CHAPTER II
NEUTRON INTERACTIONS

II.1 INTRODUCTION
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( Cross section: Cross sectional area of a nucleus as it appears to an oncoming neutron. 

 ( Cross sections depend:

I. Neutron’s kinetic energy

II. Relative probabilities that a collision will result in scattering, capture or fission.

( Chapter summary: 

i) Definition of microscopic and macroscopic cross sections

ii) Scattering absorption and fission cross sections

iii) Dependence of cross section on neutron kinetic energy

iv) Energy distribution of scattered neutrons

II.2 NEUTRON CROSS SECTIONS
( Since neutrons are neutral particles they are not affected by Coulomb forces and travel in straight lines between collisions with nuclei. 

( In a collision with a nucleus:

1. The neutron may get absorbed by the nucleus. Such a reaction is called absorption reaction. A compound nucleus is initially formed in all absorption reactions.
a) If the neutron is kept within the compound nucleus and only a gamma photon is emitted, the absorption reaction is called a capture (radiative capture) reaction. 

b) If the compound nucleus splits into two with the simultaneous emission of a few neutrons, the absorption reaction is called a fission reaction.

c) In rare instances a charged particle may be emitted by the   compound nucleus. Such reactions are (n, p), (n, () etc. 
2. The neutron may change only its speed and direction. Such a reaction is called scattering reaction. 
a) The neutron may initially be taken into the nucleus to form a compound nucleus and then reemitted. Such scatterings are called compound scattering. In compound scattering, the emitted neutron may be a different neutron than the incident neutron.
· If there is kinetic energy conservation, it is called compound elastic scattering.

· If there is no kinetic energy conservation, it is called inelastic scattering.The nucleus is left at an excited state after inelastic scattering; thus gamma ray emission follows(inelastic gamma’s). 
b) The neutron may scatter from the nucleus like a small billiard ball hitting a larger billiard ball with no compound nucleus formation. There is kinetic energy conservation and it is called potential (elastic) scattering.

( The life of a neutron thus consists typically of a number of scattering collisions followed by absorption at which time its identity is lost.
( To a neutron traveling through a solid, space appears quite empty. 
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( Thus neutrons on average penetrate many millions of layers of atoms between collisions with nuclei. If the target is thin, i.e. a peace of paper, all of the incident neutrons would pass without making a collision. 

Microscopic and Macroscopic Cross Section

( Consider a beam of neutrons all traveling in the x direction with    the same speed inside a material:
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( If a neutron collides with a nucleus, it will either be absorbed or scattered into a different direction. Then only neutrons that have not collided will remain traveling in the x-direction. This causes the intensity of the uncollided beam to diminish as it penetrates into the material.

[image: image5.jpg]1(0) 1(x) I(x+dx)

FIGURE 2.1 Neutron passage through a slab.




(  Let I(x) represent the beam intensity after penetrating x cm into the material. 
( In traveling an additional infinitesimal distance dx, the fraction of neutrons colliding will be the same as the fraction of the 1-cm2 section perpendicular to the beam direction that is shadowed by nuclei. 

( If dx is small and the nuclei are randomly placed, than the shadowing one nucleus by another can be ignored.
N: number of nuclei per unit volume (nuclei/cm3) 

(: Cross sectional area of a nucleus (cm2)
Consider 1 cm2 cross section perpendicular to neutron motion. Fraction of the 1 cm2 cross section shadowed by nuclei  
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(2.1)
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(2.2)
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(2.3)
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(2.4)

( ( (cm2) is referred to as microscopic cross section
We define the macroscopic cross section as:
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(, the macroscopic cross section has the units of cm-1. 

