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ABSTRACT 
A theory of learned sequential behavior is presented, with a focus on coar- 

ticulatory phenomena in speech. The theory is implemented as a recurrent 
parallel distributed processing network that is trained via a generalized error- 
correcting algorithm. The basic idea underlying the theory is that both serial 
order and coarticulatory overlap can be represented in terms of relative levels 
of activation in a network if a clear distinction is made between the state of the 
network and the output of the network. 

Introduction 
Even the most cursory examination of human behavior reveals a variety of 

serially ordered action sequences. Our limb movements, our speech, and even 
our internal train of thought involve sequences of events that follow one anoth- 
er in time. We are capable of performing an enormous number of sequences, 
and we can perform the same actions in a variety of different contexts and 
orderings. Furthermore, most of the sequences that we perform were learned 
through experience. 

A theory of serial order in behavior should clearly be able to account for 
these basic data. However, no such general theory has emerged, and an im- 
portant reason for this is the failure of current formalisms to deal adequately 
with the parallel aspects of serially ordered behavior. We can tentatively dis- 
tinguish two forms of parallelism. The first is parallelism that arises when 
actions in a sequence overlap in their execution. In speech research, such 
parallelism is referred to as coarticulation (Kent & Minifie, 1977; Moll & 

* *  

Daniloff, 1971; Ohman, 1966), and it greatly complicates the traditional de- 
scription of sequential speech processes. The second form of parallelism occurs 
when two actions are required to be performed in parallel by the demands of 
the task or by implicit constraints. Such is the case, for example, in the dual- 
task paradigm, in which actions that have been learned separately must be 
performed together. This differs from the case of coarticulation, in which 
actions that are nominally separate in time are allowed to be performed in 
parallel. It is important to characterize both how such parallelism can arise 
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within a sequential process and how it can be constrained so that unwanted 
parallel interactions are avoided. 

In this paper, I present a theory of serial order that describes how sequences 
of actions might be learned and performed. The theory is embodied in the form 
of a parallel distributed processing network (Rumelhart & McClelland, 1986). 
Such networks are composed of a large number of simple processing units that 
are connected through weighted links. In various forms, such networks have 
been used as models of phenomena such as stereopsis (Marr & Poggio, 1976), 
word recognition (McClelland & Rumelhart, 1981), and reaching (Hinton, 
1984). The success of these models has been due in large part to their high 
degree of parallelism, their ability to bring multiple interacting constraints to 
bear in solving complex problems, and their use of distributed representations. 
However, none of these properties seems particularly well suited to the prob- 
lem of serial order. Indeed, a criticism of this class of models has been their 
inability to show interesting sequential behavior, whereas the more traditional 
symbolic approaches~typically by assuming a sequential processor as a primi- 
tive--deal with serial order in a much more straightforward manner. This 
criticism is challenged in this chapter, in the context of a theory of serial order 
that takes advantage of the underlying primitives provided by parallel distribut- 
ed processing. 

Serial Order 
Many of the problems encountered in developing a parallel distributed 

processing approach to the serial-order problem were anticipated by Lashley 
(1951). Lashley pointed out the insufficiency of the associative-chaining solu- 
tion to the serial-order problem. The associative-chaining solution assumes that 
serial ordering is encoded by directed links between control elements repre- 
senting the actions to be ordered, and that the performance of a sequence 
involves following a path through the network of control elements. Lashley 
argued that this solution fails to allow different orderings of the same actions 
because there is no mechanism for specifying which link should be followed 
from an element having more than one outgoing link. He also argued that 
serial behavior shows anticipatory effects of future actions upon the current 
action, and that such context effects are not accounted for within the associa- 
tionist framework. 

Buffer approaches to serial order 
Lashley's arguments have had an impact on those seeking to understand the 

role of feedback in a theory of motor behavior, but have been less influential 
on those interested in the structure of motor programs. This is in all likelihood 
due to the impact on theorists of the development of the digital computer, 
which made it possible to see how arbitrary sequential programs can be exe- 
cuted. Theories based explicitly on the computer metaphor have invoked the 
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notion of a buffer which is loaded with the actions to be performed, and a 
program counter which steps through the buffer (Shaffer, 1976; Sternberg, 
Monsell, Knoll, & Wright, 1978). Despite the generality of such a theory, 
simple buffer theories are known to have several problems, including accoun- 
ting for error patterns (Kent & Minifie, 1977; MacKay, 1981). It is also true 
that coarticulation is not well handled by buffer theories. One approach is to 
assume that buffer positions can interact with each other (Henke, 1966). 
However, this interaction, which must occur when successive actions are 
simultaneously present in the buffer, takes time, as does the process of reload- 
ing the buffer once a set of related actions has been executed. This approach 
implies the presence of delays at certain times in the production of long se- 
quences, but such delays are not observed in fluent sequential behavior (cf. 
Shaffer & Hardwick, 1970). Another problem is that interactions between 
actions should depend on their relative positions in the buffer, not their abso- 
lute positions. For example, the interactions between the phonemes/i /and/n/ 
should presumably be the same when saying "print" and "sprint." This would 
seem to imply the need for a complex mechanism whereby learned interactions 
can automatically generalize to all buffer positions. Such issues, which arise 
due to the explicit spatial representation of order in buffer theories, seem to be 
better handled within an associationist framework. 

Associationist approach to serial order 
Wickelgren (1969) revived the associationist approach by assuming that 

serial order was indeed encoded by directed links between control elements, 
but that the control elements were different for different orderings of the same 
actions. The control element for the action B in the sequence ABC can be 
represented by the form ^B c whereas the control element for B in the sequence 
CBA is represented as cBA. These control elements are distinct elements in the 
network, thus there is no problem with representing both the sequences ABC 
and CBA in the same network. In this account, actions are different in different 
contexts, not because they are executed in parallel, but because they are pro- 
duced by different control elements. 

