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Abstract

In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM

learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise

phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and

Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-

windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and

suggest that BLSTM is an effective architecture with which to exploit it.1

q 2005 Elsevier Ltd. All rights reserved.
1. Introduction

For neural networks, there are two main ways of

incorporating context into sequence processing tasks:

collect the inputs into overlapping time-windows, and

treat the task as spatial; or use recurrent connections to

model the flow of time directly. Using time-windows has

two major drawbacks: firstly the optimal window size is task

dependent (too small and the net will neglect important

information, too large and it will overfit on the training

data), and secondly the network is unable to adapt to shifted

or timewarped sequences. However, standard RNNs (by

which we mean RNNs containing hidden layers of

recurrently connected neurons) have limitations of their

own. Firstly, since they process inputs in temporal order,

their outputs tend to be mostly based on previous context

(there are ways to introduce future context, such as adding a

delay between the outputs and the targets; but these do not

usually make full use of backwards dependencies).

Secondly they are known to have difficulty learning
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time-dependencies more than a few timesteps long

(Hochreiter et al., 2001). An elegant solution to the first

problem is provided by bidirectional networks (Section 2).

For the second problem, an alternative RNN architecture,

LSTM, has been shown to be capable of learning long time-

dependencies (Section 3).

Our experiments concentrate on framewise phoneme

classification (i.e. mapping a sequence of speech frames to

a sequence of phoneme labels associated with those

frames). This task is both a first step towards full speech

recognition (Robinson, 1994; Bourlard and Morgan,

1994), and a challenging benchmark in sequence

processing. In particular, it requires the effective use of

contextual information.

The contents of the rest of this paper are as follows: in

Section 2 we discuss bidirectional networks, and answer a

possible objection to their use in causal tasks; in Section 3

we describe the Long Short Term Memory (LSTM) network

architecture, and our modification to its error gradient

calculation; in Section 4 we describe the experimental data

and how we used it in our experiments; in Section 5 we give

an overview of the various network architectures; in Section

6 we describe how we trained (and retrained) them; in

Section 7 we present and discuss the experimental results,

and in Section 8 we make concluding remarks. Appendix A

contains the pseudocode for training LSTM networks with a

full gradient calculation, and Appendix B is an outline of

bidirectional training with RNNs.
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2. Bidirectional recurrent neural nets

The basic idea of bidirectional recurrent neural nets

(BRNNs) (Schuster and Paliwal, 1997; Baldi et al., 1999)

is to present each training sequence forwards and backwards

to two separate recurrent nets, both of which are connected

to the same output layer. (In some cases a third network is

used in place of the output layer, but here we have used the

simpler model). This means that for every point in a given

sequence, the BRNN has complete, sequential information

about all points before and after it. Also, because the net is

free to use as much or as little of this context as necessary,

there is no need to find a (task-dependent) time-window or

target delay size. In Appendix B we give an outline of the

bidirectional algorithm, and Fig. 1 illustrates how
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Fig. 1. A bidirectional LSTM net classifying the utterance ‘one oh five’

from the Numbers95 corpus. The different lines represent the activations (or

targets) of different output nodes. The bidirectional output combines the

predictions of the forward and reverse subnets; it closely matches the target,

indicating accurate classification. To see how the subnets work together,

their contributions to the output are plotted separately (‘Forward Net Only’

and ‘Reverse Net Only’). As we might expect, the forward net is more

accurate. However there are places where its substitutions (‘W’), insertions

(at the start of ‘ow’) and deletions (‘f’) are corrected by the reverse net. In

addition, both are needed to accurately locate phoneme boundaries, with the

reverse net tending to find the starts and the forward net tending to find the

ends (‘ay’ is a good example of this).
the forwards and reverse subnets combine to classify

phonemes. BRNNs have given improved results in sequence

learning tasks, notably protein structure prediction (PSP)

(Baldi et al., 2001; Chen and Chaudhari, 2004) and speech

processing (Schuster, 1999; Fukada et al., 1999).

