CHAPTER III
NEUTRON DISTIBUTIONS IN ENERGY
III.1 INTRODUCTION
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(3.1)
( Neutrons born in fission undergo a number of scattering collisions and die in absorption collisions. Some of the absorptions are fission reactions in which the neutrons of the next generation are born. 

( What determines k? Since fission neutrons are born with high energy, they slow down to lower energies by scattering collisions. Thus, neutrons start their life time with higher energies and assume lower energies as they approach their death. Hence neutron distribution in energy is central to the determination of k. 
( With respect to energy, there are two classes of reactors: thermal reactors and fast reactors. 
( In thermal reactors, the fast fission neutrons are slowed down by scattering collisions and finally come into approximate thermal equilibrium with atoms making up the reactor. Most of them are absorbed after becoming thermal. 
( In fast reactors, the fission neutrons are not slowed down and get absorbed as fast.

( Summary of the chapter: 

· A study of the properties of nuclear fuel and moderators.
· Determination of the energy distribution of neutrons

· Averaging of the neutron cross sections over energy

· Determination of the neutron multiplication in terms of energy-averaged cross sections

( Two simplifications in this chapter: 

· We assume all the neutrons are prompt (delayed neutrons are ignored)

· We ignore the spatial distribution of the neutrons

( We write:
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(3.2)

k( is the multiplication if the reactor’s dimensions were infinitely large. We will try to determine k( in this chapter.
PNL is the neutron nonleakage probability. The determination of PNL has to wait till we reached Chapter VI and VII.
III.2 NUCLEAR FUEL PROPERTIES
( As we have seen the neutron energy extends over the range from 0.001 eV to 10 MeV in nuclear reactors. 

( Fissile nuclides have significant fission cross sections over this entire range as we have seen in Figures 2.9 and 2.10 for U-235 and Pu-239 respectively. 
( In contrast fission cross section of a fertile material is nonzero over the threshold energy. For U-238 this threshold is approximately 1 MeV. 
( (: average number of fission neutrons emitted per fission. ( increases approximately linearly with the energy of the neutron causing the fission.

( A factor which is perhaps more important than ( is the so called  the eta factor, (,  which is the number of fission neutrons emitted per neutron absorbed. ( is also energy dependent. But its energy dependence is much more complicated than (. 
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(3.3)
Where 
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(3.4)

( To sustain a chain reaction (to make k=1), ( has to be substantially more than one since neutrons could also be absorbed in structure, coolant or other material or they may leak out of the reactor.
( To simplify things assume there is only a single fissile isotope in the system. Since the number densities cancel in (3.3), we have:
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(3.5)
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FIGURE 3.1 #(E) for fissile isotopes (courtesy of W. S. Yang, Argonne
National Laboratory). (a) Uranium-235, (b] Plutonium-249.




( The plots of ((E) shown in Figure 3.1 for U-235 and Pu-239 show that ( assumes values above 2 for neutron kinetic energies less than 1eV and greater than 0.1MeV. Between 1eV and 0.1Mev ( assumes a resonance-like structure and takes its lowest values. Thus we must avoid reactor designs in which the majority of the neutrons have energies between 1eV and 0.1MeV. 
( Except for naval propulsion systems design for the military, fuels containing predominantly fissile material are not employed in nuclear reactors. There are two reasons: 

· Predominantly fissile material means high enrichment costs making the design uneconomical.
· It also means weapons grade U or Pu causing nuclear proliferation problems.

( Reactor fuels consist primarily U-238 with a smaller fraction of fissile material, referred to as its enrichment. Depending on the design, reactor fuels consist of uranium with enrichments raging from the 0.7% of natural uranium up to approximately 20% enrichment.  

( To determine ( for nuclear fuel, we first recall the definition of enrichment, 
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as the atom ratio of fissile to fissionable (i.e, fertile+fissile) nuclei:
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(3.6)

where fi and fe represent fissile and fertile respectively. (3.3) then reduces to:


[image: image9.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

E

e

~

1

E

e

~

E

e

~

1

E

e

~

E

fe

a

fi

a

fe

f

fi

f

s

-

+

s

us

-

+

us

=

h







(3.7)
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( Figure 3.2 provides plots of ( for natural (0.7%) and 20% enriched uranium. There are two important differences between Figure 3.2 and 3.3: 
· The valley between 1 eV and 0.1 MeV is much more deepened due to the large capture cross section of U-238 in the resonances. 