Wickelgren's theory provides a solution to the problems posed by Lashley 
but it has several shortcomings. First, it requires a large number of elements, 
yet has difficulty with the pronunciation of words, such as "barnyard," that 
have repeated subsequences of length two or more (Wickelgren, 1969). Sec- 
ond, effects of context in speech have been shown to extend up to four or five 
phonemes forward in an utterance (Benguerel & Cowan, 1974). Extension of 
the theory to account for such effects would require an impossibly large 
number of control elements. Finally, note that there are only representations 
for tokens in the theory, and no representations for types. There is nothing in 
the theory to tie together the contextual variations of a given action. This 
means that there is no way to account for the linguistic and phonetic regulari- 



474 M. 1. Jordan 

ties that are observed when similar actions occur in similar contexts (Halwes & 
Jenkins, 1971). 

Parallel-processing approaches to serial order 
A different approach is to assume that actions are to some extent produced 

in parallel (Fowler, 1980; Rumelhart & Norman, 1982). The parallelism 
allows several control elements to influence behavior at a particular point in 
time, and therefore provides an account of coarticulatory effects, even though 
actions are represented in terms of context-free types. Rumelhart and Norman 
(1982) have shown that a model of typing incorporating parallelism can pro- 
duce overlapping keystrokes much like those observed in transcription typing. 

Allowing parallel activation of control elements accounts for context sen- 
sitivity; however, the problem of temporal ordering remains. Rumelhart and 
Norman achieved temporal ordering by assuming that elements suppress other 
elements through lateral inhibitory connections if they precede those elements 
in the sequence. This particular scheme is susceptible to Lashley's critique 
because all possible inhibitory connections must be present to allow the per- 
formance of the same elements in different orders, and a mechanism is needed 
for selecting the particular inhibitory connections used in the performance of a 
particular sequence. However, there are other ways of achieving the same 
effect that are not open to Lashley's critique (Grossberg, 1978; Grudin, 1981). 
Essentially, all of these schemes produce temporal order by inducing a graded 
activation pattern across the elements in the sequence, such that elements more 
distant in the future are activated less than earlier elements. Elements are 
assumed to influence behavior in proportion to their level of activation. Be- 
cause the next action in the sequence is the most highly activated, it has the 
most influence on behavior. Once the activation of an element reaches a 
threshold, it is inhibited, allowing the performance of other items in the se- 
quence. 

A problem with these parallel-activation theories is that they have difficulty 
with sequences in which there are repeated occurrences of actions. In a pure 
type representation, there is simply no way to represent the repeated action. 
Rumelhart and Norman used a modified type representation in which they 
introduced special operators for doublings (e.g., AA) and alternations (e.g., 
ABA). However, they provided no general mechanism. For example, sequenc- 
es such as ABCA invoked a parser to break the sequence into pieces, thus 
allowing no parallel influences across the break. This is not a satisfactory solu- 
tion, in general, because data in speech show that coarticulatory influences can 
extend across sequences like ABCA (Benguerel & Cowan, 1974). Another 
possibility is to assume that repeated occurrences of actions are represented by 
separate control elements (representation by tokens). However, the combined 
effects of partially activated control elements will cause the first occurrence of 
a repeated action to move forward in time, whether or not this is actually 
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desirable. Indeed, in a sequence such as ABBB, the B may overwhelm the A 
and be executed first. These problems are enhanced in featural representations 
of the kind that are often posited for actions (Grudin, 1983; Perkell, 1980; 
Rosenbaum, 1980) because the total activation from elements representing the 
repeated features will be greater than the activation levels for features that only 
occur once in the sequence, irrespective of the order of the features. Such 
problems arise because the single quantity of activation is being used to repre- 
sent two distinct things: the parallel influences of actions and the temporal 
order of actions. 

It is my view that many of these problems disappear when a clear distinc- 
tion is made between the state of the system and the output of the system. 
Explicitly distinguishing between the state and the output means that the system 
has two activation vectors, which allows both temporal order and parallel 
influences to be represented in terms of activation. In the theory developed in 
this paper, the state and the output are assumed to be represented as patterns of 
activation on separate sets of processing units. These sets of units are linked by 
connections defining an output function for the system. Serial order is encoded 
both in the output function and in recurrent connections impinging on units 
representing the state; there is no attempt to encode order information in direct 
connections between the output units. 

Coarticulation 
In this section, I briefly introduce some of the parallel aspects of sequential 

behavior that have been considered important in the development of the current 
theory. 

Several studies involving the recording of articulator trajectories have 
shown that speech gestures associated with distinct phonemes can occur in 
parallel. Moll and Daniloff (1971) showed that in an utterance such as "freon," 
the velar opening for the nasal/n/can begin as early as the first vowel, thereby 
nasalizing the vowels. Benguerel and Cowan (1974) studied phrases such as 
"une sinistre structure," in which there is a string of the six consonants/strstr/ 
followed by the rounded vowel/y/. They showed that lip-rounding for the/y/  
can begin as early as the first/s/. This is presumably allowable because the 
articulation of the consonants does not involve the lips. 

These examples suggest that the speech system is able to take advantage of 
"free" articulators and use them in anticipating future actions. This results in 
parallel performance and allows speech to proceed faster and more smoothly 
than would otherwise be possible. Such parallelism clearly must be constrained 
by the abilities of the articulators. However, there are other constraints in- 
volved as well. In the case of "freon," for example, the velum is allowed to 
open during the production of the vowels because the language being spoken is 
English. In a language such as French, in which nasal vowels are different 
phonemically from non-nasal vowels, the velum would not be allowed to coar- 
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ticulate with the vowels. Thus the articulatory control system cannot blindly 
anticipate articulations, but must be sensitive to phonemic distinctions in the 
language being spoken by only allowing certain coarticulations. 