( Since the cross section of a nucleus is very small instead of measuring microscopic cross section in cm2, the unit of the barn is commonly used.  The barn is abbreviated as b and 

1 b = 10-24 cm2

( From (2.4): 

Probability that a neutron has moved a distance x without colliding = 
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Probability that a neutron at x will collide in the next dx = 
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Probability that a neutron will make its firs collision in dx 

= p(x) dx = 
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(2.6)

( ( = mean free path (mfp) = the mean distance traveled by a neutron between collisions
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( The mean free path is just the inverse of the macroscopic cross section. 

Uncollided Flux
( In the example above, we have only one beam, the beam of neutrons traveling in the x direction. But in many practical situations there will be a multitude of beams traveling in various directions at a point. In that case the sum of the intensities of the beams at the particular point is defined as the flux and is denoted by (. That is:
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where Ii are the intensities of neutron beams traveling in different directions. Obviously, the flux has also the units neutrons/(cm2s).
( In the example above, the neutrons included in I(x) have not made a collision. 

( They are sometimes designated as uncollided neutrons to distinguish them from the total population of neutrons, which also includes those that have made one or more collisions. If we designate 
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In this case the beam intensity and the flux are identical since all the neutrons move in the x direction. Since the neutrons belonging to I(x) consists of only uncollided neutrons, we define (u(x) as the flux of uncollided neutrons (uncollided flux):
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(2.8)
( The uncollided flux may be written for other configurations than the beam of neutrons used here to define the cross section. 
( A point source is particularly useful in distinguishing the difference between geometric and material attenuation of the uncollided flux. Let a point source emit sp neutrons/s isotropically (with equal probability in all directions). At any location all of the uncollided neutrons can travel in a single direction: radially outward.

( In a vacuum, consider a distance r from the point source. All points on the surface of the sphere with a radius r receive the same amount of neutrons from the source, i.e. sp/(4(r2) neutrons/(cm2s). Hence in a vacuum with point source:
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since all neutrons are uncollided in a vacuum. The flux diminishes with r and we say there is geometrical attenuation in vacuum.

( If there is a material instead of vacuum, there will be also material attenuation and only a fraction of 
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of the neutrons will survive to a distance r without undergoing a collision. Thus there will be both geometrical and material attenuation in the uncollided flux and:
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          (2.9)
If the material is a pure absorber (with no scattering),                          
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Nuclide Densities
( Macroscopic cross section, (, is the product of the nuclide density N and the microscopic cross section as seen in Eq. (2.5). This equation requires further elaboration. 
( First consider the nuclide density. Avogadro’s number, N0, (=0.6023x1024 molecules/mole). If we divide this quantity by the molecular weight, A gr/mole, we obtain N0/A molecules/gr. If we multiply this quantity by density, ( gr/cm3, we obtain the number density (or the molecular density):
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(2.10)

If we use (2.10) in (2.5), we obtain:
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(2.11)

where ( is in cm2. Usually the microscopic cross sections are tabulated in barns (recall 1 b=10-24cm2). If we want to use ( in barns such that 
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So that (2.11) becomes:
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Alternatively we can define 
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( In many cases the formulas above may be applied directly to chemical element even though mixtures of isotopes are included, provided the cross sections are measured for the element as they exists in nature. For example we treat iron as a single cross section without specifying the isotope even though it has a molecular weight of 55.8 because the isotopes of iron-54, 56, 57- are all present in significant amount. In situations where the cross sections are measured for a particular isotope, the atomic weight of that isotope is used. 
( If we want to express the cross section of an element in terms of cross sections of its isotopes, we first define an average atomic weight for the element as:
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(2.12)

Ni /N denotes the atomic fraction of the isotope with atomic weight 
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The macroscopic cross section of the element is then defined as:
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(2.13)

where (I is the microscopic cross section of the i’th isotope. 

