

LoRaWAN: Long Range and Low Power Communication for Enabling Massive IoT

Alper Yegin

Director of Standards and Advanced Technology Development, Actility

Vice-Chair, LoRa Alliance

Sensors Need Autonomy

Low Power, But...

Long Range, But...

Need Low Power & Long Range

Low Power & Long Range

Low Power & Long Range

Low Power & Long Range

Trackers

- 3 **9 ONE WAY RENTALS** PICK UP FROM ANYWHERE C'est ici ₹**5/KM** 0
- Tracking scooters @ India
- Tracking belongings @ France
- Panic button @ India

Smart Cities

Q Ø ✿ Q ▲ Q 2015/09/28 FT 1216.5 ThingPark Powered by Fii 衯 富智屏 数据大屏 < 首页 教展的展 23.85_{GB} IN COMPRESS OF 总传感器数: 90,440 1003.101

- Fire alarm
- Acidity and oxygen levels in rivers
- Parking space availability
- Manhole cover security

@ Shanghai

Metering

• Water metering @ France

Connected Street Cabinets

- Unauthorized access
- Power loss
- Over-heating/fire

@France, Switzerland, Belgium, Netherlands,

Features

Coverage	Lifetime	Cost	Usage	
2 - 10+ km Deep indoor Star topology Bi-directional	10+ year battery Adaptive Data Rate (ADR) Traffic profiles	License-free spectrum Open standards/src Ground-up design Low-cost infra	Public/private networks Geoloc (no GPS) 300bps-50Kbps	

Features

Characteristics	LoRa RF
Modulation	LoRa (Chirp Spread Spectrum)
Frequency	Sub-GHz ISM (868/915Mhz)
Channel bandwidth	125-500 KHz
Data rate	300 bps – 50 kbps
Link budget	155 – 170 dB
Payload size	11 – 242 bytes (variable)
Battery consumption	5mA RX / 18mA (10dBm) TX
Communication type	Bi-directional unicast, network multicast
Interference immunity	Spread-spectrum w/ FEC
Scalability	Self-scaling network capability through Adaptive Data Rate
Mobility	Handover support, geo-location

Network Stack

App layer		Арр	Wiroloss	Modbus app stack	Zigbee app stack	Proprietary app stacks
	DLMS app stack	UDP/IP	M-Bus app			
		SCHC	SLACK			
Link layer	LoRaWAN					
Physical layer			L	oRa		

End-device Classes

Class name	Intended usage		
Α	Battery powered sensors, or actuators with no latency constraint		
B	Battery powered actuators Slotted communication synchronized with the network beacon		
С	Mains powered actuators Listen continuously		

Adaptive Data Rates

Geolocation

- Physical broadcast + TDoA (Time Difference on Arrival -- nanosec)
- No extra hardware or processing cost on device

 \rightarrow 20-100m accuracy

Passive Roaming

Collaborative reception

- Enables higher data rates, lower power (ADR!)
 - Less interference
 - More network capacity
 - Longer battery life
- Better TDOA/RSSI geoloc accuracy

Security

Gateways

Macro-cell

Dev-kit

Range

LoRa Range and Coverage

- Coverage map from a single gateway/concentrator
 - Cisco Webex building in San Jose
- >30miles from San Jose to San Bruno

Actility

SEMTECH

Sky is the Limit

NEXT PASS OF NORSAT 2 OVER YOUR CURRENT LOCATION

STAI	START MAX		END		TOTAL	
AZIMU	AZIMUTH ELEVATION		AZIMUTH		DURATION	
Jan 31 23:07	27° NNE	23:12	18°	23:18	152° SSE	11m 15s

LoRaWAN[™] Operators: Global Adoption

LoRaWAN Coverage Examples

Marketing Committee

Technical Committee

Certification Committee

Amazon, Google, Cisco, Intel, Orange, ZTE, Comcast, ARM, SKT, Sagemcom, NEC, NTT, Softbank, Alibaba, Tencent, Schneider, Tata, ...

LPWAN Backbone

LoRaWAN vs SigFox

Sub-Ghz ISM Public networks Closed ecosystem Single business model Constrained (*) traffic

Early start

(*) 12 byte frame, 140UL/4DL per day, 100bps

Actility

Sub-Ghz ISM Public + private networks Open ecosystem Flexibles business models Less constrained traffic Dynamic power management Collaborative networking

LoRaWAN vs NB-IoT

Licensed bands Public networks Emerging deployments

Real-time Higher data-rate (250Kbps) Marketing power (GSMA)

ISM (unlicensed band) Public + private networks Accelerating deployments Low-power (1/5th! of NB-IoT) Low-cost infra Collaborative networking

Fertile R&D Ground

Fresh and challenging problem space

- Small number of packets (few packets/day)
- Extended battery life (5-10 years)
- Small packet size (10s of bytes)
- Long range (10+ km)
- Secure
- ISM band (shared use)
- Asymmetric network capacity
- High scalability: Millions uplink/day/BS
- Wide range of use cases and traffic patterns

Open standards

Open source code

Free developers tools

Low-cost hardware

Unlicensed deployment

alper.yegin@actility.com