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2.5  Complex Eigenvalues 

 

Real Canonical Form 

 

A semisimple matrix          with complex conjugate eigenvalues can be diagonalized using 

the procedure previously described.  However, the eigenvectors corresponding to the conjugate 

eigenvalues are themselves complex conjugate and the calculations involve working in complex 

n-dimensional space.  There is nothing wrong with this in principle, however the manipulations 

may be a bit messy. 

Example:  Diagonalize the matrix    
   
  

 . 

Eigenvalues are roots of the characteristic polynomial.     .            .  The 

eigenvalues are        and        . 

Eigenvectors are solutions of      .  Obtain     
   
 
   and      

   
 
 .  Then from 

       we need to compute         .  The transformation matrix          .  

Computing     requires care since we have to do matrix multiplication and complex arithmetic at 

the same time. 

If we now want to solve an initial value problem for a linear system involving the matrix  , we 

have to compute       
       
        

   and             .  This matrix product is pretty 

messy to compute by hand.  Even using a symbolic algebra system, we may have to do some 

work to convert our answer for      into real form.   

Carry out the matrix product in Mathematica instead using ComplexDiagonalization1.nb. 

Discuss the commands  Eigenvalues, Eigenvectors, notation for parts of expressions, Transpose, 

MatrixForm, Inverse and the notation for matrix multiplication.  Obtain   and    . ■ 

 

Alternatively, there is the Real Canonical Form that allows us to stay in the real number system.  

Suppose    has eigenvalue       ,  eigenvector        and their complex conjugates.  

Then writing       in real and imaginary parts: 

                      

Taking real and imaginary parts 
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Consider the transformation matrix        .  These equation can be written 

             
  
   

        . 

The exponential of the     block on the right was computed at the end of section 2.3 (Meiss, 

Eq. 2.31). 

 

Example.  Let    
   
  

 .   Find its real canonical form and compute    .  We have already 

found the eigenvalues and eigenvectors.  Setting         we have 

     
 
 
 ,          

 
 
 .   

The transformation matrix and its inverse are  

   
  
  

 ,         
  
   

 .   

Find  

    
  
  

 ,            
  
   

 . 

Using Meiss 2.31 

        
        
           

 . 

 

Compute            .    Find 

           
             
              

  , 

        
               

             
  .   ■ 

 

Diagonalizing  an arbitrary semisimple matrix 
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Suppose    has    real eigenvalues and      pairs of complex conjugate ones.  Let        

   be the corresponding real eigenvectors and                , be the real and imaginary 

parts of the complex conjugate eigenvectors.  The transformation matrix  

                               

 is nonsingular and  

       
    
   
    

   

where  

    
    
     

               . 

The solution of the initial value problem        will involve the matrix exponential 

     
      
   
      

 . 

In this way we compute the matrix exponential of any matrix that is diagonalizable. 

 

2.6 Multiple Eigenvalues 

The commutator of   and   is            .  If  the commutator is zero then   and   

commute.  

Fact.  If          and        ,  then          . 

Proof.                                         . □ 

 

Generalized Eigenspaces 

Let        where           .  Recall that eigenvalue     and eigenvector     satisfy  

        .  This can be rewritten as 

           . 

 

Suppose     has algebraic multiplicity 1.  Then the associated eigenspace is 
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                        . 

 

A space    is invariant under the action of   if      implies      .  For example,    is 

invariant under   by the fact above. 

 

Suppose    is an eigenvalue of   with algebraic multiplicity     .  Define the generalized 

eigenspace of    as 

             
   . 

The symbol    refers to generalized eigenspace but coincides with eigenspace if     . 

A nonzero solution    to        
       is a generalized eigenvector of  . 

 

Lemma 2.5 (Invariance).  Each of the generalized eigenspaces of a linear operator   is invariant 

under  . 

Proof.  Suppose       so that        
      .  Since   and        commute 

       
            

                

                            

                                  
    

                          .   □ 

Let    and    be vector spaces.  The direct sum        is the vector space with elements 

       , where       and        and operations of vector addition and scalar multiplication 

defined by                               and                    , where also 

      and       and          .  For example,       .  

