
1

Computer Architecture

© 2005-2022 Feza BUZLUCA A.1www.akademi.itu.edu.tr/buzluca
www.buzluca.info

The 68K will be used to illustrate some topics discussed in class.

• 16-bit data bus (can operate in 8-bit mode when necessary)

• 16/32-bit microprocessor
Internally 32-bit data paths and instructions, but interfaces with external
components using a 16‐bit data bus, so, a programmer considers it 32‐bit chip
while a system designer considers it a 16‐bit chip)

• 16 32-bit registers (eight data and eight address registers)

• 24-bit address bus: These 24 lines can therefore address 16 MB of physical
memory with byte resolution

• Operations can be performed on 5 different data types:

• Bit, byte, 16-bits (word), 32 bits (long word), BCD

• Memory-mapped input/output (I/O)

• 14 addressing modes

• Two modes of operation: Supervisor vs. User

o Some instructions cannot be executed in user mode

o Access to memory can be restricted by connecting the FCO (functions
code output) pins to the memory address decoding circuitry.

Appendix A: MC 68000

Computer Architecture

© 2005-2022 Feza BUZLUCA A.2www.akademi.itu.edu.tr/buzluca
www.buzluca.info

Programmable Registers (User Programmer's Model)

31 16 15 8 7 0

D0

D1

D2

D3

D4

D5

D6

D7

Data Registers:

• consist of 8 identical registers

• can be addressed as 8, 16, or 32 bits

2

Computer Architecture

© 2005-2022 Feza BUZLUCA A.3www.akademi.itu.edu.tr/buzluca
www.buzluca.info

• 8+1 registers (A0 to A7 and A7'). These are typically used as pointers.

• The address registers can only be used as 16 or 32 bits.

• The A7 register is also the stack pointer. It is duplicated for the user and
supervisor states, i.e, A7 (User Stack Pointer –USP) and A7' (System Stack
Pointer –SSP).

Address Registers:

Since the address bus is 24 bits wide, only the first 24 bits of the data in an
address register is used.

When the low-order word (16 bits) in an address register is used, these bits are
sign-extended to 24 bits before being placed on the address bus.

31 16 15 0

A0

A1

A2

A3

A4

A5

A6

A7 (USP)

A7’ (SSP)

Computer Architecture

© 2005-2022 Feza BUZLUCA A.4www.akademi.itu.edu.tr/buzluca
www.buzluca.info

• 16 bits

• Consists of two parts: System and user (CCR Condition Code Register)

Status Register:

System CCR
15 8 7 0

Status Register

I0

15 13 10 8 7 4 0

Status RegisterCVZNXS I1I2T

• Condition codes: Overflow (V), Zero (Z), Negative (N), Carry (C), Extend (X).

• Interrupt mask (I0 I1 I2)

• Additional status bits indicating that the processor is in Trace (T) mode
and/or in the Supervisor (S) state

• Bits 5, 6, 7, 11, 12, 14 are undefined and reserved for future expansion.

31 0

PC

• 32 bits

• Can also be used as an address register

Program Counter (PC):

3

Computer Architecture

© 2005-2022 Feza BUZLUCA A.5www.akademi.itu.edu.tr/buzluca
www.buzluca.info

High-order parts of data are placed in memory starting from lower addresses..

Data Organization in Memory

Byte 0 Byte 1
WORD 0

$000002 Byte 2 Byte 3
WORD 1

• Bytes are individually addressable.

• The high-order byte of a word has the same address as the word.

• The low-order byte has an odd address, one count higher.

• Instructions and multibyte data are accessed only on word (even byte)
boundaries.

• Each word (16 bits) or long word (32 bits) must start at even address.

• If a long-word operand is located at address n (n even), then the second
word of that operand is located at address n+2.

$000000

Address 15 8 7 0

LONG WORD 0

$000004 Byte 4 Byte 5
WORD 3

$000006 Byte 6 Byte 7
WORD 4

LONG WORD 1

Computer Architecture

© 2005-2022 Feza BUZLUCA A.6www.akademi.itu.edu.tr/buzluca
www.buzluca.info

Addressing Modes

The 68000 supports 14 different addressing modes derived from six basic types:
1. Register Direct
2. Immediate
3. Absolute
4. Register Indirect
5. Program Counter Relative
6. Implied

1a. Data Register Direct

The operand is in a data register (whose name is given directly).