The situation is more complicated still if we note that constraints on paral- 
lelism may be specific to particular features. For example, in the case of 
/strstry/, only the rounding of the/y/can be anticipated. The voicing of the/y/  
cannot be anticipated because that would change the phonemic identities of the 
consonants (for example, the /s /would  become a/z/). Again, such knowledge 
cannot come from consideration of strategies of articulation, but must reflect 
higher-level phonemic constraints. 

Thus, speech presents a difficult distributed-control problem in which 
constraints of various kinds are imposed on the particular patternings of paral- 
lelism and sequentiality that can be obtained in an utterance. What I wish to 
show in the remainder of this paper is how this problem can be approached 
with a theory based on parallel distributed processing networks. 

A Theory of Serial Order 
Let there be some sequence of actions x~,x2,...,x ~, which is to be produced 

in the presence of a plan p. Each action is a vector in a parameter or feature 
space, and the plan can be treated as an action produced by a higher level of 
the system. The plan is assumed to remain constant during the production of 
the sequence, and serves primarily to designate the particular sequence that is 
to be performed. 

In general, we would like the system to be able to produce many different 
sequences. Thus, different vectors p are assumed to be associated with differ- 
ent sequences of actions. A particular sequence is produced when a particular 
vector p is presented as input to the system. Note that, in principle, there need 
be no relationship between the form of plan vectors and the sequences that they 
evoke. Rather, a plan vector evokes a particular sequence because it was 
present as input to the system when the sequence was learned. Thus, plans may 
simply be arbitrary patterns of activation that serve to key particular sequenc- 
es; they need not be scripts for the system to follow. 

Actions are produced in a temporal context composed of actions nearby in 
time. This context entirely determines the desired action, in the sense that 
knowing the context makes it possible to specify what the current action should 
be. It is proposed that the system explicitly represents the temporal context of 
actions in the form of a state vector and chooses the current action by evaluat- 
ing a function from states to actions. At each moment in time, an action is 
chosen based on the current state, and the state is then updated to allow the 
next action to be chosen. Serial order does not arise from direct connections 
between units representing the actions; rather, it arises from two functions that 
are evaluated at each time step: a function f which determines the output action 
x at time n, 

n 
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x = f ( s  ,p) (1) 

and a function g which determines the state s +  ~, 

s+~ = g(SN, p), (2) 

where both functions depend on the constant-plan vector as well as the current- 
state vector. Following the terminology of automata theory (Booth, 1967), f 
will be referred to as the output function, and g will be referred to as the next- 
state function. (From the definition, it can be seen that the plan p plays the role 
of the input symbol in a sequential machine. The use of the term "plan" is to 
emphasize the assumption that p remains constant during the production of the 
sequence. That is, we are not allowed to assume temporal order in the input to 
the system.) 

Assumptions are made in the theory about the form of these functions. The 
output function f is assumed to arise through learned associations from state 

State 
Units 

Plan ~ ~ j ~ - ~  Output 
Units Hidden Units 

Units 

FIGURE 1. The processing units and basic interconnection scheme (not all connec- 
tions are shown). The plan and state units together constitute the input units for the 
network. 
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and plan vectors to output vectors. These learned associations are assumed to 
generalize so that similar states and plans tend to lead to similar outputs. The 
major requirement for the next-state function g is that it have a continuity 
property: State vectors at nearby points in time are assumed to be similar. This 
requirement makes sense if the state is thought of as representing the temporal 
context of actions; intuitively, it seems appropriate that the temporal context 
should evolve continuously in time. Note that if the continuity property holds, 
then the generalizations made by the output function are such as to spread 
actions in time and, as learning proceeds, there is a tendency towards the 
increasing parallel execution of actions nearby in time. This process is dis- 
cussed below in detail, where it is also shown how the generalizations leading 
to parallelism can be constrained. 

A basic network architecture that embodies the theory is shown in Figure 
1. The entities of the theory~plans, states, and outputs~are all assumed 
to be represented as distributed patterns of activation on three separate pools of 
processing units. The plan units and the state units together serve as the input 
units for a network that implements the output function f through weighted 
connections from the plan and state units to the output units. There are hidden 
units in the path from the plan and state units to the output units to allow for 
nonlinear output functions. Finally, the next-state function is implemented with 
recurrent connections from the state units to themselves and from the output 
units to the state units. This allows the current state to depend on the previous 
state and on the previous output (which is itself a function of the previous state 
and the plan). 

In the proposed network, there is no explicit representation of temporal 
order and no explicit representation of action sequences. This is because there 
is only one set of output units for the network so that, at any point in time, 
only one output vector is present. Output vectors arise as a dynamic process, 
rather than being prepared in advance in a static buffer and then serially exe- 
cuted. Representing actions as distributed patterns on a common set of proces- 
sing units has the virtue that partial activations blend together in a simple way 
to produce the output of the system. 

Although it is possible that the next-state function as well as the output 
function arises through learning, this is not necessary for the system as a whole 
to be able to learn to produce sequences. Furthermore, given that the next-state 
function is set up in such a way that the continuity property holds, little is lost 
in the current framework if the recurrent connections necessary for the next- 
state function are taken as fixed and only the output function is learned. This 
latter approach is taken in the remainder of the chapter. 

One choice of values for the fixed recurrent connections is based on the 
conception of the state as a temporal context. Consider the case of a sequence 
with a repeated subsequence or a pair of sequences with a common subse- 
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quence. It seems appropriate, given the positive transfer that can occur in such 
situations as well as the phenomena of capture errors (Norman, 1981), that the 
state should be similar during the performance of similar subsequences. This 
suggests defining the state in terms of the actions being produced. However, 
the representation must provide a sufficiently extensive temporal context that 
no ambiguities arise in cases involving repeated subsequences. If the state were 
to be defined as a function of the last n outputs, for example, then the system 
would be unable to perform sequences with repeated subsequences of length n, 
or to distinguish between pairs of sequences with a common subsequence of 
length n. To avoid such problems, the state can be defined as an exponentially 
weighted average of past outputs, so that the arbitrarily distant past has some 
representation in the state, albeit with ever-diminishing strength. This represen- 
tation of the state is achieved if each output unit feeds back to a state unit with 
a weight of one, if each state unit feeds back to itself with a weight/z, and if 
the state units are linear. In this case, the state at time n is given by 

S N = ].tSn_ 1 

n-1 

- ' -  Xgl l_~  " 

r = l  

+ x_, (3) 

(4) 

The similarity between states depends on the particular actions that are added 
at each time step and on the value of #. In general, with sufficiently large 
values of #, the similarity extends forward and backward in time, growing 
weaker with increasing distance. 