2.1. Bidirectional networks and online causal tasks

In a spatial task like PSP, it is clear that any distinction

between input directions should be discarded. But for

temporal problems like speech recognition, relying on

knowledge of the future seems at first sight to violate

causality—at least if the task is online. How can we base our

understanding of what we have heard on something that has

not been said yet? However, human listeners do exactly that.

Sounds, words, and even whole sentences that at first mean

nothing are found to make sense in the light of future

context. What we must remember is the distinction between

tasks that are truly online—requiring an output after every

input—and those where outputs are only needed at the end

of some input segment. For the first class of problems

BRNNs are useless, since meaningful outputs are only

available after the net has run backwards. But the point is

that speech recognition, along with most other ‘online’

causal tasks, is in the second class: an output at the end of

every segment (e.g. sentence) is fine. Therefore, we see no

objection to using BRNNs to gain improved performance on

speech recognition tasks. On a more practical note, given

the relative speed of activating neural nets, the delay

incurred by running an already trained net backwards as

well as forwards is small.

In general, the BRNNs examined here make the

following assumptions about their input data: that it can

be divided into finitely long segments, and that the effect of

each of these on the others is negligible. For speech corpora

like TIMIT, made up of separately recorded utterances, this

is clearly the case. For real speech, the worst it can do is

neglect contextual effects that extend across segment

boundaries—e.g. the ends of sentences or dialogue turns.

Moreover, such long term effects are routinely neglected by

current speech recognition systems.
3. LSTM

The Long Short Term Memory architecture (Hochreiter

and Schmidhuber, 1997; Gers et al., 2002) was motivated by

an analysis of error flow in existing RNNs (Hochreiter et al.,

2001), which found that long time lags were inaccessible to

existing architectures, because backpropagated error either

blows up or decays exponentially.

An LSTM layer consists of a set of recurrently

connected blocks, known as memory blocks. These

blocks can be thought of as a differentiable version of

the memory chips in a digital computer. Each one

contains one or more recurrently connected memory cells
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and three multiplicative units—the input, output and

forget gates—that provide continuous analogues of write,

read and reset operations for the cells. More precisely,

the input to the cells is multiplied by the activation of

the input gate, the output to the net is multiplied by that

of the output gate, and the previous cell values are

multiplied by the forget gate. The net can only interact

with the cells via the gates.

Recently, we have concentrated on applying LSTM to

real world sequence processing problems. In particular, we

have studied isolated word recognition (Graves et al.,

2004b; Graves et al., 2004a) and continuous speech

recognition (Eck et al., 2003; Beringer, 2004b).

3.1. LSTM gradient calculation

The original LSTM training algorithm (Gers et al.,

2002) used an error gradient calculated with a combi-

nation of Real Time Recurrent Learning

(RTRL)(Robinson and Fallside, 1987) and Back Propa-

gation Through Time (BPTT)(Williams and Zipser, 1995).

The backpropagation was truncated after one timestep,

because it was felt that long time dependencies would be

dealt with by the memory blocks, and not by the

(vanishing) flow of backpropagated error gradient. Partly

to check this assumption, and partly to ease the

implementation of Bidirectional LSTM, we calculated

the full error gradient for the LSTM architecture. See

Appendix A for the revised pseudocode. For both

bidirectional and unidirectional nets, we found that using

the full gradient gave slightly higher performance than the

original algorithm. It had the added benefit of making

LSTM directly comparable to other RNNs, since it could

now be trained with standard BPTT. Also, since the full

gradient can be checked numerically, its implementation

was easier to debug.
4. Experimental data

The data for our experiments came from the TIMIT

corpus (Garofolo et al., 1993) of prompted utterances,

collected by Texas Instruments. The utterances were chosen

to be phonetically rich, and the speakers represent a wide

variety of American dialects. The audio data is divided into

sentences, each of which is accompanied by a complete

phonetic transcript.