MOVE.W Dn , Dm Dn → Dm

B: Byte, W: Word, L: Long

1b. Address Register Direct

The operand is in an address register (whose name is given directly).

If the destination is an address register, the instruction ends with an "A."

MOVEA.W D1 , A5 D1 → A5 (Source data register, dest. addr. register)

The data may only be W: Word or L: Long .

4

Computer Architecture

© 2005-2022 Feza BUZLUCA A.7www.akademi.itu.edu.tr/buzluca
www.buzluca.info

2a. Immediate

The actual data to be used as the operand is included in the instruction itself.

MOVE.L #$4A7F0000 , D0 ; move the immediate data $4A7F0000 to D0

2b. Quick Immediate

Can only be used with some instructions.

The source operand must use immediate mode, and only with an 8-bit signed
integer constant (-128, …, 127). The destination must be a D register.

The instruction takes up less space (2 bytes, not 6) and works faster.

For example, it is used for the MOVE instruction on 8-bit data.

MOVEQ #5 , D0 ; 32 bits of D0 are affected by this instruction

3a. Absolute Short
The instruction provides the 16-bit address of the operand in memory. The
16-bit address is sign-extended to 24 bits.

MOVE.B D0, ($58AA) ; written to address $0058AA

MOVE.B D0, ($B51A) ; written to address $FFB51A

3b. Absolute Long
Used when the address size is more than 16 bits.
The instruction provides the 24-bit address of the operand in memory.

MOVE.W ($45C720),D7 ; 16 bits starting at location $45C720 written to D7

Computer Architecture

© 2005-2022 Feza BUZLUCA A.8www.akademi.itu.edu.tr/buzluca
www.buzluca.info

4a. Address Register Indirect

An address register contains the address of the source or destination operand.

4. Register Indirect

An data

031

00100 XX XX

00102 XX XX

00104 XX XX

Memory

MOVE.B D0, (A0)

MOVE.W D0, (A0)

MOVE.L D0, (A0)

D0

A0

Registers

0000 1000

4350 A7C8

31………… 0

After the instruction has been run,
the state of memory:

The content of A0 does not change.

High-order parts of data are placed in memory
starting from lower addresses.

Content of D0 written to
the address A0 points to.

Example:

Before the execution of the
instruction:

00100 C8 XX

00102 XX XX

Memory

00100 A7C8

00102 XX XX

Memory

00100 4350

00102 A7C8

Memory

5

Computer Architecture

© 2005-2022 Feza BUZLUCA A.9www.akademi.itu.edu.tr/buzluca
www.buzluca.info

An – (1, 2, 4) → An

B W L

4b. Address Register Indirect with Predecrement

Decremented by 1, 2, or 4, based on the
size of the operand.

Example:

MOVE.W D0 , - (A0) ; First, A0 is decremented by 2, then the
; content of D0 is written to where A0 points to.

A0: 00001002, D0: 3725A100

After the instruction has been run, the state of memory:
001000: A1

001001: 00

After the instruction has been run, A0=00001000.

The predecrement mode can be used for array operations.
It can also be used for writing to the top of a stack (PUSH).

An

data-

031

Computer Architecture

© 2005-2022 Feza BUZLUCA A.10www.akademi.itu.edu.tr/buzluca
www.buzluca.info

An + (1, 2, 4) → An

B W L

4c. Address Register Indirect with Postincrement

Example:

MOVE.W (A0)+ , D0 ; First, the 16-bit data A0 points to is written to D0,
; then, A0 is incremented by 2.

A0: 00001000, D0: XXXXXXXX
Memory:
001000: A1
001001: 00
After the instruction has run, A0=00001002, D0: XXXXA100.

Can be used for reading from the top of a stack (PULL).
Predecrement and postincrement modes are used for stack and queue
operations. The 68000 does not provide special stack instructions.

An data

+ Incremented by 1, 2, or 4, based on the
size of the operand.