( To compute the cross sections of molecules, the cross sections of the number of atoms of each element in the molecule must be included. Thus for water, with molecular weight 18, account must be taken for the number of hydrogen and oxygen atoms:
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(2.14)

We may define a composite microscopic cross section for a molecule in case of water 
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(2.15)

So that (2.14) simplifies to:
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( Frequently, materials are combined by volume fractions. Let Vi be the volumes, and Vi/V the volume fractions, where
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. The cross section for the mixture is then:
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(2.16)

where each of the nuclide number densities is given by:
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And (i and Ai are the densities and atomic weights corresponding to a nuclide with a microscopic cross section of (i. (2.16) may also be written as:
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where 
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( Sometimes mixtures are given in terms of mass fractions. We treat such situations by combining (2.16) and (2.17) to write:
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(2.19)

where 
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Enriched Uranium

( The cross sections designated for uranium are for natural uranium, which consists of 0.7% uranium-235 and 99.3% uranium-238.

( Frequently, however designers call for enriched uranium in order to increase the ratio of fissile to fertile material.

(Enrichment may be defined in two ways:

i) Atomic enrichment which is the ratio of uranium-235 atoms to the total number of uranium atoms is denoted by
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.
ii) Mass (or weight) enrichment which is the ratio of the mass of uranium-235 to the total uranium mass is denoted by
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( Using the shorthand notation for fissile and fertile isotopes introduced in Section 1.6:
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Thus:
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( Inserting these expressions into Eq. (2.12) and (2.13):


[image: image54.wmf](

)

(

)

[

]

28

a

25

a

a

a

0

U

U

e

~

1

e

~

e

~

1

238

e

~

235

N

s

-

+

s

-

+

r

=

S

                          (2.21)

( Again using the shorthand notation:
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and
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From Eq. (2.19) the uranium cross section is:
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( The two enrichments which are often quoted (a/o) and weight per cent (w/o), respectively are closely related.

Since 
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Similarly
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Inserting the last two equations in (2.20), we get:
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On the other hand from (2.22):
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Solving the last two equations for M28/M25:
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Equating these two equations and solving for
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(2.24)
( If we take 
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 for natural uranium, then by (2.24), 
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= 0.00709 and the fractional differences become smaller for higher enrichments. Thus it is possible to simplify both (2.21) and (2.23) to the same simple formula. If we define:
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(2.21) becomes
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if we approximate 1/1.0128(1

Taking 
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(2.23) becomes:
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if we approximate 1.0128(1, the last equation becomes
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Since both (2.21) and (2.23) simplify to the same equation, we may write:
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(2.25)

with 
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(2.26)

Except where stated otherwise, we will take 
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Cross Section Calculation Example
( Calculate the cross sections for 8% enriched uranium dioxide (UO2) that is mixed in a 1:3 volume ratio with graphite (C ). 

Data:

(25=607.5 b, (28=11.8 b, (O=3.5 b, (C=4.9 b, 
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Solution:

From Eq. (2.26)
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From Eq. (2.15)
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, we use Eq. (2.14)
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Since UO2 and C are mixed in a 1:3 ratio by volume from Eq. (2.18):
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Reaction Types
( Thus far we have considered only the probability that the neutron has made a collision, without consideration of what happens subsequently. The cross section that we have been dealing with is designated as the total cross section, and often denoted with a subscript t: (t. 

( Upon striking a nucleus, the neutron is either scattered or absorbed. The relative likelihoods of a scattering or an absorption are represented by dividing the total cross section into scattering and absorption cross sections:
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(2.27)

Given a collision, (s/(t is the probability that the neutron will be scattered and (a/(t is the probability that the neutron will be absorbed. 
( Scattering may be either elastic or inelastic. We may divide the scattering cross section as:
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(2.28)
Here (n denotes the elastic scattering cross section while (n( denotes the inelastic scattering cross section.
( Elastic scattering conserves both momentum and kinetic energy; it may be modeled as a billiard collision between a neutron and a nucleus.

( In inelastic scattering, the neutron gives some of its kinetic energy to the nucleus, leaving it in an excited state. Thus while momentum is conserved in an inelastic collision, kinetic energy is not; the nucleus gives up excitation energy by emitting one or more gamma rays along with the neutron. 