We preprocessed the audio data into 12 Mel-Frequency

Cepstrum Coefficients (MFCC’s) from 26 filter-bank

channels. We also extracted the log-energy and the first

order derivatives of it and the other coefficients, giving a

vector of 26 coefficients per frame. The frame size was

10 ms and the input window was 25 ms.

For consistency with the literature, we used the complete

set of 61 phonemes provided in the transcriptions for

classification. In full speech recognition, it is common
practice to use a reduced set of phonemes (Robinson, 1991),

by merging those with similar sounds, and not separating

closures from stops.
4.1. Training and testing sets

The standard TIMIT corpus comes partitioned into

training and test sets, containing 3696 and 1344 utterances

respectively. In total there were 1,124,823 frames in the

training set, and 410,920 in the test set. No speakers or

sentences exist in both the training and test sets. We used

184 of the training set utterances (chosen randomly, but kept

constant for all experiments) as a validation set and trained

on the rest. All results for the training and test sets were

recorded at the point of lowest cross-entropy error on the

validation set.
5. Network architectures

We used the following five neural network architectures

in our experiments (henceforth referred to by the abbrevi-

ations in brackets):

† Bidirectional LSTM, with two hidden LSTM layers

(forwards and backwards), both containing 93 one-cell

memory blocks of one cell each (BLSTM)

† Unidirectional LSTM, with one hidden LSTM layer,

containing 140 one cell memory blocks, trained back-

wards with no target delay, and forwards with delays

from 0 to 10 frames (LSTM)

† Bidirectional RNN with two hidden layers containing

185 sigmoidal units each (BRNN)

† Unidirectional RNN with one hidden layers containing

275 sigmoidal units, trained with target delays from 0 to

10 frames (RNN)

† MLP with one hidden layer containing 250 sigmoidal

units, and symmetrical time-windows from 0 to 10

frames (MLP)

All nets contained an input layer of size 26 (one for

each MFCC coefficient), and an output layer of size 61

(one for each phoneme). The input layers were fully

connected to the hidden layers and the hidden layers

were fully connected to the output layers. For the

recurrent nets, the hidden layers were also fully

connected to themselves. The LSTM blocks had the

following activation functions: logistic sigmoids in the

range [K2, 2] for the input and output squashing

functions of the cell, and in the range [0, 1] for the

gates. The non-LSTM nets had logistic sigmoid

activations in the range [0, 1] in the hidden layers. All

units were biased.

None of our experiments with more complex network

topologies (e.g. multiple hidden layers, several LSTM cells
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Fig. 2. The best exemplars of each architecture classifying the excerpt ‘at a

window’ from an utterance in the TIMIT database. In general, the networks

found the vowels more difficult (here, ‘ix’ is confused with ‘ah’, ‘ah’ with

‘ax’ and ‘axr’, and ‘ae’ with ‘eh’), than the consonants (e.g. ‘w’ and ‘n’),

which in English are more distinct. For BLSTM, the net with duration

weighted error tends to do better on short phones, (e.g. the closure and stop

‘dcl’, and ‘d’), and worse on longer ones (‘ow’), as expected. Note the more

jagged trajectories for the MLP net (e.g. for ‘q’ and ‘ow’); this presumably

comes from having no recurrency to smooth the outputs.
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per block, direct connections between input and output

layers) led to improved results (Fig. 2).
5.1. Computational complexity

The hidden layer sizes were chosen to ensure that all

networks had roughly the same number of weights W

(z100,000). However, for the MLPs the network grew with

the time-window size, and W varied between 22,061 and

152,061. For all networks, the computational complexity

was dominated by the O(W) feedforward and feedback

operations. This means that the bidirectional nets and the

LSTM nets did not take significantly more time to train per
epoch than the unidirectional or RNN or (equivalently

sized) MLP nets.