6

Computer Architecture

© 2005-2022 Feza BUZLUCA A.11www.akademi.itu.edu.tr/buzluca
www.buzluca.info

4d. Addr. Register Indirect with Offset

MOVE.B - 4(A2) , D0 ; <ea>= -4 plus A2, data to D0
MOVE.W $0C(A5) , D7 ; <ea>=$0C+A5, data to D7
MOVE.L -2(A3) , 12(A5) ; <ea>= -2 plus A3, data to 12+A5

An

data+

offset

015

031

Offset: 16-bit signed number.
It is possible to address memory
locations up to 32K bytes after (or 32K
bytes before) the location An points to.
Examples:

4e. Address Register Indirect with Index and Offset

MOVE.W - 2(A3,D5.W) , 4(A5)
• A3: Base
• D5: Index
• -2 : Offset

• <ea>=-2+(A3)+(D5.W)
• Data to 4+(A5)

An

data+offset

07

031

Rn (index)

031/15

Can be An or Dn.
16- or 32-bit parts can
be used.

Example:

Computer Architecture

© 2005-2022 Feza BUZLUCA A.12www.akademi.itu.edu.tr/buzluca
www.buzluca.info

5a. Program Counter Relative with Offset

PC

data+

offset

015

031
Fixed (absolute) addresses are not used.

The address of data is determined relative
to the address of the instruction being run.

The program can still run placed in
different addresses.

Example:

5b. Program Counter Relative with Index and Offset

Example:
MOVE.W - 2(PC,D5.W) , 4(A5)
PC: Base
D5: Index
-2 : Offset

PC

data+offset

07

031

Rn (index)

031/15

Can be An or Dn.
16- or 32-bit parts can
be used.

6. Implied Register
These instructions require no
operands, although they may store or
retrieve data from the stacks.
Examples: RTS, TRAPV, NOP

MOVE.B 50(PC) , D5 ; 50 acts as an index, PC is the Program Counter

7

Computer Architecture

© 2005-2022 Feza BUZLUCA A.13www.akademi.itu.edu.tr/buzluca
www.buzluca.info

All instructions will be multiples of 16 bits.

Each instruction is at least 1 word, at most 5 words.

Instruction Format in MC68000

Op word

Immediate data (if any,
one or two words)

Source addr. extension

Dest. addr. extension

15 0

The instruction code (or op word) specifies the
instruction’s operation and addressing modes of the
operands.

Instruction Format Examples:

Single Operand Instruction Format:

Opcode Size Mode Register

15 8 7 6 5 4 3 2 1 0
Instruction word:

00: B
01: W
10: L

Refer to the reference manual
for the codes in the Mode and
Register fields.

Example:

CLR.W D3 01000010 01 000 011

CLR W D 3

Computer Architecture

© 2005-2022 Feza BUZLUCA A.14www.akademi.itu.edu.tr/buzluca
www.buzluca.info

CLR.L (A2)+ 01000010 10 011 010

CLR L (An)+ 2

Examples continued:

CLR.B ($3000) 01000010 00 111 000

CLR B Absolute short

Address register indirect
postincrement

Absolute addressing (short)

0011 0000 0000 0000 The address ($3000) is in the second
word.

CLR.B $4(A6) 01000010 00 101 110

CLR B d(An) 6

Address register indirect with offset

0000 0000 0000 0100 The offset ($4) is in the second word
as 16 bits.

CLR.B -7(A6) 01000010 00 101 110

CLR B d(An) 6

Address register indirect with offset
(negative offset)

1111 1111 1111 1001 The offset (-7) is in the second word
as 16 bits.

8

Computer Architecture

© 2005-2022 Feza BUZLUCA A.15www.akademi.itu.edu.tr/buzluca
www.buzluca.info

CLR.W $C2(A3, D7.L) 01000010 01 110 011

D 7 L $C2

Additional Word for Register Indirect with Index and Offset Addressing Mode:

The additional word contains
information about the index
register and offset
(displacement).

In the register indirect with index and offset addressing mode, there is an
additional word.

The additional word contains information about the index register and offset.