 

Theorem 2.6 (Primary Decomposition).  Let   be a linear operator on a complex vector space 

  with distinct eigenvalues         and let    be the generalized eigenspace of   with 

eigenvalue   .  Then         is the algebraic multiplicity of    and   is the direct sum of the 

generalized eigenspaces, i.e.              . 
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Proof. This is proved in Hirsch and Smale. 

Remark.  We can choose a basis            for each eigenspace.  By theorem 2.6, these can be 

combined to obtain a basis           for       

Warning.  The labeling for generalized eigenvectors given above is Meiss’ notation.  Note that 

the eigenvectors are relabeled to give the basis for  .  This keeps the notation simple but the 

labels must be interpreted correctly depending on context. 

 

Semisimple-Nilpotent Decomposition 

Shift notation from   as linear operator and refer to matrix   instead.  Let      or    and 

      .  Let                   be the diagonal matrix with the eigenvalues of   repeated 

according to multiplicity.  Let           be a basis for   of generalized eigenvectors of  .  

Consider the transformation matrix             and define 

        . 

  is a semisimple matrix.  Multiply by   on the right to obtain       .  The i^th component of 

this result is         , where        are the distinct eigenvalues of   and      .   Think of 

  as the diagonalizable part of  .   

Consider an arbitrary       Then   can be expressed as a linear combination of the basis 

vectors for   :         
  
    .  We then have 

         
  
       

  
             . 

Within   ,   acts as a multiple of the identity operator.  In particular,     is invariant under the 

action of  . 

 

Lemma 2.7  Let      , where        .  Then    commutes with     and is nilpotent 

with order at most  , the maximum of the algebraic multiplicities of  . 

Remark 1.    is nilpotent of order    means the same thing as    has nilpotency  .  

Remark 2. Since the generalized eigenspace    of   is invariant under the action of both   and 

 , it is also invariant under the action of  . 

Proof.  See the text;  plan to give it in class.  Note that there are two parts: (1) show         

and (2)  show   nilpotent. 
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Theorem 2.8.  A matrix   on a complex vector space   has a unique decomposition      , 

where   is semisimple,   is nilpotent and        . 

Proof.  Not in lecture. See text. 

 

The Exponential 

Let       , then by lemma 2.7         where        .  Further, we have        , 

            and     , where   is the maximum algebraic multiplicity of the eigenvalues.    

Then, using the law of exponents for commuting matrices and the series definition of the 

exponential 

[1]                     
     

  

   
     

This formula allows us to compute the exponential of an arbitrary matrix.  Combine this result 

with the fundamental theorem to find an analytical solution for any linear system. 

 

Example.  Solve the initial value problem       with      given and    
  
   

 . 

By the fundamental theorem,             .  We need to compute    .            and 

          .  The characteristic equation is          .  The root      has 

multiplicity 2. Then 

   
  
  

    . 

Every matrix commutes with the identity matrix, so that             .  Then 

            
   
   

 . 

Notice that        .  N has nilpotency 2.  Then using [1] 

                  
    
     

 , 

                 
    
     

  
     

     
      

                 

                  
 . 
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Notice that if                  the straight line solution       
 
 
  is obtained, where  

 
 
  is 

the eigenvector associated with  .  However the full phase portrait is most easily visualized using 

a computer. 

phase portrait drawn by a computer 

 

Example.  Solve the initial value problem      ,         where    
     
    
   

 . 

Since   is upper triangular, the eigenvalues can be read off the main diagonal.        has 

multiplicity      and      has multiplicity     .  The generalized eigenspace associated 

with    is              
           .  Find 

        
   
   
   

 . 

A choice for generalized eigenvectors spanning    is           
  and           

    The 

generalized eigenspace associated with    is             .  Find 

     
     
    
   

  . 

Let           
 .  The transformation matrix is  

              
   
   
   

 . 

Notice that   is block diagonal.  Its inverse     is also block diagonal, with each block the 

inverse of the corresponding block in     Then 

     
   
    
   

 . 

We are now ready to find   and             where                .  Obtain 

   
    
    
   

   and         
    
   
   

     It’s easy to check     . 

Then     is given by 
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                        ,  where                      . 