( The absorption reaction creates a compound nucleus in an excited state. But instead of reemitting a neutron as in compound elastic scattering, it may eliminate the excitation energy by emitting one or more gamma rays. This is referred to as a capture reaction and capture cross section is denoted by ((. In many cases the new isotope thus created is not stable and will later undergo radioactive decay.

( In fissionable material, the compound nucleus may split into two parts or fission. The fission cross section is denoted by (f. For fissionable materials we thus divide the absorption cross section as
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(2.29)
Given a neutron absorption, ((/(a is the probability that the neutron will be captured and (f/(a is the probability that the neutron will cause fission. 
( We express macroscopic cross sections for particular reaction types by using Eq. (2.5) in the same way as before. Suppose we let x=s, a, n, n(, (, f we then write 
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(2.30)

From the foregoing equations we may also easily show that macroscopic cross sections for different reaction types add in the same way as microscopic cross sections. Thus analogues to Eq. (2.27) we have (t=(s+(a and so on.

II.3 NEUTRON ENERGY RANGE
(  Thus far we have not discussed the dependence of cross sections on neutron kinetic energy. To take energy into account we write each of the above cross sections as functions of energy by letting (x((x(E) and similarly (x((x(E). The energy dependence of cross sections is fundamental to neutron behavior in chain reactions and thus warrants detailed consideration. We begin by establishing the upper and lower limit of neutron energies found in fission reactors. 
( Neutrons born in fission are distributed over e spectrum of energy. The function which gives this distribution is called the fission spectrum function, ((E). 
((E) dE: probability that a neutron emitted in fission has kinetic energy between E and E+dE at the instant of emission. A reasonable approximation to the fission spectrum function is given by:
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where  E is in MeV and ((E) is in (MeV)-1. Obviously:
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FIGURE 2.2 Fission and thermal neutron energy spectra.




( The logarithmic energy plot of Figure 2.2 shows the fission spectrum, ((E). Fission neutrons are born in the MeV energy range with an average energy of about 2 MeV and the most probable energy is about 3/4 MeV. The number of fission neutrons produced with energies greater than 10MeV is negligible, which sets the upper limit to the energy range of neutrons in reactors. 
( Neutrons born in fission typically undergo a number of scattering collisions before being absorbed. A neutron scattering from a stationary nucleus will transfer part of its momentum to that nucleus, thus loosing energy. However at any temperature above absolute zero, the scattering nuclei will possess random thermal motions. According to kinetic theory, the mean kinetic energy of such nuclei is 
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where k is the Boltzmann’s constant and has the value 0.861735x10-4eV/K. T is the absolute temperature in K. For room temperature of T=293.61K the mean energy is 0.0379eV. Frequently thermal neutron measurements are recorded at 1.0kT, which at room temperature amount to 0.0253eV. These energies are insignificant compared to the MeV energies of fission neutrons. Thus the scattering of neutrons causes to lose kinetic energy as they collide with nearly stationary nuclei until they are absorbed or are slowed down to the eV range. 
( In the idealized situation where no absorption is present, the neutron would eventually come to the equilibrium with the thermal motion of the surrounding nuclei. The neutrons would then take the form of the Maxwell-Boltzmann distribution
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where E is in eV and T is in K. Also:


[image: image95.wmf](

)

1

dE

 

E

M

0

=

ò

¥









(2.35)

( Figure 2.2 shows M(E) along with ((E) to indicate the energy rage over which neutrons may exist in a nuclear reactor. Since some absorption will always be present, the spectrum will be shifted upward in energy somewhat from M(E) since absorption prevents thermal equilibrium from being completely established. The fraction of neutrons with energies less than 0.001eV in the room temperature Maxwell-Boltzmann distribution is quite small and we thus take it as the lower bound of energies that we need to consider. In general the energy range of interest for neutron in a chain reactor is in the range 0.001 eV-10 MeV. 
( For description of neutron cross sections it is helpful to consider three energy ranges. 
i) Fast neutrons (neutrons with kinetic energies over the range where significant numbers of fission neutrons are emitted): 0.1 MeV<E<10 MeV

ii) Epithermal (or intermediate energy) neutrons: 1.0eV<E<0.1 MeV

iii) Thermal neutrons (neutrons with so small energies that the thermal motions of the surrounding atoms can significantly affect their scattering properties):