5.2. Range of context

Only the bidirectional nets had access to the complete

context of the frame being classified (i.e. the whole input

sequence). For MLPs, the amount of context depended on

the size of the time-window. The results for the MLP with

no time-window (presented only with the current frame)

give a baseline for performance without context infor-

mation. However, some context is implicitly present in the

window averaging and first-derivatives of the preprocessor.

Similarly, for unidirectional LSTM and RNN, the

amount of future context depended on the size of target

delay. The results with no target delay (trained forwards or

backwards) give a baseline for performance with context in

one direction only.

5.3. Output layers

For the output layers, we used the cross entropy error

function and the softmax activation function, as is standard

for 1 of K classification (Bishop, 1995). The softmax

function ensures that the network outputs are all between

zero and one, and that they sum to one on every timestep.

This means they can be interpreted as the posterior

probabilities of the phonemes at a given frame, given all

the inputs up to the current one (with unidirectional nets)

or all the inputs in the whole sequence (with bidirectional

nets).

Several alternative error functions have been studied for

this task (Chen and Jamieson, 1996). One modification in

particular has been shown to have a positive effect on full

speech recognition. This is to weight the error according to

the duration of the current phoneme, ensuring that short

phonemes are as significant to the training as longer ones.

However, we recorded a slightly lower framewise classifi-

cation score with BLSTM trained with this error function

(see Section 7.4).
6. Network training

For all architectures, we calculated the full error gradient

using online BPTT (BPTT truncated to the lengths of the

utterances), and trained the weights using gradient descent

with momentum. We kept the same training parameters for

all experiments: initial weights randomised in the range

[K0.1,0.1], a learning rate of 10K5 and a momentum of 0.9.

At the end of each utterance, weight updates were carried

out and network activations were reset to 0.

Keeping the training algorithm and parameters constant

allowed us to concentrate on the effect of varying the

architecture. However it is possible that different training

methods would be better suited to different networks.



Table 2

Framewise phoneme classification on the timit database: main results

Network Training

set (%)

Test set

(%)

Epochs

BLSTM (retrained) 78.6 70.2 17

BLSTM 77.4 69.8 20.1

BRNN 76.0 69.0 170

BLSTM (Weighted Error) 75.7 68.9 15

LSTM (5 frame delay) 77.6 66.0 34

RNN (3 frame delay) 71.0 65.2 139

LSTM (backwards, 0 frame delay) 71.1 64.7 15

LSTM (0 frame delay) 70.9 64.6 15

RNN (0 frame delay) 69.9 64.5 120

MLP (10 frame time-window) 67.6 63.1 990

MLP (no time-window) 53.6 51.4 835

RNN (Chen and Jamieson, 1996) 69.9 74.2 –

RNN (Robinson, 1994; Schuster, 1999) 70.6 65.3 –

BRNN (Schuster, 1999) 72.1 65.1 –
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6.1. Retraining

For the experiments with varied time-windows or target

delays, we iteratively retrained the networks instead of

starting again from scratch. For example, for LSTM with a

target delay of 2, we first trained with delay 0, then took the

best net and retrained it (without resetting the weights) with

delay 1, then retrained again with delay 2. To find the best

networks, we retrained the LSTM nets for 5 epochs at each

iteration, the RNN nets for 10, and the MLPs for 20. It is

possible that longer retraining times would have given

improved results. For the retrained MLPs, we had to add

extra (randomised) weights from the input layers, since the

input size grew with the time-window.

Although primarily a means to reduce training time, we

have also found that retraining improves final performance

(Graves et al., 2005; Beringer, 2004a). Indeed, the best

result in this paper was achieved by retraining (on the

BLSTM net trained with a weighted error function, then

retrained with normal cross-entropy error). The benefits

presumably come from escaping the local minima that

gradient descent algorithms tend to get caught in.
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7. Results

Table 1 contains the outcomes of 7, randomly initialised,

training runs with BLSTM. For the rest of the paper, we use

their mean as the result for BLSTM. The standard deviation

in the test set scores (0.2%) gives an indication of significant

difference in network performance.

