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Repeated and Complex Eigenvalues: “Almost” Diagonal Systems1

Introduction: We have seen that a linear system

ẋ = Ax + Bu

y = Cx + Du

with distinct eigenvalues can be transformed to a diagonal representation by the similarity
transform

ż = Λz + M−1Bu (1)

y = CMz + Du

where Λ = M−1AM is a diagonal matrix with the system eigenvalues on the diagonal, and
M is the modal matrix, composed of columns of linearly independent eigenvectors. In this
handout we address two separate issues: 1) the handling of systems with repeated eigenvalues
when the eigenvectors are not necessarily linearly independent, and 2) the creation of an
almost diagonal form when a system has complex conjugate eigenvalues and a purely real A
matrix is desired for computational convenience.

Systems with Repeated Eigenvalues: If the matrix A has repeated eigenvalues it
may or may not be possible to find a diagonal system representation in the form of Eq. (1).
Consider the following example

Example

Determine whether it is possible to transform the following two matrices to di-
agonal form

(a) A1 =




1 0 −1
0 1 0
0 0 2


 (b) A2 =




1 1 2
0 1 3
0 0 2




Solution: Both matrices have identical eigenvalues λ1,2,3 = 1, 1, 2. For matrix
A1 the modal matrix of associated eigenvectors is

M1 =




1 0 −1
0 1 0
0 0 1




1D. Rowell 11/22/04
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and we note that the columns are linearly independent (the matrix has rank 3).
The transformed matrix is therefore

Λ1 = M−1A1M =




1 0 0
0 1 0
0 0 2




with the eigenvalues on the leading diagonal as expected.

For A2 the situation is different. The eigenvectors associated with the repeated
eigenvalue are not linearly independent and the modal matrix is

M2 =




1 1 5
0 0 3
0 0 1




and M2 is singular (rank of 2). The inverse M−1
2 does not exist and the trans-

formation to diagonal form Using Eq. (1) cannot be found.

From this example we see that, if a square matrix has repeated eigenvalues, it is not always
possible to find a set of linearly independent eigenvectors that form a basis, and consequently
the matrix cannot always be transformed to diagonal form. It is, however, possible to find an
alternative set of linearly independent basis vectors that allow transformation to an almost
diagonal form, known as the Jordan canonical form. This representation has the system
eigenvalues of A on the leading diagonal, and either 1 or 0 on the superdiagonal.

Consider a fifth-order system A with an eigenvalues λ1 with multiplicity 4, and λ2 with
multiplicity 1. The Jordan form representation J of this system will have one of the following
forms

J1 =




λ1 0 0 0 0
0 λ1 0 0 0
0 0 λ1 0 0
0 0 0 λ1 0
0 0 0 0 λ2




,J2 =




λ1 1 0 0 0
0 λ1 0 0 0
0 0 λ1 0 0
0 0 0 λ1 0
0 0 0 0 λ2




,J3 =




λ1 1 0 0 0
0 λ1 0 0 0
0 0 λ1 1 0
0 0 0 λ1 0
0 0 0 0 λ2




J4 =




λ1 1 0 0 0
0 λ1 1 0 0
0 0 λ1 0 0
0 0 0 λ1 0
0 0 0 0 λ2




,J5 =




λ1 1 0 0 0
0 λ1 1 0 0
0 0 λ1 1 0
0 0 0 λ1 0
0 0 0 0 λ2




(2)

Examination of these forms indicates that each matrix Ji is formed with one or more blocks
associated with the repeated eigenvalue on the main diagonal, and that each of these blocks
is of the form

[λ1] ,

[
λ1 1
0 λ1

]
,




λ1 1 0
0 λ1 1
0 0 λ1


 , or




λ1 1 0 0
0 λ1 1 0
0 0 λ1 1
0 0 0 λ1



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with the repeated eigenvalue on the diagonal and 1’s on the diagonal just above the main
diagonal. These blocks are known as Jordan blocks. For example the matrix J4 above has two
Jordan blocks associated with λ1 (one of order 3 and one of order 1), and one Jordan block
associated with λ2. A diagonal matrix can be considered as a special case of the Jordan form
in which all blocks are of order 1. Matrix J1 above can be considered to have four Jordan
blocks of order 1 associated with eigenvalue λ1, and a single Jordan block associated with
eigenvalue λ2. The Jordan form J can be considered a generalized form of the diagonal form
Λ.