· The fission cross section of U-238 with a threshold value of 1 MeV causes an increase in the value of ( at higher energies. 
( Figure 3.2 answers the question why nuclear reactors are built as either fast or thermal and that there are no intermediate spectrum rectors. 

( In fast reactors we must eliminate materials other than the fuel as much as possible. Especially low atomic weight materials have to be avoided since elastic scattering by such materials would reduce neutron energies to the levels where U-238 resonance absorption predominates. 

( One may ask the interesting question: Is it possible to make a fast reactor fueled with natural uranium? Although Figure 3.2 gives hope that ( is large enough to render such a reactor possible. The truth is fast reactors require approximately at least 10% enrichment. The reason for this is that the large per cent of U-238 in natural uranium causes the spectrum to shift to resonance energies due to the inelastic scattering by U-238. 
( In contrast we have to put a lot of low atomic weight material, referred to as moderator, to slow down the neutrons to thermal energies with relatively few scatterings. Thermal reactors can be designed with much lower enrichments than fast reactors. With some moderators, i.e. heavy water and graphite, thermal reactors can be designed using natural uranium fuel.
III.3 NEUTRON MODERATORS
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( In thermal reactors moderator materials are required to slow down neutrons from high (fission) energies to thermal energies. A good moderator must have the following properties:

I. The energy loss per scattering collision must be high. A good measure of this property is the slowing down decrement defined by Eq. (2.54). Since ((2/(A+2/3), lower weight nuclides are preferable.  As the first column of Table 3.1 shows, water is better than both heavy water and graphite according to this criterion.
II. A good moderator must have a high scattering cross section. If a material has large slowing down decrement but a small scattering cross section, it wouldn’t be a good moderator since there would be only occasional scatterings from this material. Thus a second important parameter in determining a material’s value as a moderator is the slowing down power ((s. The second column of table 3.1 shows that water has a slowing down power which is larger than both heavy water and graphite. Since 
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 is the macroscopic cross section, the number density N must be large to make a good moderator. Thus gases are eliminated. For example helium has a good value for both ( and (s, but the low number density prevents it to be effective in slowing down neutrons. Conversely just because of this, helium is used as a coolant in fast reactors. 
III. A good moderator must have also a small thermal absorption cross section so that it won’t compete with fuel nuclei for thermal neutron absorption. This effect is the reason for defining the slowing down ratio ((s/(a,th where the denotes thermal. The third column of Table 3.1 shows heavy water has by far the largest slowing down ratio, followed by graphite and than by ordinary water. Consequently power reactors fuelled by natural uranium can be built using heavy water as the moderator. Since graphite has a lower slowing down ratio than heavy water, the design of natural uranium fuelled reactors moderated by graphite is much more difficult. With ordinary water, which has the poorest slowing down ratio, it is not possible to design a natural uranium fuelled reactor. Some enrichment is necessary to compensate for the thermal neutron absorptions by hydrogen. If a nucleus has a large absorption cross section for thermal neutrons, it can not be used as a moderator. B-10 has a good value for slowing down power, but its thermal absorption cross section of 4000b. excludes it from being used as a moderator. On the other hand, due to its very large thermal absorption cross section B-10 is a common neutron “poison” which is used to control or shut down chain reactions. 
( Although inelastic scattering has a minor importance in thermal reactors, it becomes very important in fast reactor design. Inelastic scattering from U-238 with some help by elastic scattering from coolant and structural materials cause unwanted energy spectrum softening in fast reactors.

III.4 NEUTRON ENERGY SPECTRA
( The neutron distribution may be expressed in terms of the density distribution:
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(3.9)

( The more frequently used quantity, however, is the neutron flux distribution defined by:
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(3.10)

where v(E) is the neutron speed corresponding to kinetic energy E. The flux, often called the scalar flux, has the following physical interpretation: ((E)dE is the total distance traveled during one second by all neutrons with energies between E and E+dE located in 1cm3. 