Learning and parallelism 
In the network, learning is realized as an error-correcting process in which 

the weights of the network are incrementally adjusted based on the difference 
between the actual output of the network and a desired output. Essentially, the 
next-state function provides a time-varying state vector, and the error informa- 
tion drives changes in the mapping from this state vector and the plan vector to 
the output. The form that desired output vectors are assumed to take is a 
generalization of the approach used in traditional error-correction schemes 
(Rumelhart, Hinton, & Williams, 1986). Rather than assuming that a value is 
specified for each output unit, it is assumed that, in general, there are con- 
straints specified on the values of the output units. Constraints may specify a 
range of values that an output unit may have, a particular value, or no value at 
all. This latter case is referred to as a "don't-care condition." It is also possible 
to consider constraints that are defined among output units; for example, the 
sum of the activations of a set of units might be required to take on a particular 
value. Constraints enter into the learning process in the following way: If the 
activation of an output unit fits the constraints on that unit, then no error cor- 
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rections are instigated from that unit. If, however, a constraint is not met, then 
the error is defined as a proportion of the degree to which that constraint is not 
met, and this error is used in changing system parameters towards a configura- 
tion in which the constraint is met. 

In many realistic sequence-learning problems, it would seem that desired 
outputs cannot be assumed to be directly available at the output units of the 
network. For example, in the case of speech production, the information 
provided to the learner is auditory or perceptual, whereas desired output 
information for the production module must be specified in terms of articulator 
motion. A related problem is that target information may be delayed in time 
relative to performance. Such problems of a "distal teacher" have been ad- 
dressed in recent work that shows how the constraints may themselves be 
learned (Jordan & Rumelhart, 1992). The constraints are implemented in an 
auxiliary network that models the mapping from the network outputs to the 
distal results. Once the model is learned, backpropagation through the model 
converts distal error vectors into error vectors for the output units. For exam- 
ple, if the auxiliary network models the mapping from articulatory events to 
auditory events, then backpropagation can be used to convert auditory errors 
backward into articulatory errors. The error vectors that are computed by this 
process can be thought of as providing target outputs for the underlying se- 
quential network. Thus, for current purposes, we can make the simplifying 
assumption that desired outputs are provided directly by an external agent. 
There is a caveat, however: When the auxiliary network models a many-to-one 
function, then the error vectors computed by backpropagation implicitly speci- 
fy a region in output space, rather than a point. Of course, it is precisely this 
underspecification that is of interest, because it allows actions in a sequence to 
have an effect on one another. Here, I use don't-care conditions in the specifi- 
cation of desired output vectors to allow consideration of a particularly simple 
case: regions that are rectangular and parallel to the axes of the output space. 
For further discussion of the general case, see Jordan (1990). 

Consider first the case in which desired output vectors specify values for 
only a single output unit. Suppose that a network with three output units is 
learning the sequence 

.9 * * 

�9 . 9  * 

�9 * . 9  

The network is essentially being instructed to activate its output units in a 
particular order, and this case can be thought of as involving local representa- 
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tions for actions. At each time step, errors are propagated from only a single 
output unit, so that activation of that unit becomes associated to the current 
state s.., Associations are learned from s~ to activation of the first output unit, 
from s 2 to activation of the second output unit, and from s 3 to activation of the 
third output unit. These associations also generalize so that, for example, s 

1 
tends to produce partial activations of the second and third output units. This 
occurs because s~ is similar to s 2 and s3, and~by  the assumption of continuity 
of the next-state function~similar inputs produce similar outputs in these 
networks. After learning, the network will likely produce a sequence such as 

.9 .7 .5 

.7 , .9 , .7 

.5 .7 .9 

where at each time step, there are parallel activations of all output units. If the 
network is driving a set of articulators that must travel a certain distance, or 
have a certain inertia, then it will be possible to go faster with these parallel 
control signals than with signals where only one output unit can be active at a 
time. 

The foregoing example is simply the least constrained case and further 
constraints can be added. Suppose, for example, that the second output unit is 
not allowed to be active during the first action. This can be encoded in the 
target vector for the first action so that the network is instructed to learn the 
sequence 

.9 * * 

. 1  , . 9  , * 

~g ~ . 9  

After learning, the output sequence will likely be as follows" 

m 

.9 .7 .5 

.1 , . 9  , . 6  

.5 .7 .9 

where the added constraint is now met. In this example, the network must 
block the generalization that is made from s 2 to s~. 
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As further constraints are added, and fewer generalizations across nearby 
states are allowed, performance becomes less parallel. Minimal parallelism 
will arise when neighboring actions specify conflicting values on all output 
units, in which case the performance will be strictly sequential. Maximal paral- 
lelism should be expected when neighboring actions specify values on nonover- 
lapping sets of output units. Note that there is no need to invoke a special 
process to introduce parallelism into the system. Parallelism arises from the 
ability of the system to generalize, and is a manifestation of the normal func- 
tioning of the system. Indeed, in most cases, it will be more difficult for the 
system to learn in the strictly sequential case when there are more constraints 
imposed on the system. 