The components of the B matrix associated with each Jordan block in the state equations

ẋ = Jx + Bu. (3)

will have the form

B =
[
· · · ... 0 0 · · · bi

... · · ·
]T

(4)

where bi is a scalar quantity (usually 1). Thus a SISO system with Jordan form as in J3

above (with two second-order Jordan blocks) will have state equations

ẋ =




λ1 1 0 0 0
0 λ1 0 0 0
0 0 λ1 1 0
0 0 0 λ1 0
0 0 0 0 λ2



x +




0
b2

0
b4

b5




u. (5)

Notice that each Jordan block represents a set of coupled equations, and that the block
as a whole is uncoupled from the rest of the state equations, for example a third-order block
associated with repeated eigenvalue λ will have state equations

ẋ1 = λx1 + x2

ẋ2 = λx1 + x3

ẋ3 = λx3 + b3u

which represents a chain of cascaded first-order blocks, as shown in Fig. 1. A system with
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3
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Figure 1: Bock diagram of a third-order Jordan block

multiple Jordan blocks is represented as a parallel combination of such chains. For example
the system represented by Eq. (5) has a block diagram as shown in Fig. 2.

An important result can be stated as follows:
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Figure 2: Block diagram of the fifth-order system with an eigenvalue of multiplicity four,
and two linearly independent eigenvectors, described by Eq. (5).

Theorem 1: Any system in Jordan form, that is

ẋ = Jx + Bu.

in which there is more than one Jordan block in J associated with any single eigenvalue
is uncontrollable.

In the matrices J1 . . .J5 in Eq. (8), only matrix J5 (a single Jordan block of order 4) will
yield a controllable system. We also note that Theorem 1 states that the system described
by Eq. (5), and shown in Fig. 2, is uncontrollable.

Example

Show that the second-order system represented by

ẋ =

[
a 0
0 a

]
x +

[
b1

b2

]
u

is uncontrollable (two first-order Jordan blocks representing the repeated eigen-
value λ = −a, while the system

ẋ =

[
a 1
0 a

]
x +

[
0
b2

]
u

(a single Jordan block of order two) is controllable.
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For the first system, the controllability matrix Θc is

Θc = [B | AB] =

[
b1 ab1

b2 ab2

]

which has rank = 1, and is therefore uncontrollable, whereas for the second
system

Θc = [B | AB] =

[
0 b2

b2 ab2

]

which has rank = 2, indicating that this system is controllable.

Determination of the Jordan Form: When a system of order n has repeated eigenvalues,
it may or may not be possible to find a set of linearly independent eigenvectors in the modal
matrix M for the transformation to diagonal form. The number of linearly independent
eigenvectors associated with an eigenvalue λi with multiplicity µi is equal to the degeneracy
qi of A− λiI, defined as

qi = n− rank (A− λiI) (6)

where 1 ≤ qi ≤ µi. Under such conditions there will be qi eigenvectors, and mi−qi generalized
eigenvectors associated with λi that form a linearly independent set of vectors for use as mi

columns of the matrix M to transform to a Jordan form.
A generalized eigenvector of rank k is defined as a non-zero vector xk satisfying

(A− λiI)
k xk = 0

and (A− λiI)
k−1 xk 6= 0 (7)

Therefore if x1 is an eigenvector satisfying (A− λ1I)x1 = 0, the generalized eigenvectors xi,
i = 2 . . . µi, may be derived from the relationships

x1 = (A− λiI)x2

x2 = (A− λiI)x3

... =
... (8)

xµi−2
= (A− λiI)xµi−1

xµi−1
= (A− λiI)xµi

.