( Likewise we may interpret the macroscopic cross section as: 
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Thus multiplying a cross section by the flux, 
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Finally, we integrate over all energy to obtain:
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This integral is referred to as a reaction rate, or if x=s,a,f as the scattering, absorption or fission rate. 

( Infinite medium equation: Consider an infinite homogeneous medium in which a time independent neutron population resides. We also assume that there is an extended fission source of 
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fissions per cm3 per sec. We can write a balance equation for the neutrons with energies between E and E+dE by writing:
Interaction rate of neutrons with energies between E and E+dE = scattering rate from all energies into the range between E and E+dE + fission neutron emission rate into the energy range between E and E+dE.

Interaction rate of neutrons in dE per cm3=(t(E)((E)dE

Fission neutron emission rate into dE per cm3=
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For scattering term we note:

Scattering rate of neutrons with energies in dE( per cm3=
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Probability of scattering into dE when a neutron with energy E( scatters=
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Scattering rate of neutrons with energies in dE( into dE per cm3= 
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Integrating over all initial neutron energies:

Scattering rate of neutrons into the energy range dE per cm3= 
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Writing the balance equation:
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         (3.14)

The specific form of p(E((E) for elastic scattering by a single nuclide is given by Eq.(2.47), whereas Eq.(2.53) defines the composite probability for situations where there is more than one type of nuclide. Now if we define 
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As the differential scattering cross section, (3.14) becomes:
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(3.15)
(3 Energy Ranges for Neutron Energy Spectra:

1. Fast neutron (fission) energy range: 0.1 MeV<E<10 MeV

Fission source (((E) term) important.

2. Intermediate energy range: 1 eV<E<0.1 MeV

Scattering term important, fission term neglected.

3. Thermal energy range: 0.001 eV<E<1 eV

No fission source

Upscattering: 
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Fast Neutrons
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(3.16)

Neutron Slowing Down
Slowing down density: q(E)=number of neutrons slowing down past energy E per second per cm3.



(3.17)

Balance equation regarding slowing down density:
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(3.18)

Since
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(3.19)

Taking the derivative:
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That is, when there is no absorption in an energy interval, slowing down density is independent of energy:
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Since there is negligible absorption between resonances, (3.14), 
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simplifies to:
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(3.21)
Assuming a single moderator nucleus and only elastic scattering isotropic in cms 
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(3.22)

The solution is
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(3.23)

since it satisfies (3.22) as:
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Slowing down density in terms of flux:
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(3.24)

Substituting (3.23) for the flux and performing the double integration in (3.24):
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(3.25)
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From (3.25):
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Using this in (3.23) 
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and solving for the flux:


[image: image48.wmf](

)

(

)

E

E

q

E

s

S

x

=

j









(3.26)

If there are more than one nuclei type and the scattering cross section is independent of energy:
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In case there is only one fuel nucleus and one moderator nucleus:
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Energy Self Shielding

(Calculation of  the flux energy dependence within the resonance)
Consider energies E in the vicinity of a resonance, that is 
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(3.28)
Assuming scattering integrals on the RHS of (3.28) involve an energy range E<E(<E/( which is much greater than the width of the resonance ((), that is:

           (i)   
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 the flux in these integrals can be approximated by the no-absorption result of (3.27), 
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then
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Thus  (3.28) reduces to:
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(3.29)
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within the resonance.
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FIGURE 3.4 Energy loss from elastic scattering from energy to F'/E".




A Simple and Very Approximate Expession for Resonance Escape Probability:
Integrating (3.20) over the resonance
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 we obtain an expression for the change in slowing down density over the resonance:

[image: image65.wmf](

)

(

)

(

)

(

)

ò

ò

S

S

x

»

j

S

=

D

resonance

t

a

resonance

a

dE

E

E

E

q

dE

E

E

q




(3.30)
In case of a purely absorbing resonance (
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where E1 and E2 are energies immediately below and above the resonance and q represents the slowing down density immediately above the resonance. We may approximate as:
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 Hence the fractional decrease in the slowing down density due to the resonance (which is also called the resonance absorption probability, pa) is:
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If we use only the first two terms in the Taylor series expansion for the natural logarithm function:
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On the other hand the resonance escape probability,p is:

p=1-pa 

yielding
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Using the first two terms in the Taylor series :
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That is :

If  the resonance is broad (
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large), p is small.