D/A Index reg. W/L 0 0 0 offset

15 14 13 12 11 10 9 8 7 0

0:D
1:A

0:W
1:L

8 bits reserved for offset

Example:

CLR.W d(A3,Rn.S)

0 111 1 000 11000010

Computer Architecture

© 2005-2022 Feza BUZLUCA A.16www.akademi.itu.edu.tr/buzluca
www.buzluca.info

Instruction Format Examples (continued)

Two-Operand Instruction Format:

Example: MOVE

Example:

MOVE.W D2, (A5)+ 00 11 101 011 000 010

W 5 (An)+ D 2

0 0 Size Reg. Mod. Mod. Reg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01: B
11: W
10: L

source destination

The instruction is not decoded based on just this
field; the whole opword is used.

Example:

MOVE.W #$1234 , $25(A3)
00 11 011 101 111 100

W 3 d(An) immediate

0001 0010 0011 0100 $1234 (immediate data)

0000 0000 0010 0101 $0025 (source address extension)

9

Computer Architecture

© 2005-2022 Feza BUZLUCA A.17www.akademi.itu.edu.tr/buzluca
www.buzluca.info

Quick Instruction Format:

MOVEQ 0111 Reg. 0 data

15 11 10 9 8 7 0

• 8-bit immediate data used.

• Source is a data register.

• 32 bits of the register are
affected by this instruction.

• Takes up less space than
normal immediate addressing.Example:

MOVEQ #-5 , D2 0111 010 0 1111 1011

-5

The normal MOVE instruction that performs the same operation takes up 3
words (48 bits) of space.

MOVE.L #-5 , D2
00 10 010 000 111 100

L 2 D immediate

1111 1111 1111 1111
32-bit "-5"

1111 1111 1111 1011

ADDQ operates on 3-bit immediate data.

Computer Architecture

© 2005-2022 Feza BUZLUCA A.18www.akademi.itu.edu.tr/buzluca
www.buzluca.info

In this section, we will introduce some MC68000 instructions.
Data Movement Instructions:

MOVEM Move multiple registers

• Writes all specified registers to memory starting at a specific address, or reads
data from specified memory address and places them in specified registers.
Syntax 1: MOVEM <register list>,<ea>
Syntax 2: MOVEM <ea>,<register list>

Examples: MOVEM.L D0-D7/A0-A6 , $1234 ; save D0-D7/A0-A6 to
; memory starting at $1234

MOVEM.L (A5) , D0/D5/A0-A3 ; read D0, D5, A0-A3,

; from memory address pointed by A5

Can be used to save working registers on entry to a subroutine and to restore them
at the end of a subroutine.

MOVEM.L D0-D5/A0-A3,-(A7) ; Push registers D0-D5/A0-A3 onto the stack
…

Body of subroutine
…

MOVEM.L (A7)+,D0-D5/A0-A3 ; Restore registers D0-D5/A0-A3 from the stack
RTS ; Return to the calling program

MC68000 Instructions

10

Computer Architecture

© 2005-2022 Feza BUZLUCA A.19www.akademi.itu.edu.tr/buzluca
www.buzluca.info

Operation: [An] ← <ea>

Used to copy the address of a variable into an address register.

All 32 bits of the address register are affected by this instruction.

Sample syntax: LEA Table,A0 ; register A0 will point to the

; beginning of Table
LEA (Table,PC),A0 ; calculates effective address of

; Table w.r.t. to PC, deposits it in A0.
LEA (-6,A0,D0.L),A6 ; calculates A0+D0.L sign-extended

; to 32 bits minus 6, deposits it in A6.
LEA (Table,PC,D0),A6

Example:
LEA ARRAY , A0 ; Array address to A0
MOVE.B (A0)+, D1 ; Load first element of array to D1,
… ; increment A0 to point to next elmt.

ARRAY DS.B 100 ; Define Storage (directive)

LEA Load effective address

Computer Architecture

© 2005-2022 Feza BUZLUCA A.20www.akademi.itu.edu.tr/buzluca
www.buzluca.info

Bcc Branch on condition cc

cc specifies the condition.