The last three entries in Table 2 come from the papers

indicated (note that Robinson did not quote framewise

classification scores; the result for his network was recorded

by Schuster, using the original software). The rest are from

our own experiments. For the MLP, RNN and LSTM nets

we give the best results, and those achieved with least

contextual information (i.e. with no target delay/time-

window). The number of epochs includes both training

and retraining.
Table 1

Framewise phoneme classification on the timit database: bidirectional

LSTM

Network Training set

score (%)

Test set score

(%)

Epochs

BLSTM (1) 77.0 69.7 20

BLSTM (2) 77.9 70.1 21

BLSTM (3) 77.3 69.9 20

BLSTM (4) 77.8 69.8 22

BLSTM (5) 77.1 69.4 19

BLSTM (6) 77.8 69.8 21

BLSTM (7) 76.7 69.9 18

Mean 77.4 69.8 20.1

Standard deviation 0.5 0.2 1.3
There are some differences between the results quoted in

this paper and in our previous work (Graves and

Schmidhuber, 2005). The most significant of these is the

improved score we achieved here with the bidirectional

RNN (69.0% instead of 64.7%). Previously we had stopped

the BRNN after 65 epochs, when it appeared to have

converged; here, however, we let it run for 225 epochs

(10 times as long as LSTM), and kept the best net on the

validation set, after 170 epochs. As can be seen from Fig. 3

the learning curves for the non LSTM networks are very
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Fig. 3. Framewise phoneme classification results for all networks on the

TIMIT test set. The number of frames of introduced context (time-window

size for MLPs, target delay size for unidirectional LSTM and RNNs) is

plotted along the x axis. Therefore the results for the bidirectional nets

(clustered around 70%) are plotted at xZ0.
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slow, and contain several sections where the error

temporarily increases, making it difficult to know when

training should be stopped.

The results for the unidirectional LSTM and RNN nets

are also better here; this is probably due to our use of larger

networks, and the fact that we retrained between different

target delays. Again it should be noted that at the moment

we do not have an optimal method for choosing retraining

times.
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Fig. 4. Learning curves for BLSTM, BRNN and MLP with no time-

window. For all experiments, LSTM was much faster to converge than

either the RNN or MLP architectures.
7.1. Comparison between LSTM and Other Architecture

The most obvious difference between LSTM and the

RNN and MLP nets was the training time (see Fig. 3). In

particular, the BRNN took more than 8 times as long to

converge as BLSTM, despite having more or less equal

computational complexity per time-step (see Section 5.1).

There was a similar time increase between the uni-

directional LSTM and RNN nets, and the MLPs were

slower still (990 epochs for the best MLP result).

The training time of 17 epochs for our most accurate

network (retrained BLSTM) is remarkably fast, needing

just a few hours on an ordinary desktop computer.

Elsewhere we have seen figures of between 40 and 120

epochs quoted for RNN convergence on this task, usually

with more advanced training algorithms than the one used

here.

A possible reason why RNNs took longer to train than

LSTM on this task is that they require more fine-tuning of

their weights to make use of the contextual information,

since their error signals tend to decay after a few timesteps.

A detailed analysis of the evolution of the weights would be

required to check this.

As well as being faster, the LSTM nets were also slightly

more accurate. Although the final difference in score

between BLSTM and BRNN on this task is small (0.8%)

the results in Table 1 strongly suggest that it is significant.

The fact that the difference is not larger could mean that

long time dependencies (more than 10 timesteps or so) are

not very helpful to this task.

It is interesting to note how much more prone to

overfitting LSTM was than standard RNNs. For LSTM,

after only 15–20 epochs the performance on the validation

and test sets would begin to fall, while that on the training

set would continue to rise (the highest score we recorded

on the training set with BLSTM was 86.4%, and still

improving). With the RNNs on the other hand, we never

observed a large drop in test set score. This suggests a

difference in the way the two architectures learn. Given

that in the TIMIT corpus no speakers or sentences are

shared by the training and test sets, it is possible that

LSTM’s overfitting was partly caused by its better

adaptation to long range regularities (such as phoneme

ordering within words, or speaker specific pronunciations)

than normal RNNs. If this is true, we would expect
a greater distinction between the two architectures on tasks

with more training data.