Because (A− λiI) is singular, these equations cannot be solved directly, and each equation
will lead to a set of relationships between the elements of the generalized eigenvector.

A simple (distinct) eigenvector may be found by either of the following methods, and
used to seed the recursive calculation of the generalized eigenvectors:

(a) For a distinct eigenvalue, a non-trivial solution to the homogeneous equation

(A− λiI)xi = 0

is given by any nonzero column of the matrix Adj (A− λiI), or

(b) The linear equations may be solved directly by substituting the numeric values of λi

into (A− λiI)xi = 0.
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Example

Find the eigenvalues, eigenvectors, and if necessary the generalized eigenvectors
of

A =




0 1 0
0 0 1

−8 −12 −6




The characteristic equation is (λ + 2)3 = 0 giving an eigenvalue λ = −2 with
multiplicity µ = 3. The rank of (A− λiI) |λ=−2 is 2, therefore the degeneracy
q = 3−2 = 1. There is therefore one eigenvector and two generalized eigenvectors.
Using method (a) above, the eigenvector is found from a nonzero column of

Adj (A + 2I) =




1 1 1
−8 −8 −2
16 16 4


 , and we may therefore select x1 =

[
1 −2 4

]T

The generalized eigenvectors may be found using (A + 2I)x2 = x1 and (A +
2I)x3 = x2. Note that the eigenvectors are not unique, and these equations will
simply give relationships between the elements of the vector. For example, to
find x2:

(A + 2I)x2 = x1 or




2 1 0
0 2 1

−8 −12 −4







x2,1

x2,2

x2,3


 =




1
−2

4




from which x2,1 = (1 − x2,2)/2 and x2,3 = −2 − 2x2,2. If we let x2,2 = 1 then

the generalized eigenvector is x2 =
[

0 1 −4
]T

. Similarly, we can find x3 =
[
−1/2 1 −1

]T
. The transformation matrix M is

M =
[

x1
... x2

... x3

]
=




1 0 −1/2
−2 1 1

4 −4 −1




and the Jordan form consists of a single third-order block:

J = M−1AM =



−2 1 0

0 −2 1
0 0 −2




The Jordan Form and the Transfer Function: An alternative approach to find-
ing a Jordan form for a controllable system is based on the transfer function. Consider a
single-input single-output system with an nth order transfer function H(s), and eigenvalues
λ1, λ2 . . . λn

H(s) = C (sI−A)−1 B + D

=
N(s)

(s− λ1)(s− λ2) . . . (s− λn)
(9)
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If the eigenvalues are distinct, H(s) may be expressed in partial fractions:

H(s) =
c1

(s− λ1)
+

c2

(s− λ2)
+ . . . +

cn

(s− λn)
, (10)

where the constants ci are the residues at the poles λi. Then the system output is

Y (s) = c1
U(s)

(s− λ1)
+ c2

U(s)

(s− λ2)
+ . . . + cn

U(s)

(s− λn)
(11)

which is a parallel representation based on uncoupled first-order blocks. If we assign state
variables xi as the output of each such block, the set of state and output equations may be
written

ẋ1 = λx1 + u

ẋ2 = λx2 + u
... =

...

ẋn = λxn + u

y = c1x1 + c2x2 . . . + cnxn

or

ẋ =




λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
0 0 0 . . . λn



x +




1
1
...
1




u

y =
[

c1 c2 . . . cn

]
x (12)

which is clearly in diagonal form, as shown in Fig. 3.
When the system contains repeated eigenvalues, the simple partial fraction expansion of

Eq. (10) no longer applies. Instead, the terms involving a pole λi of multiplicity m must be
written as

H(s) =
N(s)

(s− λ1) . . . (s− λi)m . . . (s− λn)

=
c1

(s− λ1)
+ . . . +

(
ci

(s− λi)
+

ci+1

(s− λi)2
+ . . . +

ci+m−1

(s− λi)m

)
+ . . . +

cn

(s− λn)
.