0.001 eV<E<0.1 MeV

II.4 CROSS SECTION ENERGY DEPENDENCE

( We begin our description of the energy dependence of cross sections with hydrogen; since it consists of a single proton, its cross section is easiest to describe. Hydrogen has only elastic scattering and capture (absorption) cross sections. Since hydrogen has no internal structure it is incapable of inelastic scattering. 
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FIGURE 2.3 Microscopic cross sections of hydrogen-1 (from http://www.
dne.bnl.gov/CoN/index.html). (a) Elastic scattering, (b) Absorption.




Figure 2.3a gives the elastic scattering cross section of hydrogen on a full logarithmic scale. The capture cross section, shown in Figure 2.3b is inversely proportional to 
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, and since energy is proportional to the square of the speed, it is referred to as a 1/v cross section. Hydrogen’s capture cross section is only large enough to be important in the thermal energy range. The absorption cross section is written as 
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Conventionally we take E0=kT with T=293.61 K, the room temperature. Thus E0=0.0253 eV and is called the most probable energy at room temperature. For most purposes we ignore the low-and high- energy tails in the scattering cross section. The total cross section is then:
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( H2 or D cross sections have analogous behavior except that the scattering cross section is somewhat larger and the absorption cross section much smaller.
( Other nuclei undergo potential scattering like hydrogen. Potential scattering cross sections are energy independent except at very low or high energies. Their magnitude is directly proportional to cross-sectional area of the nucleus, where the radius of the nucleus may be given in terms of the atomic weight as
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Further understanding of neutron cross sections requires an examination of the compound nucleus formation. 

Compound Nucleus Formation
( When a neutron enters a nucleus and the compound nucleus is formed, the compound nucleus is in an excited state. There are two contributions to the excitation energy. The first derives from the kinetic energy of the neutron. To determine this excitation energy, suppose a neutron of mass m and velocity v hits a stationary nucleus of atomic weight A and forms a compound nucleus. Conservation of momentum requires:
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where V is the velocity of the compound nucleus. If we solve (2.38) for V, we obtain
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Kinetic energy is however not conserved. The amount lost is:
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Inserting the expression for V into (2.39)
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which may be shown to be identical to the neutron kinetic energy before the collision in the center of mass system. Hence we will denote it by Ecm. The second contribution to the excitation energy is the binding energy of the neutron, designated by EB. The excitation energy of the compound nucleus is Ecm+EB. 
( The affects of the excitation energy on neutron cross sections is closely related to the internal structure of the nucleus. As the electrons in atomic physics the nucleons in a nucleus are in distinct quantum energy states. When the neutron is added a compound nucleus in an excited state is formed. Thereafter one of two things may happen: the neutron may be reemitted returning the target nucleus to its ground state; this is compound elastic scattering. Alternatively the compound nucleus may return to the ground state by emitting one or more gammas and this is the capture reaction. 
( When the incoming neutron is at higher energies, the compound nucleus may emit a neutron returning to one of the original nuclide’s excited states. This is inelastic scattering and the original nucleus will deexcite itself with the emission of a gamma ray. 
( In fissile and fertile materials, the compound nucleus may split into two and this is the fission. 
Resonance Cross Sections
( The likelihood of compound nucleus formation greatly increases if the excitation energy of the compound nucleus coincides with one of its quantum energy states. Scattering and absorption cross sections exhibit resonance peaks at neutron kinetic energies corresponding to the quantum energy states of the compound nucleus.
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Figure 2.4 illustrates the peaks in the scattering and capture cross sections of Na-23. Each nuclide has its own unique resonance structure, but generally the heavier nucleus is the more energy states it will have, and they will be more closely packed together. Figure 2.5 illustrates this progression of state packing using C, Al and U isotopes as examples. The correlation between quantum state density and atomic weight results in the resonance of lighter nuclide beginning to occur only at high energies. For example the lowest resonance of C-12 occurs at 2 MeV, in O-16 at 400 keV in Na-23 at 3 keV and in U-238 at 6.6 eV. Likewise the resonances are lighter nuclei are more widely spaced and tend to have a smaller ratio of capture to scattering cross section. 
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Comparing the cross sections of U-238 given in Figure 2.6 with those of Na-23 in Figure 2.4 illustrates these trends in the resonance structure.
( A noteworthy feature of the uranium cross sections in Fig. 2.6 is that the resonances appear to suddenly stop at approximately 10 keV. In fact, they extend to higher energies but are so tightly packed that at present they can not be resolved experimentally. Thus the apparently smooth curve conceals unresolved resonances at higher energies. These must be treated by statistical theory until more refined experiments are able to resolve them. The situation is similar for other heavy nuclides. 
( The energy dependence of cross sections in the vicinity of each resonance will take the form of the Breit-Wigner formula. For the capture cross sections 
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(2.41)
where Er is the resonance energy and ( is the approximately equal to the width of the resonance at half of the cross section’s maximum value. (( and ( are also called radiation line width and total line width respectively. Both of the widths have units of energy. The ratio ((/( gives the probability that the compound nucleus would deexcite by gamma ray emission. (0 is the total cross section at resonance energy 
[image: image109]
( The elastic scattering cross section in the vicinity of the resonance has three contributions:
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(2.42)