7.2. Comparison with previous work

Overall BLSTM outperformed any neural network we

found in the literature on this task, apart from the RNN used

by Chen and Jamieson. Their result (which we were unable

to approach with standard RNNs) is surprising as they quote

a substantially higher score on the test set than the training

set: all other methods reported here were better on the

training than the test set, as expected.

In general, it is difficult to compare with previous work

on this task, owing to the many variations in training data

(different preprocessing, different subsets of the TIMIT

corpus, different target representations) and experimental

method (different learning algorithms, error functions,

network sizes etc). This is why we reimplemented all the

architectures ourselves.

7.3. Effect of increased context

As is clear from Fig. 4 networks with access to more

contextual information tended to get better results.

In particular, the bidirectional networks were substantially

better than the unidirectional ones. For the unidirectional

nets, note that LSTM benefits more from longer target

delays than RNNs; this could be due to LSTM’s greater

facility with long timelags, allowing it to make use of the

extra context without suffering as much from having to

remember previous inputs.
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Interestingly, LSTM with no time delay returns almost

identical results whether trained forwards or backwards.

This suggests that the context in both directions is

equally important. However, with bidirectional nets,

the forward subnet usually dominates the outputs (see

Fig. 1).

For the MLPs, performance increased with time-window

size, and it appears that even larger windows would have

been desirable. However, with fully connected networks,

the number of weights required for such large input layers

makes training prohibitively slow.

7.4. Weighted error

The experiment with a weighted error function gave

slightly inferior framewise performance for BLSTM

(68.9%, compared to 69.7%). However, the purpose of

this weighting is to improve overall phoneme recognition,

rather than framewise classification (see Section 5.3). As a

measure of its success, if we assume a perfect knowledge of

the test set segmentation (which in real-life situations we

cannot), and integrate the network outputs over each

phoneme, then BLSTM with weighted errors gives a

phoneme correctness of 74.4%, compared to 71.2% with

normal errors.
8. Conclusion and future work

In this paper we have compared bidirectional LSTM to

other neural network architectures on the task of framewise

phoneme classification. We have found that bidirectional

networks are significantly more effective than unidirectional

ones, and that LSTM is much faster to train than standard

RNNs and MLPs, and also slightly more accurate. We

conclude that bidirectional LSTM is an architecture well

suited to this and other speech processing tasks, where

context is vitally important.

In the future we would like to apply BLSTM to full

speech recognition, for example as part of a hybrid

RNN/Hidden Markov Model system.
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Appendix A. Pseudocode for full gradient lstm

The following pseudocode details the forward pass,

backward pass, and weight updates of an extended

LSTM layer in a multi-layer net. The error gradient is
calculated with online BPTT (i.e. BPTT truncated to the

lengths of input sequences, with weight updates after

every sequence). As is standard with BPTT, the network

is unfolded over time, so that connections arriving at

layers are viewed as coming from the previous timestep.

We have tried to make it clear which equations are

LSTM specific, and which are part of the standard BPTT

algorithm. Note that for the LSTM equations, the order

of execution is important.

A.1. Notation

The input sequence over which the training takes place is

labelled S and it runs from time t0 to t1. xk(t) refers to the

network input to unit k at time t, and yk(t) to its activation.

Unless stated otherwise, all network inputs, activations and

partial derivatives are evaluated at time t e.g. ychyc.(t). E(t)

refers to the (scalar) output error of the net at time t. The

training target for output unit k at time t is denoted tk (t). N is

the set of all units in the network, including input and bias

units, that can be connected to other units. Note that this

includes LSTM cell outputs, but not LSTM gates or internal

states (whose activations are only visible within their own

memory blocks). Wij is the weight from unit j to unit i.