Serial order 
Before turning to a more detailed discussion of coarticulation, it is worth 

considering how the current theory fares with respect to some of the general 
requirements of a theory of serial order. It should be clear that the theory can 
deal with the problem of converting a static input into a time-varying output, 
given that the state changes over time, and given that an appropriate output 
function can be constructed. Different orderings of the same actions can be 
achieved, both because the state trajectories may differ between the sequences 
and because the output function depends on the plan, and the plan can distingu- 
ish the different orderings. The theory has no problem with repeated actions; 
the existence of repeated actions simply indicates that the output function is not 
one-to-one, but that two or more state, plan pairs can map to the same output 
vector. Finally, sequences such as ABAC, which cause problems for an asso- 
ciative-chaining theory because of the transitions to distinct actions after a 
repeated action, are possible because the state after the first A is not the same 
as the state after the second A. 

The theory is able, in principle, to account for a variety of regularities that 
occur within and between sequences. This is because outputs and states are 
represented as types; that is, there is only one set of output units and one set of 
state units. The same weights underlie the activation of actions, in whatever 
position in the sequence, and in whatever sequence. Thus, particular weights 
underlie the regularities observed for similar actions in similar contexts. For 
example, the fact in English that voiceless stops are aspirated following /s/ 
(e.g., ~spin~ is pronounced [sbln]), would be encoded by inhibitory connec- 
tions from state units encoding the recent occurrence of a voiceless alveolar 
fricative to output units controlling glottal and labial movements. In the se- 
quential-network architecture, this encoding allows the allophonic regularity to 
generalize immediately in contexts other than the initial portion of the word. 
Such a sensitivity to relative position, rather than absolute position, is difficult 
to obtain in architectures using spatial buffers (Sejnowski & Rosenberg, 1986), 
and problematic to obtain (in full generality) in schemes using context-sensitive 
allophones (Rumelhart & McClelland, 1986; Wickelgren, 1969). 
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One of the more important tests of a theory of serial order is that it account 
for interactions both forward and backward in time. In the current theory, time 
is represented implicitly by the configuration of the state vector. Interactions in 
time are due to the similarity of the state vector at nearby points in time. There 
is no time arrow associated with this similarity, thus, forward and backward 
interactions are equally possible. 

Limitations on the structure of the functions f and g will lead to some 
sequences being more difficult to learn and perform than others. For example, 
the temporal context cannot extend indefinitely far in time; thus, the repetition 
of lengthy subsequences that make transitions to different actions can be diffi- 
cult to learn and perform. Also, similarity between action transitions in differ- 
ent plans can cause interference, as can similarity between plan representa- 
tions. The interference can lead to errors and to the learning of one sequence 
causing negative transfer on another sequence. Such interactions can also have 
a positive side, of course, in the form of positive transfer. 

Dynamic properties of the networks 
When a network learns to perform a sequence, it essentially learns to follow 

a trajectory through a state space. The state space consists of the ensemble of 
possible vectors of activation of the output units. An important fact about the 
learned trajectories is that they tend to influence points nearby in the state 
space. Indeed, the learned trajectories tend to be attractors. 

Consider, for example, a network taught to perform the cyclic sequence 

~ ~ ~ ~ 

.25 .25 .75 .75 .25 

The trajectory of the network is on the four corners of a square in the first 
quadrant of the plane. The trajectory will repeatedly move around this square 
if the initial vector of activations of the output units is one of the corners of the 
square. It is also possible to set the initial activations of the output units to 
other values, thereby starting the network at points in the space other than the 
four corners of the square. Figure 2 (left panel) shows the results of a simula- 
tion experiment in which the network was started at the point (.4,.4). As can 
be seen, the trajectory spirals outward and begins to approximate the square 
more and more closely. When the network is started at a point outside of the 
square, the trajectory is found to spiral inward towards the square. A sample 
trajectory starting from the point (.05,.05) is shown in the right panel of 
Figure 2. When the network was initialized at each of 100 points 
in the state space, it was found that all trajectories reached the square in the 
limit, demonstrating that the square is a periodic attractor. Note that trajecto- 
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ries starting inside the square approach the limit cycle less rapidly than do 
trajectories starting outside the square. At a point inside the square, the trajec- 
tory is subject to influences associated with all four corners, and these in- 
fluences are in conflicting directions and therefore tend to cancel one another. 
At a point outside the square, however, only a pair of adjacent corners tend to 
influence the trajectory, and adjacent influences do not conflict in this exam- 
ple. 

The dynamics exhibited by the networks described above has several useful 
properties. The system tends to be noise-resistant, because perturbed trajecto- 
ries return to the attractor trajectory. The system is also relatively insensitive 
to initial conditions. Finally, the learning of a particular trajectory automatical- 
ly generalizes to nearby trajectories, which is what is desired in many situa- 
tions. The relevance of these properties to motor control has been recognized 
by several authors (Kelso, Saltzman, & Tuller, 1987; Saltzman & Kelso, 
1987). I wish to suggest that such dynamics may also characterize the higher- 
level dynamic system that is responsible for serial ordering. 

Application of the theory to coarticulation 
The theory presented in this paper involves a dynamic system that is con- 

strained through a learning process to follow particular trajectories. The learn- 
ing process relies on constraints on the output of the system. These constraints 
implicitly define regions in output space through which trajectories must pass, 
and thereby delimit the possible range of effects of temporal context. 

In the case of speech, the form of the constraints on articulation depends on 
inter-articulator organization, both kinematic and dynamic, and on the function 

I_ I 
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O.4 
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o . o  = I t I , _ _ 1  t 1 i o . o  , t L I t [ 

0.0 0.2 0.4  0.6 0.8 1.0 0 .0  0.2 0.4 0.6 l .o  

u n i t  1 u n i t  1 

FIGURE 2. Two examples of the activations of the two output units plotted with time 
as a parameter. In each case, the square is the trajectory that the network learned. Left 
panel: The spiral trajectory is the path that the network followed when started at the 
point (.4,.4). Right panel: The spiral trajectory is the path that the network followed 
when started at the point (.05,.05). 
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that relates articulatory events to perceptual events. This latter function in- 
cludes at least two kinds of mappings---one that relates articulator motion to 
pre-categorical auditory representations, and one that relates pre-categorical 
representations to post-categorical representations. After preliminary learning, 
both of these mappings can be assumed to be represented internally and there- 
by available to compute articulatory constraints from perceptual data as dis- 
cussed in Jordan (1990). The salient characteristic of both of these mappings is 
that they are many-to-one (cf. Atal, Chang, Mathews, & Tukey, 1978). Thus, 
during imitative learning, the error vectors that are computed from the back- 
propagation of perceptual information implicitly specify regions of articulatory 
space rather than points. As described previously, the underlying dynamic 
system will form trajectories that pass smoothly through these regions. This 
yields contextually dependent variants of a given articulatory equivalence class. 
In summary, coarticulation is hypothesized to be a form of smoothness in 
articulatory space that is subject to perceptual constraints. 