If the resonance is at a low energy (Er small), p is small.

If  the moderator has small mass (
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 large), p is large.

Thermal Neutrons

E0 is the cutoff energy ((1 eV) separating the thermal and epithermal neutrons)
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(3.31)

Slowing-down source is:
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(3.32)

Here we note
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and
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If we define
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s(E) is a probability density function (pdf) such that

s(E)dE=probability that a neutron that slows down to thermal energies would have an initial kinetic energy between E and E+dE.

Thus:
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In general it is very difficult to solve the above integral equation due to the complexity of  
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(3.33)

where the solution 
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 is called the Maxwellian flux.
Principle of detailed balance:
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(3.34)

Maxwellian flux is:
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(3.36)

Spectral Hardening:
[image: image93.jpg]Thermal spectrum
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FIGURE 3.5 Thermal spectra compared to a Maxwell-Boltzmann
distribution (adapted from A. F. Henry, Nuclear-Reactor Analysis, 1975,
by permission of the MIT Press).




Fast and Thermal Reactor Spectra
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FIGURE 3.6 Neutron flux spectra from thermal (pressurized water| and
fast (sodium-cooled) reactors (courtesy of W. S. Yang, Argonne National
Laboratory).




III.5 ENERGY-AVERAGED REACTION RATES

( To determine the overall characteristics of a reactor core, we must average cross sections and other date over the energy spectrum of neutrons. 

( Reaction rates are commonly expressed as products of energy-averaged cross sections and the neutron flux:
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(3.37)
where the cross section is 
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(3.38)

and the flux, integrated over energy, is 
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(3.39)

( Microscopic cross sections may also be averaged over energy. We simply make the replacement (x=N(x in Eqs.(3.37) and (3.38) to eliminate the atom density and obtain
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(3.40)

and
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(3.41)

( We can express the flux as the product of the mean speed and density of the neutrons:


[image: image100.wmf]n

v

¢

¢

¢

=

f










(3.42)

To find the mean speed we insert the flux definition of (3.10) into (3.39):


[image: image101.wmf](

)

(

)

ò

¥

¢

¢

¢

=

f

0

dE

E

n

~

E

v









(3.43)

Using (3.42) and the definition of neutron density we obtain:
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(3.44)

( Frequently we will drop the bar indicating averaging from the left sides of Eqs. (3.38) and (3.41). Thus hereafter we assume that a cross section (x or (x appearing without the (E) attached has been averaged over energy. 

( More refined treatments of a neutron population often require cross section averaging over some limited range of neutron energies rather than over the entire neutron energy spectrum. The discussions of Section III.4 indicate that the analysis of neutron spectra fall naturally into thermal, intermediate and fast energy ranges. Correspondingly we may partition reaction rates as 
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where hereafter attaching T, I and F signifies integration over the ranges 0(E(1.0eV, 1.0eV(E(0.1MeV, and 0.1MeV(E((, respectively. Employing Eq. (3.40) we may write this sum in terms of energy-averaged cross sections as:
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(3.46)

Each of the terms on the right results from multiplying and dividing the corresponding integral of Eq. (3.45) by 
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(3.47)

and defining the energy averaged cross sections as: 
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(3.48)

( More advanced so-called multigroup methods divide the energy spectrum into more than the three intervals shown here. For our purposes, however, the division into thermal, intermediate and fast energy segments is adequate. 

( We perform cross section averaging by selecting appropriate flux approximations for use in Eqs.(3.46) through (3.48). We begin with the fast neutrons and work our way downward in energy.