Here (n is called neutron line width and has the units of energy. The ratio (n/( gives the probability that the compound nucleus would deexcite by neutron emission. R is the nuclear radius and (0 is the reduced neutron wavelength. 
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, m and v are the neutron mass and speed respectively. h is Planck’s constant. For nonfissionable material (=(n+((. The first term in (2.42) is the resonance (compound) scattering term. The third term is the energy-independent potential scattering term. The second term arises from a quantum mechanical interference effect between resonance and potential scattering. In heavier nuclei, such as uranium, the interference is visible as a dip in the scattering cross section just below the resonance energy. In reactor problems distinguishing between resonance and potential scattering is sometimes advantageous. We do this by writing Eq. (2.42) as
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Where the first two terms of Eq. (2.42) are included in the resonance contribution, (nr, and the third constitutes the potential scattering (np.
( No discussion of resonance cross section is complete without a description of Doppler broadening. Strictly speaking, neutron cross sections are written in terms of the relative speed between neutron and nucleus in the center of mass system. Since the kinetic energy of the incident neutron is much larger than the thermal energy of the nucleus, the nucleus is assumed to be stationary. Thus the cross sections formulas above don’t take the thermal motion of the nuclei into account. When the cross sections are smooth functions of energy, these motions are unimportant. However, when cross sections are sharply peaked, as they are for the resonances described by the Breit-Wigner formula, they must be averaged over the range of relative speeds characterized as a function of temperature by the Maxwell-Boltmann distribution of atom velocities. This averaging has the net effect of slightly smearing the resonances in energy, making them appear wider and less peaked. The smearing becomes more pronounced with increase temperature, as shown in exaggerated form for the resonance capture cross section curve of Figure 2.7.
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The importance of Doppler broadening in providing negative temperature feedback and thus stability to nuclear reactors will be discussed in later chapters.

Threshold Cross Sections
( When the neutron has higher kinetic energy, compound nuclei with higher excitation energies can be formed and additional reactions become possible. Such reactions are called threshold reactions because they can not occur below the threshold energy. Their cross section is zero below the threshold energy. 