The perceptual information that provides target vectors for imitative learn- 
ing may be either pre-categorical or post-categorical. Clearly, children's ability 
to acquire accent and other non-distinctive aspects of speech suggests that 
learning must be at least partially based on pre-categorical target information. 
It is tempting to hypothesize that the locus of target information evolves as 
post-categorical representations are formed over the course of development: 
Using a post-categorical target specifies a larger region of articulatory space, 
and therefore allows more flexibility in the choice of an articulatory trajectory. 
Of course, this flexibility is obtained with a corresponding loss in the ability to 
acquire articulation that reflects pre-categorical details. 

In this section, I present some simple simulations of a system learning 
phonetic sequences. It should be emphasized that I am not proposing a realistic 
model of speech production in this section. A major simplification is that I 
have defined desired output vectors directly in articulatory terms using target 
values and don't-care conditions. This representation ignores the problem of 
converting perceptual information into articulatory information as well as the 
effects of articulatory dynamics. (Both of these issues can be addressed, 
however, within the framework of the forward-modeling approach; see Jordan 
& Rumelhart, 1992.) Nonetheless, the simulations are useful in elucidating the 
network algorithms hypothesized to underlie coarticulation. Also, they allow 
some qualitative predictions to be made. 

The problem of serial ordering in speech is typically treated in discrete 
terms, and the relation between discrete higher-level processes and continuous 
lower-level articulatory processes has provoked much debate in the literature 
on speech production (Fowler, 1980; Hammarberg, 1982; Perkell, 1980). In 
the current theory, however, such issues are not particularly problematic 
because the entire system can be thought of as operating in continuous time. It 
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is consistent with the current theory to assume that the defining state equations 
are simply a discrete version of a continuous-time dynamic system. In the 
continuous case, learning involves imposing constraints intermittently on the 
system at various points in time. In geometric terms, constraints appear as 
regions through which continuous-network trajectories must pass, with trajec- 
tories between regions unconstrained. To approximate the continuous system in 
the simulation, I have inserted several time steps between steps at which con- 
straints are imposed. During these intermediate time steps, the network is free 
running (these intermediate steps can be thought of as having don't-care condi- 
tions on all of the output units). By conducting the simulation in this manner, it 
is possible to demonstrate the differences between the current approach and an 
assimilatory model in which different allophones are produced at each time 
step and interactions must begin and end at allophonic boundaries (cf. Fowler, 
1980). 

F e a t u r e  i s t r s t r y 

v o i c e  8 1 1 * 1 1 * 8 

place 7 9 9 2 9 9 2 7 

s o n o r a n t  8 2 1 5 2 1 5 8 

s i b i l a n t  1 9 2 4 9 2 4 1 

n a s a l  * * 1 * * 1 * * 

h e i g h t  9 9 9 9 9 9 9 9 

back 1 * * 2 * * 2 1 

r o u n d  1 * * * * * * 9 

TABLE 1. Target vectors for the string/istrstry/. 

Simulation experiments 
For the purposes of describing the simulations section, I use the term 

"phoneme" to refer to a vector of target values and don't-care conditions. 
Representations for the phonemes were adapted from a list of real-valued 
features proposed by Ladefoged (1982). Eight features were selected that 
provided adequate discriminations between the particular phonemes used in the 
simulations. The feature values were all between 0.1 and 0.9. Choices for 
don't-care conditions were based on known allophonic variations (for example, 
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the rounding for the French/s/was taken to be a don't-care condition, because 
it is possible to have a rounded or an unrounded/s/). 

The network used in the simulations had 8 output units, 10 hidden units, 6 
plan units, and 8 state units. The state units had recurrent connections onto 
themselves with weights of # = 0.5. 

The procedure used in the simulation was essentially that of the preceding 
section, with the following modification. During learning trials, target vectors 
(i.e., phonemes) were presented to the network every fourth time step. Learn- 
ing occurred only on these time steps. During the intermediate three time 
steps, the units were updated normally with no learning occurring. 

In the first experiment, the network was taught to perform the sequence 
"sinistre structure." The phonemes that were used are shown in Table I for the 
embedded sequence /istrstry/ only. The learning process involved repeated 
trials in which the phonemes in the sequence were used as target vectors for 
the network. The plan was a particular constant vector whose composition is 
irrelevant here because the network learned only this one sequence. The results 
for the embedded sequence/istrstry/are shown in Figure 3, which displays the 
output trajectories actually produced by the network once the sequence was 
learned to criterion. The network learned to produce the specified values, as 
can be seen by comparing the values produced at every fourth time step with 
the values in the table. The network also produced values for the don't-care 
conditions and for unconstrained parts of the trajectories. In particular, the 
value of .9 for the rounding feature of the rounded vowel/y/was anticipated as 
early as the third time step. In a control experiment, the sequence "sinistre 
stricture," in which the same consonant sequence is followed by the unrounded 
vowel/i / ,  was taught to the network. As shown in Figure 4, there was now no 
rounding during the entire utterance. These results parallel the data obtained by 
Benguerel and Cowan (1974). 

