with the next instruction following the branch
(misprediction).

The p bit of BNZ is cleared (p ← 0).

As a result, in a loop with 100 iterations, in the first iteration, a prediction cannot
be made. Then, there are 98 correct predictions and one incorrect prediction. In
total, there are 2 branch penalties.

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.72http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

In nested loops, a one-bit prediction scheme will cause two
mispredictions for the inner loop:

• one in the first iteration, and
• one on exiting

Problem with the 1-bit dynamic prediction scheme:

(Nested loops: the same loop is executed many times)

LOOP

BNZ LOOP

LOOP_EX
. . .

. . .

BNZ LOOP_EX

Remember: in the previous example, after exiting the loop, the p bit of the inner
BNZ LOOP was 0 ("don't take the branch") (p=0) .

Now, if the same loop runs again (2nd run), in the first iteration (step), the
prediction about the BNZ will be "not to take the branch" (p=0).

However, the program will jump to the beginning of the loop (first misprediction).

Now, the p bit will be 1 because branch is taken (p ← 1).

Until the last iteration of the loop, predictions will be correct.

In the last iteration of the loop, there will be a misprediction as in the previous
example (second misprediction).

Hence, misprediction will occur twice for each full iteration of the inner loop.

37

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.73http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Predict
taken

11

Predict
taken

10

Not taken

Taken

Predict
not

taken
01

Predict
not

taken
00

Not taken

Taken

Taken Not taken

Taken

Not taken

2-bit Branch prediction scheme:

• If the instruction is in states 11 or 10, the scheme predicts that the branch will
be taken.

• If the instruction is in states 00 or 01, the scheme predicts that the branch
will not be taken.

In this scheme, the prediction changes only if it misses twice.

What really
hapens at
run-time

Prediction
of the
machine

Two prediction bits are associated with each conditional branch instruction.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.74http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Example: 2-bit Branch prediction

State: 11 11 10 11 10 00 00 01 00 01 11
Prediction: T T T T T N N N N N T
Actual: T√ N∅ T√ N∅ N∅ N√ T∅ N√ T∅ T∅ T√

The branch is
actually taken

Prediction was
correct √

The branch
is actually
not taken

Prediction was
not correct
Misprediction: ∅

2 mispredictions
State changes

2 mispredictions
State changes

From "Take"
to "Not take"

From "Not take"
to "Take"

T: Branch is Taken
N: Branch is Not taken

38

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.75http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Saturating counter: Another 2-bit Branch prediction strategy
There are different ways of implementing the finite state machine for branch
prediction strategies.

A Saturating counter is one of these alternatives.

• If the instruction is in states 11 or 10, the scheme predicts that the branch
will be taken.

• If the instruction is in states 00 or 01, the scheme predicts that the branch
will not be taken.

Predict
taken

11

Predict
taken

10

Predict
not

taken
01

Predict
not

taken
00

Taken

Not taken

Not taken Not taken Not taken

TakenTakenTaken

In this scheme, the prediction is changed only if it misses twice after one
correct prediction.

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.76http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Counter1 ← 10
LOOP1 ------ ; Any instruction

Counter2 ← 10
LOOP2 ------ ; Any instruction

------ ; Any instruction
Counter2 ← Counter2 - 1
BNZ LOOP2 ; Branch if not zero
------ ; Instruction after loop2
Counter1 ← Counter1 - 1
BNZ LOOP1 ; Branch if not zero
------ ; Instruction after loop1

Problem:

A CPU has an instruction pipeline, where hardware-based mechanisms are used
to solve branch hazards.
This CPU runs the given piece of code below, which includes two nested loops.

For each branch prediction mechanism, give the number of correct predictions
and mispredictions for the two branch instructions (BNZ) in the given piece of
code.
Briefly explain your results.

Example:

39

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.77http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solution:

a. Static prediction

i) Always predict not taken (For this method, a BTT (branch target table) is
not necessary)

BNZ LOOP1: There is a correct prediction only in the last iteration (exit).
Other predictions are incorrect.
Correct : 1 Incorrect : 9

BNZ LOOP2: There is a correct prediction only in the last iteration (exit).
Other predictions are incorrect.
Correct : 10x1 = 10 Incorrect : 10x9 = 90

Total: Correct : 11 Incorrect : 99

This method is not suitable for loops.