The m terms associated with higher order terms 1/(s−λi)
k may be represented by a cascaded

chain of m first-order blocks, for example Fig. 4 shows the block diagram representation of a
fourth-order transfer function with a repeated eigenvalue λ2 with a multiplicity 2. The state
equation representation is shown in Fig. 4(b), and the state equations are

ẋ =




λ1 0 0 0
0 λ2 1 0
0 0 λ2 0
0 0 0 λ4


 x +




1
0
1
1


 u

y =
[

c1 c2 c3 c4

]
x

which is in Jordan form, with a second-order Jordan block associated with λ2.
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Figure 3: Diagonal form for a system with distinct eigenvalues (a) derived from partial
fraction expansion of the transfer function, and (b) the block diagram for the equivalent
state equations.

Example

Derive a Jordan form representation of the system with transfer function

H(s) =
3s2 + 30s + 72

s5 + 12s4 + 53s3 + 110s2 + 108s + 40

The characteristic equation is (s + 1)(s + 3)3(s + 5) = 0, giving eigenvalues
λ1...5 = −1,−3,−3,−3,−5. The partial fraction expansion of H(s) is

H(s) =
45/4

s + 1
− 8

(s + 2)3
− 34/3

(s + 2)2
− 101/9

(s + 2)
+

1/36

s + 5

Let

X4(s) =
1

s + 2
U(s)

X3(s) =
1

(s + 2)2
U(s) =

1

s + 2
X4(s)

X2(s) =
1

(s + 2)3
U(s) =

1

s + 2
X3(s),
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Figure 4: Diagonal form of a system with a repeated eigenvalue: (a) the block diagram from
the partial fraction expansion of the transfer function, and (b) the block diagram of the
equivalent Jordan form state equations.

then the state equations can be written by inspection

ẋ =




−1 0 0 0 0
0 −2 1 0 0
0 0 −2 1 0
0 0 0 −2 0
0 0 0 0 −5



x +




1
0
0
1
1




u

y =
[

55/4 −8 −34/3 −101/9 −1/36
]
x

which contain a third-order Jordan block representing the three state equations

ẋ2 = −λ2x2 + x3

ẋ3 = −λ2x3 + x4

ẋ4 = −λ2x4 + u

It should be noted that the transfer function describes only the completely controllable and
observable subsystem of (A,B,C,D). Therefore an uncontrollable or unobservable system
will not be described completely by a Jordan form derived from the transfer function. In
addition, because the transfer function is controllable, Theorem 1 guarantees that there will
be at most a single Jordan block in any system represented by a transfer function.

Real System Representation for Complex Eigenvalues: If a system with distinct
eigenvalues has one or more pairs of complex conjugate eigenvalue pairs, the transformed
diagonal form Λ will have an A matrix with complex conjugate elements on the diagonal,
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for example

Λ =




λ1

. . .

σ + jω
σ − jω

. . .

λn




(13)

where the pair of eigenvalues λi,i+1 = σ ± jω. We note that the corresponding eigenvectors
are also complex conjugates.

Example

The system

H(s) =
2

(s + 1)(s2 + 2s + 5)

in phase-variable form is represented by

ẋ =




0 1 0
0 0 1

−5 −7 −3


 x +




0
0
1


 u

y =
[

2 0 0
]
x

with eigenvalues λ1,2,3 = −1,−1 + j2,−1 − j2. A corresponding modal matrix,
and its inverse, are

M =




0.5774 −0.1078 + j0.1437 −0.1078− j0.1437
−0.5774 −0.1796− j0.3592 −0.1796 + j0.3592
0.5774 0.8980 0.8980




M−1 =




2.1651 0.8660 0.4330
−0.6960 + j1.3919 −0.2784 + j1.9487 0.4176 + j0.5568
−0.6960− j1.3919 −0.2784− j1.9487 0.4176− j0.5568




and transformation according to Eqs. (1) gives the diagonal system

ż =



−1 0 0
0 −1 + j2 0
0 0 −1− j20


 z +




0.4330
0.4176 + j0.5568
0.4176− j0.5568


 u

y =
[

1.1547 −0.2155 + j0.2874 −0.2155− j0.2874
]
z

where clearly the equivalent A,B,C matrices are complex.
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It is often desirable to analyze a system using purely real arithmetic, and we now look
at a method that transforms a system with complex conjugate eigenvalues to an “almost”
diagonal form that has purely real elements in the A,B,C,D matrices.