In a third experiment, the network learned the sequence "freon," where the 
feature of interest was the nasal feature associated with the terminal/n/. In the 
phoneme vectors, the / f /was  specified as 0.1 for the nasal feature, t he /n /was  
specified as 0.9, and the intervening three phonemes had don't-care values for 
the nasal feature. Thus, this experiment is analogous to the previous experi- 
ment, with the interest in the anticipation of the nasal feature rather than the 
rounding feature. The results are shown in Figure 5 in terms of the activation 
of the nasal feature at every fourth time step. As in the data of Moll and 
Daniloff (1971), there was substantial anticipation of the nasal value o f / n /  
before and during the two vowels. Note that a steeper dropoff in the amount of 
anticipation occurred in this sequence than in the sequence/istrstry/. An inves- 
tigation of the weights learned during these sequences revealed that the exten- 
sive coarticulation in the latter sequence arose from the repetition of 
phonemes. The rounding o f / y / w a s  produced in a temporal context in which 
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Performance on/istrstry/ 

Voice 

Place 

Sonorant ~ f  

Sibilant 

Nasal [ 

Height 

Back 

Round [__f 
o 1~ " ~4 s~ 

Time 

FIGURE 3. Output trajectories for the sequence/istrstry/. 
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Performance on l istrstr i /  

Place 

Sonorant [ 
Sibilant 

Nasal 

Height 

Back 

Round 

Voice J 

o ~ i'o 2'4 3"2 
Time 

FIGURE 4. Output trajectories for the sequence/istrstri/. 
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/ s t r / w a s  the preceding subsequence. A very similar context occurred after the 
f i rs t / r / ,  thus, there was necessarily coarticulation into the first repetition of 
/str/. These considerations suggest that, in general, more forward coarticula- 
tion should occur over strings that have homogeneous phonemic structure than 
over strings with heterogeneous phonemes. 

1.0 

C 
0 

. - I . . . , .  

(3 
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o - , -  
- - t , - , , -  
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, . , , I , - .  
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l ,  
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0.6 
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0.0 I 1 I I 1 

f v i a n 

Segment 

FIGURE 5. Activation of the nasal feature at every fourth time step during perfor- 
mance of the word "freon." 

Another interesting aspect of the simulated coarticulation can be seen by 
considering the voicing feature in Figure 5. This feature is unspecified for the 
phoneme/r /  ( t h e / r /  in French can be voiced or unvoiced depending on the 
context; compare "rouge" and "lettre"), but is specified as a 0.1 for the direct- 
ly adjacent features /t/ and /s/. Nevertheless, the first /r/ receives a small 
amount of voicing, which comes from the positive value of voicing for the 
nearby, but not adjacent, phonemes /i/ and /y/. This result emphasizes the 
underlying mechanism of activation of the output units: Units are activated to 
the extent that the current state is similar to the state in which they were 
learned. This means that units with don't-care conditions take on values that 
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are, in general, a compromise involving the values of several nearby 
phonemes, and not merely the nearest specified value. Typically, however, the 
nearest phoneme has the most influence. 

These considerations suggest that the amount of forward coarticulation 
should depend not only on the preceding phonemes, but also on the following 
phoneme. If the phoneme following/y/is unrounded, for example, then round- 
ing of the/y/should be anticipated less than when the following phoneme is 
rounded or unspecified on the rounding feature (as in the example of "struc- 
ture"). This prediction was borne out in simulation. The French pseudowords 
"virtuo, .... virtui," and "virtud," in which the rounded phoneme/y/is followed 
by the rounded phoneme/o/, the unrounded phoneme/i/, or the "don't-care" 
phoneme/d/, were taught to the network. The results are shown in Figure 6 in 
terms of the activation of the rounding feature at successive points in time. The 
figure shows that forward coarticulation in the network clearly depends on the 
following context. 
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F I G U R E  6. Activation of the rounding feature at every fourth time step during per- 
formance of three French pseudowords. 
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Discussion 
In their review on coarticulation, Kent and Minifie (1977) distinguish 

between submovements in an articulatory sequence that have "immediate 
successional impact," that is, those that "must follow one another in a pre- 
scribed sequence," and submovements without immediate successional impact, 
that are "accommodated within the sequential pattern defined by the locally 
critical articulatory transitions." The model presented in this section obeys this 
distinction, where constraints specify the locally critical articulatory transi- 
tions. The model also provides a mechanism for the process of "accommoda- 
tion," by which features without immediate successional impact can be in- 
tegrated into the articulatory program. 

It is worthwhile to compare the current simulation to a feature-spreading 
model such as that proposed by Henke (1966). Henke's model is essentially a 
buffer model, in which positions in the buffer are loaded with the phonemes to 
be produced. Phonemes are lists of trinary features, each of which can have 
the value + ,  -, or 0. When a buffer position is to be executed, features having 
value 0 are filled in by an operator that serially inspects "future" buffer posi- 
tions until a plus or a minus is found. Once all features are filled in, the allo- 
phonic variation thus created can be executed. Although this model is similar 
to the current simulations in the sense that both rely on context-independent 
representations of phonemes that specify dimensions along which the phonemes 
can be altered, there are important differences. 