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.78http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

ii-1) Always predict taken under the assumption that instructions are in the BTT

BNZ LOOP1: There is a misprediction only in the last iteration (exit).
Other predictions are correct.

Correct: 9 Incorrect: 1

BNZ LOOP2: There is a misprediction only in the last iteration (exit).
Other predictions are correct.

Correct : 10x9 = 90 Incorrect : 10x1 = 10

Total: Correct: 99 Incorrect: 11

ii-2) Always predict taken under the assumption that instr. are NOT in the BTT

BNZ LOOP1: There are mispredictions only in the first and last iterations.
Other predictions are correct.

Correct: 8 Incorrect: 2

BNZ LOOP2: In the first run of the loop, there are mispredictions only in the
first and last iterations; other predictions are correct.
In the 2nd -10th runs, there is a misprediction only in the last
iteration (exit).

Correct : 8+9x9 = 89 Incorrect : 2+9x1 = 11
Total: Correct: 97 Incorrect: 13

a. Static prediction (cont'd)

40

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.79http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

Solution (cont’d):

b. Dynamic prediction with one bit

Note: Different prediction bits are used for each branch instruction (Slides 2.68,
2.69).

i) Assumption: In the beginning, instructions are in the BHT, and initial decision
is to take the branch

BNZ LOOP1: There is a misprediction only in the last iteration (exit). Other
predictions are correct.

Correct: 9 Incorrect: 1

BNZ LOOP2: In the first run of the loop, there is a misprediction only in the
last iteration (exit).

Other predictions are correct.

After the first run, the prediction bit "p" changes to “branch
will not be taken”.
Therefore, in the 2nd-10th runs, there are mispredictions in both
the first and last iterations (Slide 2.71).
Correct: 9 + 9x8 = 81 Incorrect: 1+ 9x2 =19

Total: Correct: 90 Incorrect: 20

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.80http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

b. Dynamic prediction with one bit (cont’d):

ii) In the beginning instructions are NOT in the BHT, or the initial decision is NOT
to take the branch

BNZ LOOP1: There are mispredictions in the first and last iterations.

Other predictions are correct.

Correct: 8 Incorrect: 2

BNZ LOOP2: There are mispredictions in the first and last iterations.

Other predictions are correct.

Correct: 10x8 = 80 Incorrect: 10x2 =20

Total: Correct: 88 Incorrect: 22

41

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.81http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

c. Dynamic prediction with two bits:

i) Assumption: In the beginning, instructions are in the BHT, and the initial
decision is to take the branch, prediction bits are 11.

BNZ LOOP1: There is a misprediction only in the last iteration (exit).
Other predictions are correct.

Correct: 9 Incorrect: 1

BNZ LOOP2: There is a misprediction only in the last iteration (exit).
Other predictions are correct.

Correct: 10x9 = 90 Incorrect: 10x1 = 10

Total: Correct: 99 Incorrect: 11

Computer Architecture

2013 - 2021 Feza BUZLUCA 2.82http://akademi.itu.edu.tr/en/buzluca/
http:// www.buzluca.info

c. Dynamic prediction with two bits (cont'd):

ii) In the beginning, instructions are NOT in the BHT

In the first run of the BNZ instructions, since the target address is unknown,
next instructions in sequence (not the target of the branch) are fetched into
the pipeline.

Hence, there is a misprediction in the first iteration.

After the CPU has decided to branch and the target address has been
calculated, information about the BNZ is stored in the BHT, and prediction bits
are set to 11.

BNZ LOOP1: There are mispredictions in the first and last iterations.

Correct: 8 Incorrect: 2

BNZ LOOP2: In the first run, there are mispredictions in the first and last
iterations.

After the first run the decision is still “branch will be taken”.
Therefore, in the 2nd - 10th runs, there will be a misprediction only
in the last iteration.

Correct: 8 + 9x9 = 89 Incorrect: 2 + 9x1 = 11

Total: Correct: 97 Incorrect: 13