The LSTM equations are given for a single memory

block only. The generalisation to multiple blocks is trivial:

simply repeat the calculations for each block, in any order.

Within each block, we use the suffixes i, f and u to refer to

the input gate, forget gate and output gate respectively. The

suffix c refers to an element of the set of cells C. sc is the

state value of cell c i.e. its value after the input and forget

gates have been applied. f is the squashing function of the

gates, and g and h are respectively the cell input and output

squashing functions.

A.2. Forward pass

† Reset all activations to 0.

† Running forwards from time t0 to time t1, feed in the

inputs and update the activations. Store all hidden layer

and output activations at every timestep.

† For each LSTM block, the activations are updated as

follows:

Input gates:

xi Z
X

j2N

wijyjðtK1ÞC
X

c2C

wicscðtK1Þ

yi Z f ðxiÞ

Forget gates:

xf Z
X

j2N

wfjyjðtK1ÞC
X

c2C

wfcscðtK1Þ

yf Z f ðxfÞ
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Cells:

cc2C; xc Z
X

j2N

wcjyjðtK1Þ

sc Z yfscðtK1ÞCyigðxcÞ

Output gates:

xu Z
X

j2N

wujyjðtK1ÞC
X

c2C

wucscðtÞ

yu Z f ðxuÞ

Cell outputs:

cc2C; yc Z yuhðscÞ

A.3. Backward Pass

† Reset all partial derivatives to 0.

† Starting at time t1, propagate the output errors back-

wards through the unfolded net, using the standard BPTT

equations for a softmax output layer and the cross-

entropy error function:

define dkðtÞ Z
vEðtÞ

vxk

dkðtÞ Z ykðtÞKtkðtÞ k 2output units

† For each LSTM block the d’s are calculated as follows:

Cell outputs:

cc2C; define 3c Z
X

j2N

wjcdjðt C1Þ

Output gates:

du Z f 0ðxuÞ
X

c2C

3chðscÞ

States:

vE

vsc

ðtÞZ3cyuh0ðscÞC
vE

vsc

ðtC1ÞyfðtC1Þ

CdiðtC1ÞwicCdfðtC1ÞwfcCwfcCduwuc

Cells:

cc2C;dcZytg
0ðxcÞ

vE

vsc

Forget gates:

dfZf 0ðxfÞ
X

c2C

vE

vsc

scðtK1Þ
Input gates:

diZf 0ðxiÞ
X

c2C

vE

vsc

gðxcÞ

† Using the standard BPTT equation, accumulate the d’s to

get the partial derivatives of the cumulative sequence

error:

define EtotalðSÞZ
Xt1

tZt0

EðtÞ

defineVijðSÞZ
vEtotalðSÞ

vwij

0VijðSÞZ
Xt1

tZt0C1

diðtÞyjðtK1Þ

A.4. Update weights

† After the presentation of sequence S, with learning rate a

and momentum m, update all weights with the standard

equation for gradient descent with momentum:

DwijðSÞ ZKaVijðSÞCmDwijðSK1Þ

Appendix B. Algorithm outline for bidirectional recur-

rent neural networks

We quote the following method for training bidirectional

recurrent nets with BPTT (Schuster, 1999). As above,

training takes place over an input sequence running from

time t0 to t1. All network activations and errors are reset to

0 at t0 and t1.
B.5. Forward pass

Feed all input data for the sequence into the BRNN and

determine all predicted outputs.

† Do forward pass just for forward states (from time t0 to

t1) and backward states (from time t1 to t0).

† Do forward pass for output layer.
B.6. Backward pass

Calculate the error function derivative for the sequence

used in the forward pass.

† Do backward pass for output neurons.

† Do backward pass just for forward states (from time t1 to

t0) and backward states (from time t0 to t1).

Update weights
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