From a conceptual point of view, the underlying mechanisms that determine 
output values are quite different and have different empirical consequences. In 
the current approach, parallel performance arises automatically, without the 
need for a special process to program in the parallelism. This occurs because 
the current state is similar to the state in which nearby phonemes were learned, 
and similar states tend to produce similar activations of the output units. There 
is therefore no implication that features can spread indefinitely in time, which 
is true of a strict interpretation of Henke's model (Gelfer, Harris, & Hilt, 
1981). Rather, the spread of a feature in time diminishes due to the dropoff in 
similarity of the state. For related reasons, there is no implication that feature 
vectors change discretely in time. As the state evolves continuously in time, 
the components of the output vector also evolve continuously in time, with no 
necessary coherence between anticipated or perseverated features and adjacent 
segments (cf. Fowler, 1980). Indeed, there is really no notion of a segment in 
the output of the network. Also, whereas Henke's model is an assimilatory 
model of coarticulation, the current model is best thought of as a model of 
parallelism in speech production. As shown in the simulations, the parallel 
model predicts nonadjacent interactions: For example, the amount of forward 
coarticulation of a feature in a phoneme depends on what follows the phoneme. 
Although an assimilatory model could be constructed to mimic such behavior, 
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it would seem better accounted for within the parallel approach. However, I 
know of no empirical evidence relevant to deciding this issue. (The following 
experiment would constitute a critical test. Consider forward vowel-to-vowel 
coarticulation, such as the raising o f / a /  when it is followed by /i/ in the 
sequence/papi/(Manuel & Krakow, 1984). When this sequence is followed by 
/e/(e.g. ,  in the sequence/papipe/), the/e/acts to lower the/i/ .  The question 
is what happens to the /a/ in /papi/ vs. /papipe/. Under an assimilation hy- 
pothesis, the /a /should  be lower in the latter case because the source for its 
raising (the/i/) has been lowered. Under the hypothesis of parallelism, on the 
other hand, the/a/should be at least as high in/papipe/as in/papi/, because 
both the /e /and  the / i /ac t  to raise/a/.) Finally, it should be noted that in the 
current model, utterances are not explicitly represented (i.e., in a buffer) 
before being produced. Rather, the process is truly dynamic; utterances are 
implicit in the weights of the network, and become explicit only as the network 
evolves in time. 

The simulations presented above relied only on the simplest constraints on 
the output units. However, much could be gained by considering more com- 
plex constraints such as inequality constraints, range constraints, or constraints 
between units. For example, certain low-level effects of context, such as the 
dentalization of the /d / in  "width," are often treated as phonological in origin, 
rather than resulting from coarticulation. This is presumably because the place 
of articulation jumps discretely to dental, rather than moving somewhere 
between alveolar and dental. In the current model, however, the /d /could  be 
represented as having a range constraint on the place of constriction feature 
(i.e., a constraint that the place be between a pair of values). The actual value 
chosen for the place feature will be dependent on the neighboring context, and 
a context such as the dental fricative could well drive this value against a 
boundary of the range constraint. Similarly, constraints between units can 
determine which articulatory configuration is chosen out of several possibili- 
ties. For example, if the sum of the activations of three output units must be a 
particular value, then it is possible to trade off the activations among the units 
if particular units are further constrained by the neighboring context. Finally, 
the general case of learned, nonlinear constraints allows modeling of the role 
of the nonlinear mapping from articulation to acoustics in determining the way 
in which articulatory components trade off (Jordan, 1990). 

There are two possible versions of a parallel model of coarticulation. The 
first assumes that parallelism is feature-specific, that is, that particular features 
of a phoneme can be anticipated or perseverated. This approach is consistent 
with the distinction of Kent and Minifie (1977) discussed above, and is the 
approach that I have emphasized. However, it is also possible to assume that 
all of the components of a phoneme must be activated together. This is the 
approach favored by Fowler (1980), who claims that coarticulation results 



494 M.L Jordan 

from the coproduction of "canonical forms." In the current framework, such 
phoneme-specific parallelism occurs when phonemes specify constraints on 
nonoverlapping sets of output units. In the limiting case, each phoneme can 
constrain a unique output unit, in which case the partial activations of output 
units lead to the partial production of entire phonemes rather than specific 
features. It is still possible to represent phonemes by features, but this must be 
done at a lower level in the system, below the level at which parallelism arises. 

However, it would appear that feature-specific parallelism is necessary. For 
example, in the production of a sequence of vowels followed by an /n/, it 
would seem important that only the velar movement associated with the nasal 
be anticipated, and not the alveolar tongue position. There is some evidence 
for this in the data of Kent, Carney, and Severeid (1974). In recordings of the 
articulatory movements during the utterance "contract," they found that the 
movement towards the alveolar tongue position for the/n/began 120 millisec- 
onds after the onset of velar lowering for the /n/. This suggests that the 
features of the /n /are  not being controlled synchronously. 

To summarize, the current proposal is that coarticulation results from the 
similarity structure of the state at nearby points in time. The dropoff in similar- 
ity of the state defines the zone in which the features of a phoneme can possi- 
bly be present in the output. Within this zone, the pattern of coarticulation that 
is obtained depends on the constraints that are imposed by the features corre- 
sponding to nearby phonemes. 

Conclusions 
The current theory provides an alternative to the traditional motor-program 

approach to the serial-order problem. The traditional approach, based on the 
von Neumann conception of a stored program, assumes that motor actions are 
instructions that are assembled into a structure that is then scanned by a se- 
quential processor. The parallelism and interactiveness of real behavior prove 
burdensome to such an approach, and typically, extra mechanisms must be 
invoked. In the current approach, on the other hand, parallelism is a primitive, 
arising directly from the continuity of the mappings defining the system. Strict- 
ly sequential performance is simply the limiting, most highly constrained case. 

This chapter has concentrated on only certain aspects of the serial-order 
problem, namely those involving learning and coarticulation. Jordan (1986) 
discusses other issues, including rate, errors, hierarchies, and dual-task paral- 
lelism. 

The concept of state is central to the current theory. Time is represented 
implicitly by the configuration of the state vector, and it is the assumption of a 
continuously varying state that relates nearby moments in time and provides a 
natural way for behavior to be parallel and interactive locally while still broad- 
ly sequential. The similarity structure of the underlying state provides a theo- 
retical point of convergence for many kinds of behavioral data. The pattern of 
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coarticulation depends on this similarity structure, errors are more likely when 
discriminations must be made between similar states, dual-task interference is a 
function of similarity, and learning is faster when similar actions are associated 
to similar states. Thus, if the theory is to prove useful, elucidation of the simi- 
larity structure of the states underlying sequential behavior becomes an over- 
riding theoretical and empirical concern. 
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