If cc = 1 THEN [PC] ← [PC] + d

d: 8- or 16-bit signed offset.

Reminder: When the instruction is being run, PC points to the instruction after Bcc.

Syntax: Bcc <label>

Relative size can be specified if needed: BEQ.B (EQual) or BNE.W (Not Equal)

If the size is not specified, the compiler computes the relative address of an
appropriate size based on the distance of the label.

Conditions (cc):

BCC branch on carry clear branch if C = 0

BEQ branch on equal branch if Z=1

BGT branch on greater than branch if (Z + (N ⊕ V)) = 0

BHI branch on higher than branch if (C + Z) = 0

BGE branch on greater than or equal branch if (N ⊕ V) = 0

BLT branch on less than branch if (N ⊕ V) = 1

BLS branch on lower than or same branch if (C + Z) = 1

Flow Control Instructions:

11

Computer Architecture

© 2005-2022 Feza BUZLUCA A.21www.akademi.itu.edu.tr/buzluca
www.buzluca.info

C

8

A

8

B

8-bit ALU C8

C7

S Z V

8

F7 - F0

Result

F7

Setting of Flags:

Overflow can also be determined based on:
pos + pos → neg pos – neg → neg
neg + neg → pos neg – pos → pos

Reminder:

Carry: May result from the addition of unsigned numbers. Indicates that the
result does not fit into n bits and an (n+1)st bit is needed.

Borrow: May result from the subtraction of unsigned numbers. Indicates that the
first number is smaller than the second.

In subtraction using two’s complement, if an (n+1)st bit forms, there is no borrow.

Overflow: May form only in the addition or subtraction of signed numbers.
Indicates that the result cannot be expressed using the allotted number of bits.

In subtraction and comparison
operations, the carry C bit serves as
the BORROW flag.

Overflow:

V= C7 ⊕ C8

C8: Carry

C7: Carry in the previous bit

Computer Architecture

© 2005-2022 Feza BUZLUCA A.22www.akademi.itu.edu.tr/buzluca
www.buzluca.info

Syntax: DBcc Dn,<label>

Here, the label is a 16-bit relative address.

16 bits of Dn is used as a counter.

Operation:

DBcc Test condition, decrement, and branch

Example: Loop (10 times)

MOVEQ #9 , D0 ; Start value 9, because exiting on D0=-1
L1 ; Inside the loop

......
DBF D0,L1 ; Here, F: False, condition always false,

; branches if false

IF(condition cc false)
THEN [Dn] ← [Dn] - 1 (decrement loop counter)

IF [Dn] = -1 THEN instruction after DBcc (PC incremented by 2 in fetch cyc.)
ELSE [PC] ← [PC] + d (branch relative)

ELSE instruction after DBcc (PC incremented by 2 in fetch cycle.)

12

Computer Architecture

© 2005-2022 Feza BUZLUCA A.23www.akademi.itu.edu.tr/buzluca
www.buzluca.info

LEA ARRAY1, A0 ; Start addresses of the arrays
LEA ARRAY2, A1 ; A0 points to ARRAY1, A1 points to ARRAY2
MOVE.W SIZE, D0 ; Size of arrays
SUBQ.W #1, D0 ; Decrement D0 by 1 for use in DBNE later

LOOP CMPM.B (A0)+, (A1)+ ; Array elements compared as pair of bytes
DBNE D0, LOOP ; Test, decrement D0, and loop until not equal
TST.W D0 ; Why did loop exit? (D0?), sets N &Z based on D0
BMI EQUAL ; Branch if neg. (If D0=-1 on exit, all elmts. equal)

DIFFERENT
.......

EQUAL
.......

ARRAY1 DS.B 50 ; Allocate memory for elements of 1st array: 50B
ARRAY2 DS.B 50 ; Allocate memory for elements of 2nd array: 50B
SIZE DC.W 50 ; Define constant in memory of length one word

; 50 elements in each array

Example: Comparing Two Arrays (Are all elements equal?)

The first array starts at address ARRAY1, the second starts at address ARRAY2.
The arrays have 50 8-bit elements.
The contents of the arrays have been filled in before the program starts.

DBcc exits
on -1