The solution of the initial value problem is             

 

Jordan Form 

Let        where      or   .    cannot always be diagonalized by a similarity 

transformation, but it can always be transformed into Jordan canonical form, which gives a 

simple form for the nilpotent part of  .  Finding a basis of generalized eigenvectors that reduces 

  to this form is generally difficult by hand,  but computer algebra systems like Mathematica 

have built in commands that perform the computation.  Finding the Jordan form is not necessary 

for the solution of linear systems and is not described by Meiss in chapter 2.  However, it is the 

starting point of some treatments of center manifolds and normal forms, which systematically 

simplify and classify systems of nonlinear ODEs.  This subsection follows the first part of 

section 1.8 in Perko closely.  The following theorem is described by Perko and proved in Hirsch 

and Smale: 

Theorem (The Jordan Canonical Form).  Let   be a real matrix with real eigenvalues      

      and complex eigenvalues           and                     .  Then there 

exists a basis                            for      , where   ,         are generalized 

eigenvectors of  , the first   of these are real and                     for     

     .  The matrix                               is invertible and  

       
    
   
    

  , 

where the elementary Jordan blocks              are either of the form 

  

 

 
 

     
     
     
     
      

 
 

 , [2] 

for   one of the real eigenvalues of   or of the form 

  

 

 
 

      
      
     
      
      

 
 

 , [3] 
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with 

   
  
   

 ,       
  
  

  and     
  
  

 , 

for        one of the complex eigenvalues of  . 

 

The Jordan form yields some explicit information about the form of the solution on the initial 

value problem 

                     [4] 

which, according to the Fundamental Solution Theorem, is given by 

                            . 

If      is an     matrix of form [2] and   is a real eigenvalue of    then        where  

  

 

 
 

     
     
     
     
      

 
 

  

is nilpotent of order   and  

    

      
      
      
      

 ,                ….                

      
      
      
      

  

Then 

               

                   

               
     
     

 . 

Similarly, if       is an       matrix of form [3] and        is a complex eigenvalue 

of  , then             where 
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is nilpotent of order   and 

                            

              
          

          
          

     
        

   

                                      

                      

                 
     
     

 , 

where   is the rotation matrix 

       
                
                 

 . 

This form of the solution to [3] leads to the following result. 

Corollary.  Each coordinate in the solution      of the initial value problem [4] is a linear 

combination of functions of form 

               or              , 

where         is an eigenvalue of the matrix   and        . 

More precisely, we have        , where   is the largest order of the elementary Jordan 

blocks. 

 

2.7 Linear Stability 

Let          The solution of      ,           is           , and each component is a 

sum of terms proportional to an exponential     , for an eigenvalue    of  .  The real parts of 

these eigenvalues determine whether the terms are exponentially growing or decaying.  Denote 

the generalized eigenvectors            and define 

                          is the unstable eigenspace, 

                          is the center eigenspace and 

                          is the stable eigenspace. 

According to Lemma 2.5 each of the generalized eigenspaces is invariant under the action of     

   is the direct sum of the generalized eigenspaces corresponding to eigenvalues with positive 
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real part and it is also invariant under the action of  .  Similarly,     and    are invariant.    is 

the direct sum           . 

 

We can consider the action of   in each subspace by considering restricted operators.        

denotes the restriction of   to   , etc.  This corresponds to the fact that         is block 

diagonal.  For example,   can always be brought to Jordan canonical form. 

 

A system is linearly stable if all its solutions are bounded as    .   If     
  then       is 

always bounded. 

Lemma 2.9.  If   is an     matrix and     
 , the stable space of  , then there are constants 

    and     such that 

                     . 

Consequently,                 

 

Remark.  This result is very reasonable.  From [1], each component of the solution will be 

proportional to    for some eigenvalue  , and by hypothesis               is chosen so that 

for each such eigenvalue       .  The maximum power of   that appears in any component 

of     
      is    , where   is the maximum multiplicity of any eigenvalue in      .  For   

sufficiently large, the exponentially decaying terms must dominate the powers of t.  For details 

of the proof see Meiss. 

 

A linear system is asymptotically linearly stable if all of its solutions approach 0 as    . 