Consider a diagonalized system, described by Eqs. (1), with a single complex conjugate
eigenvalue pair, so that the Λ matrix is as shown in Eq. (13). Apply a further transformation
T using the matrix

T =




1 0
. . .

0.5 −j0.5
0.5 j0.5

. . .

0 1




and T−1 =




1 0
. . .

1 1
j −j

. . .

0 1




(14)

where T is an identity matrix in which the 2× 2 block has replaced the unity terms on the
diagonal on the rows corresponding to the complex eigenvalues. The resulting system is

˙̂z = T−1ΛTẑ + T−1M−1Bu (15)

y = CMTẑ + Du

The resulting A matrix is

Λ̂ = T−1ΛT =




λ1 0
. . .

σ ω
−ω σ

. . .

0 λn




(16)

where the real eigenvalues appear on the leading diagonal, but the complex eigenvalues
appear as a 2× 2 block consisting of the real and imaginary parts.

Example

Transform the diagonalized form of the previous example to have purely real
matrices.

Solution: From Eq. (14) the transformation matrix T is

T =




1 0 0
0 0.5 −j0.5
0 0.5 j0.5


 and T−1 =




1 0 0
0 1 1
0 j −j




and the resulting system is

˙̂z = T−1ΛTẑ + T−1M−1Bu

=



−1 0 0

0 −1 2
0 −2 −1


 ẑ +




0.4330
0.8352

−1.1136


 u

y = CMTẑ + Du

=
[

1.1547 −0.2155 0.2874
]
ẑ + [0] u
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where the system matrices are purely real.

The two transformations may be combined into a single transformation

P = MT

so that the resulting system is

˙̂z = P−1APẑ + P−1Bu (17)

y = CPẑ + Du

where x = Pẑ. Then from the definitions of T and M the transformation matrix P is

P = MT = [v1 | v2 | . . . | < {vi} | = {vi} | . . . | vn] (18)

which is simply a modified form of the modal matrix M in which columns corresponding to
any complex eigenvector pair has been replaced by a pair of columns containing the real and
imaginary parts of those eigenvectors.

Example

Transform the system described in the first example to an almost diagonal system
with real matrices in one step

Solution: From the first example

M =




0.5774 −0.1078 + j0.1437 −0.1078− j0.1437
−0.5774 −0.1796− j0.3592 −0.1796 + j0.3592
0.5774 0.8980 0.8980




The transformation matrix is found by replacing the second and third columns
with the real and imaginary parts of the second column:

P =




0.5774 −0.1078 0.1437
−0.5774 −0.1796 −0.3592

0.5774 0.8980 0




Then

˙̂z = P−1APẑ + P−1Bu

=



−1 0 0

0 −1 2
0 −2 −1


 ẑ +




0.4330
0.8352

−1.1136


 u

y = CPẑ + Du

=
[

1.1547 −0.2155 0.2874
]
ẑ + [0] u

which is the same result as before, but found in a simple single transformation.
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A system having complex conjugate eigenvalues can be transformed to an almost
diagonal form with purely real elements in the system matrices using a transformation
matrix derived from the modal matrix, but in which adjacent columns containing
complex conjugate eigenvectors have been replaced by columns containing the real
and imaginary parts.
The resulting equivalent A matrix will contain real eigenvalues on the diagonal, but
will replace rows corresponding to complex conjugate eigenvalues with a 2× 2 block
containing the real and imaginary parts of the eigenvalue pair.
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