( Inelastic scattering cross section exhibit threshold behavior because the incident neutron must have enough kinetic energy to leave the original nucleus at an excited level at the end. Referring again to the examples of Figure 2.5, we note that the lowest excited state of nucleus generally decreases with increasing atomic weight. As a result the threshold in inelastic scattering also decreases with increasing atomic number. For the lighter nuclides, inelastic scattering thresholds are so high that the reaction is insignificant in reactors. The threshold for C-12 is 4.8 Mev whereas O-16 is 6.4 MeV. However for heavier elements the threshold is lower; in U-238 it is 0.04 MeV. 
( Fertile materials, such as U-238, also have thresholds above which fission becomes possible. The fission threshold for U-238 is approximately 1 MeV. 
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FIGURE 2.8 Microscopic threshold cross sections for uranium-238
[courtesy of W. S. Yang, Argonne National Laboratory).




Figure 2.8 depicts the threshold cross section for both the inelastic scattering and fission in U-238. 
( A third class of threshold reaction that emits neutrons is (n,2n) in which the incident neutron ejects two neutrons from a nuclide. However, the threshold for such a reaction is sufficiently high and the cross section is small enough that it can be ignored in most cases.
Fissionable Materials
( Fissionable isotopes are either fissile or fertile. Incident neutron of any energy causes fission in fissile material.
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FIGURE 2.9 Microscopic fission cross sections of uranium-235 (from
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Figure 2.9 depicts the fission cross section of U-235. The fertile 

U-238  has a fission threshold of 1 Mev as Figure 2.8 shows.
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FIGURE 2.10 Microscopic fission cross sections of plutonium-239 (from
http://www.dne.bnl.gov/CoN/index.html).




Figure 2.10 shows the fission cross section of Pu-239, another fissile nuclide. 

( If Pu-239 captures an additional neutron instead of fissioning, it becomes Pu-240 another fertile isotope. If Pu-240 captures an additional neutron, it becomes Pu-241 which is fissile. The fission cross section of the fissile U-233 is similar to those of U-235 and Pu-239. 
II.5 NEUTRON SCATTERING
( The neutron energy spectrum in a reactor lies between the extremes of fission and thermal equilibrium. It is determined largely by the competition between scattering and absorption reactions.

( For neutrons with energies significantly above the thermal range, a scattering collision results in degradation of the neutron energy, whereas near thermal equilibrium may either gain or lose energy in interacting with the thermal motions of the nuclei of the surrounding media.
(Energy degradation caused by scattering is referred to as neutron slowing down.
( In a medium for which the average energy loss per collision and the ratio of scattering to absorption cross section is large, the neutron spectrum will be close to thermal equilibrium and is then referred to as a soft or thermal spectrum.

( Conversely in a system with small ratios of neutron scattering to absorption neutrons are absorbed before significant slowing down takes place. The neutron spectrum then lies closer to the fission spectrum and is said to be a hard or fast spectrum. 
( We will discuss the two major types of scattering that is elastic and inelastic scattering now.
Elastic Scattering
( For simplicity we first consider the head-on collision between a neutron with speed v and a stationary nucleus of atomic mass A. If we take m is the neutron mass then the nuclear mass will be approximately mA. Let v( and V be the neutron and nucleus speed after the collision.
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From conservation of momentum:
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Since 
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Solving for V2
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From conservation of kinetic energy:
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which may also be written as:
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Defining 
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The last equation could be rewritten as:
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Using the quadratic formula and the positivity of  E(/E:
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From the definition of x:
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(2.46)

Clearly the largest energy losses result from collisions with light nuclei. A neutron may lose all of its energy in a collision with a hydrogen nucleus, but at the other extreme, it can loose no more than 2% of its energy as the result of an elastic collision with U-238.