Theorem 2.10 (Asymptotic Linear Stability).         
       for all    if and only if all 

eigenvalues of   have negative real parts. 

Proof. If all eigenvalues have negative real part, lemma 2.9 implies        
         If an 

eigenvalue   has positive real part, then there is a straight line solution,            where   is 

an eigenvector of  , that grows without bound.  If there is an eigenvalue      with zero real 

part, the solutions in this subspace have terms of the form        that do not go to zero.□ 
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A system with no center subspace is hyperbolic.  Lemma 2.9 and Theorem 2.10 describe 

properties of these systems that depend only on the signs of their eigenvalues.   

In contrast, the stability of systems with a center subspace can be affected by the nilpotent part of 

    The proof of theorem 2.10 suggests why these systems cannot be asymptotically stable.  

Solutions of the 2D center described in section 2.2 are bounded.  However, center systems with 

nonzero nilpotent parts have solutions that are unbounded (Perko, section 1.9, problem 5(d)). 

 

Routh-Hurwitz Stability Criteria 

These criteria determine whether the roots of a polynomial have all negative real parts.  When 

applied to the characteristic polynomial associated with a linear system of equations, they test for 

asymptotic stability of the equilibrium point.  In the 2D case, the characteristic polynomial is 

            . 

It is easy to see that all of the eigenvalues have negative real parts if     and    .  All of the 

coefficients of the characteristic polynomial must be positive.  In the 3D case, the characteristic 

polynomial is  

                         
          . 

All of the eigenvalues have negative real parts if and only if     and       .  See Meiss, 

problem 2.11.  The positivity of the coefficients of the characteristic polynomial is necessary but 

not sufficient. Analogous stability criteria are available for higher order polynomials. 

In some cases, it may be much easier to study the stability of a linear system using these criteria 

than by finding the eigenvalues. 

 

2.8 Nonautonomous Linear Systems and Floquet Theory 

Let        .  The initial value problem for an autonomous linear system 

     ,         , [1] 

can arise from linearization about an equilibrium point.   As we shall see in chapter 5,  when   is 

hyperbolic this system gives a good approximation to the behavior of nearby trajectories.  

sketch  The solution of [1] is given by the Fundamental Solution Theorem 

          . 

The initial value problem for the non-autonomous linear system 
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        ,          , [2] 

can arise from linearization about a periodic orbit.  In this case               , where      

is the periodic orbit and      is another trajectory close to the orbit.  sketch  Higher order terms 

are dropped to arrive at [2], but the solution of [2]  may give a good approximation to the 

behavior of the nearby trajectory. See chapter 4 .  Floquet theory discusses the solution of [2] 

when    is periodic.  Let the period be  .   

 

The fundamental matrix solution corresponding to [2] is the solution of the initial value problem 

 

  
                  . [3] 

           
    is the solution at time   of the initial value problem that begins at time   .  

Note that, if         solves [3] then                solves [2].  

 

A trajectory that starts at an initial time   and ends at time   may be decomposed into two parts.  

The first from time   to time   and the second from time   to time  .  Mathematically,   satisfies 

                   . 

Then                 and                                            . 

Suppose that   has period   and consider the solution of [3] with     . The monodromy 

matrix is the solution of the initial value problem after one period 

        . 

Then the solution of [2] with      after one period is                  .  Consider the 

trajectory during the second period.  It is the solution of the initial value problem 

                 . 

Define a new time variable      , and use             to see that this is the same as 

[2] with      and    replaced by    .  Therefore the solution of [2], with     , after two 

periods is           .  After   periods           . 

 

The eigenvalues of   are the Floquet multipliers.  Suppose the initial condition    of [2], with 

  =0, is also an eigenvector of   and   is the corresponding eigenvalue.  Then 

                   , 
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where      is the corresponding Floquet exponent.  Meiss discusses the fact that the monodromy 

matrix is nonsingular; see Theorem 2.11.  Therefore the Floquet multipliers are all nonzero and 

the Floquet exponents are well defined.  However, it is perfectly possible for a Floquet multiplier 

to be negative, in this case the corresponding exponent would be pure imaginary. 