( In head-on collision the angle between the initial and final directions of neutron (scattering angle) is 180o. Head-on collisions cause the maximum neutron energy loss: 
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Collisions in which the scattering angle is zero are called glancing collisions. In glancing collisions E=E( and the neutron loses no energy in such interactions. In general scattering angle can assume any value between 0o and 180o. The energy loss will be then between the extremes of the glancing collision (0o) and head-on collision (180o): 
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( In a reactor, most elastic scatterings occur isotropically in the center of mass system (that is all scattering angles are equally probable when observed from the center of mass). Under such conditions it is possible to derive a probability distribution for neutron energies following a scattering collision. Let p(E(E()dE( represent the probability that the kinetic energy after scattering will be between E( and E(+dE( when a neutron with an initial kinetic energy of E scatters. Detailed analyses found in more advanced texts show that for isotropic scattering in the center of mass system:
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(2.48)
( Often the need arises to combine the probability distribution for scattered neutrons with the scattering cross section. We then define:
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where the corresponding macroscopic form is
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A similar expression applies to mixtures of nuclides:
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where
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Alternately Eq. (2.50) is directly applicable, provided we define the composite scattering probability as
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(2.53)

Slowing Down Decrement
( The most widely used measure of a nuclides ability to sow neutrons down by elastic scattering is the slowing down decrement. Slowing down decrement is defined as the mean value of the logarithm of the energy loss ratio or 
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(2.54)

Using (2.47) 
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(2.55)
which reduces to 
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The slowing down decrement is independent of the energy of the scattered neutron. (2.56) is meaningless for hydrogen. For A=1, (2.55) gives (=1. For A>1, a reasonable approximation is:
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which gives an error of roughly 3% for A=2, and successively smaller errors for larger values of A. 

( Using the definition of ( we may make a rough estimate of the number n of elastic collisions required to slow a neutron from fission to thermal energy. Suppose we let E1, E2, E3,…, En be the neutron energies after the first, second, third and so on collisions. Then 
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Assuming that each of the n terms can be replaced by the average logarithmic energy loss (, we have 
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(2.59)

Taking fission energy as E0=2 MeV  and thermal energy En=0.025 eV, we have 
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 and hence 
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. Thus for hydrogen n(18, for deuterium (A=2) n(25 for carbon (A=12) n(115 and for U-238 n(2275. From this we observe that if we desire to slow neutrons down to thermal energies, light atomic weight materials should be used. Conversely if fast neutrons are desired, light weight materials should be avoided.
( In situations where more  than one nuclide is present, an average slowing down decrement may be derived by employing Eq. (2.53) in Eq. (2.54). 
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(2.60)

Employing (2.47) for the scattering kernel:
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where we have assumed energy-independent scattering cross section.

( Suppose, for example, we want to evaluate 
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from the numerator and the denominator, Eq. (2.61) becomes:
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With 
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(O=2/(16+2/3)=0.12 we have 
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Inelastic scattering
( Inelastic scattering is possible only with neutrons with energies above a threshold that is characteristic of the target isotope. Moreover, these thresholds are low enough for significant inelastic scattering to occur only for the heavier atomic weight materials, such as uranium. 

( Inelastic scattering causes neutron to lose substantial energy. The unique structure of energy levels that characterizes each nuclide, such as those illustrated in Figure 2.5, determines the energies of the inelastically scattered neutrons. After inelastic scattering the target nucleus must stay in one of its excited states. The threshold for inelastic scattering is determined by the difference between the energy level of the lowest excited state and the ground state of the target nucleus. If the neutron has kinetic energy only more than the excitation energy of the first excited state, inelastic scattering would be possible only to that state. If the neutron kinetic energy is larger than the excitation energies of the lowest two excited states, inelastic scattering would be possible to both of that excited states. Thus the spectrum of the inelastically scattered neutrons would be collected around two kinetic energies each corresponding to one of the excited states. As the energy of the incident neutron increases, the spectrum of scattered neutrons can become quite complex since scattering to many different excited states would be possible.
dx
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