 

Floquet theory will be concerned with the logarithm of the monodromy matrix.  We next define 

the matrix logarithm.  Begin with a preliminary remark. 

The matrix exponential    was defined by a series expansion patterned after the Maclaurin series 

for    where    .  A similar procedure will be used to define the logarithm of a nilpotent 

matrix.  Recall                 , converging for      .   If we now integrate both 

sides and evaluate the constant of integration, we find            
  

 
 

  

 
  , also 

converging for      .  Now replace              , where    is a nilpotent matrix, to 

obtain 

           
 

 
       

   . [4] 

There are no convergence issues because    is nilpotent! 

Lemma 2.12  Any nonsingular matrix   has a (possibly complex) logarithm 

               
 

 
           

   . 

Here,       is the semisimple-nilpotent decomposition,                            with 

eigenvalues    of   repeated according to multiplicity,   is the maximum algebraic multiplicity 

of any eigenvalue and   is the matrix of generalized eigenvectors of  . 

Proof.   As usual let                       and define        as given above.  Since   is 

nonsingular, none of the eigenvalues are zero.  Then 

                         
  

 , 

thus              .  This is the formula for the logarithm of a semisimple matrix.  In 

general, 

               . 

Since        ,                   , so      is nilpotent.  Let         in the 

remark above.  Then the logarithm of        is given by [4].  By analogy with        

       , we claim                   is the logarithm of     If      and             

commute, then 
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                , 

and   is the logarithm of      

To see that     and             commute, note that in each generalized eigenspace    the 

action of     is multiplication by       and therefore is proportional to the identity matrix.     is 

also invariant under the action of             , which given by [4] with        .  Every 

matrix commutes with the identity matrix, and therefore     and             commute.  □ 

 

Remark.  The logarithm of a complex number is many-valued.  Consider       If        

then                with   an integer.  To obtain the logarithm function, a consistent 

choice must be made for the imaginary part.  In the same way, when   has an eigenvalue   that 

is not positive, a consistent choice must be made for the imaginary part of     when     is 

formed. 

 

Example.  Find the logarithm of    
        
         

   

The roots of the characteristic equation give               .  Then    
   
   

  and, 

recalling Euler’s formula,       
   
    

      Write           and solve for the 

components of     to find           and       .  The transformation matrices are   

 
  
   

  and     
 

 
 
   
  

 .  Finally                
  
   

    .  ■ 

Example.  Find the logarithm of    

 

 
 

 
 

 

 . 

Since   is upper triangular, the eigenvalues are on the main diagonal.    has 1 eigenvalue, 

     , with multiplicity       The associated generalized eigenspace is all of       The 

simplest choice for a basis is           and          .  Then the transformation matrices 

are        .  We thus have  

         
     
     

 . 

  has a nilpotent part so we have another term in the logarithm to compute.  Note     
 

 
 . 
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Let        
  
  

 .  Then            
  
  

   
  
  

 .  According to [4]      

             

                  
     
     

 .  ■ 

 

Recall that we are trying to characterize the solutions      of the initial value problem for a  -

periodic linear system [2].  The fundamental matrix solution         is the solution of the matrix 

initial value problem [3].  Any solution of [2] can be written                  The 

monodromy matrix is the solution of [3], with     , after one period:            

Theorem 2.13 (Floquet).  Let   be the monodromy matrix for a  -periodic linear system 

         and        its logarithm.  Then there exists a  -periodic matrix   such that the 

fundamental solution is  

              . 

Proof.  Give as in the text. 

Remark.  Note that              .  This implies         for   an integer.  Then 

                 
          .  However, when   is not an integer multiple of a 

period the matrices   and     may be complex (consider       when     is the square root of 

 ).  

 Alternatively there is a real form of Floquet’s theorem.  It is based upon the fact that the square 

of any real matrix   has a real logarithm (Exercise #21). 

Theorem 2.14.  Let   be the fundamental matrix solution for the time T-periodic linear system 

[2].  Then there exists a real   -periodic matrix   and a real matrix   such that 

              . 

Proof.   From exercise 21, for any nonsingular matrix   there is a real matrix    such that 

          Define                , and then 

                                               . 

Therefore,   is   -periodic.  □ 