[image: image107.jpg]TABLE 3.2
Energy Averaged Microscopic Cross Sections (barns)

Thermal Spectrum Cross Sections Resonance Integrals Fast (Fission Spectrum) Cross Sections
Nuclide oy 04 o5 I I, of Oa Ts
}H 0 0.295 47.7 0 0.149 0 3.92x107° 3.93
%H 0 5.06x107* 5.37 0 2.28x107* 0 5.34x107¢ 2.55
1213 0 3409 2.25 0 1722 0 0.491 2:19
e 0 3.00x107° 4.1 0 153 x107° 0 123 x 107 2.36
lgo 0 1.69 x 107* 4.01 0 8.53 x 107° 0 1.20 x 1072 2.76
ﬁ'Na 0 0.472 3.09 0 0.310 0 2.34x107* 3.13
PFE 0 2.29 113 0 1.32 0 9.22x107° 3.20
s 0 0.16 6.45 0 0.746 0 3.35x107° 5.89
K 0 2.64 % 10° — 0 7.65 x 10 0 7.43 x107* =
1 Sm 0 6.15x 10* — 0 3.49 % 10° 0 0.234 —




[image: image108.jpg]Table3 2

(continued)

Thermal Spectrum Cross Sections Resonance Integrals Fast (Fission Spectrum) Cross Sections
Nuclide of i o Iy I, oy 04 s
2ad © 192x10° 1422 0 762 0 0.201 6.51
22Th 0 6.54 118 0 84.9 713x102  0.55 7.08
U 4 506 142 752 886 1.84 1.89 537
U B0 591 150 272 404 30 1.29 6.33
U L5x10° 242 937 2x107 278 0.304 0.361 7.42
TaPu 698 973 8.62 289 474 1.81 1.86 7.42
#Pu  613x10 263 139 374 8452 1.36 1.42 6.38
%aPu 946 1273 1.0 571 740 162 1.83 6.24
Pu 130x107 166 830 094 1117 114 122 6.62

Source: R. J. Perry and C. J. Dean, The WIMS9 Nuclear Data Library, Winfrith Technology Center Report ANSWERS/WIMS,/TR.24, Sept. 2004.




Fast Cross Section Averages
( Let’s recall (3.16)
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Even though (3.16) includes only uncollided neutrons, it provides a first approximation to the flux distribution for fast neutrons.

( The total macroscopic cross section in the denominator, however, includes all of the nuclides present-fuel, coolant and so on. Thus it is likely to be a strong function of energy, particularly if significant concentrations of iron, sodium or other elements that have scattering resonances in the MeV range are present. In Figure 3.6 these effects are apparent in the jagged appearance of the fast flux for both thermal and fast reactors. 

( To preclude the cross sections tabulated for individual elements from being dependent on the other elements present, we must further simplify Eq. (3.16) by taking (t(E) as energy independent. Then normalizing 
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. Since only a very small fraction of fission neutrons are produced with energies less than 0.1 MeV we can extend the limits on the integrals in Eq. (3.48) from zero to infinity without loss of generality. Since the normalization condition of (2.32) 
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sets the denominator to equal to one, and Eq. (3.48) reduces to
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(3.49)

( Table 3.2 lists fast cross sections averaged over the fission spectrum for several of the isotopes that appear most prominently in power reactor cores. Such cross sections, however, provide only a smoothed approximation to what the cross sections would be if averaged over the actual flux distribution.
Resonance Cross Section Averages
( Often the terms intermediate and resonance are used interchangeably in describing the energy range between 1.0 eV  and 0.1 MeV because as neutrons slow down from fast to thermal energy the large cross sections caused by the resonances in U, Pu and other heavy elements account for the nearly all of the neutron absorption in this energy range. 
( Let’s recall Eq. (3.29)

[image: image114.wmf](

)

(

)

E

E

q

E

t

S

x

=

j


It provides a reasonable approximation to the flux distribution in this energy range. However, as in the fast spectrum, the (t(E) term in the denominator is dependent on all of the constituents present in the reactor and thus must be eliminated in order to obtain cross sections that are independent of core composition. If we ignore the energy dependence of the total cross section, we may take 
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(3.50)

The asymptotic 1/E flux would be obtained only if all the resonance absorbers are infinitely dilute. Thus (3.50) represents the infinite dilution resonance cross sections. 

( For capture and fission reactions intermediate range cross sections are frequently expressed as:
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where 
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(3.52)
defines the resonance integral. The integral of (3.52) is called infinite dilution resonance integral for obvious reasons. The denominator of (3.51) can be readily evaluated as:


[image: image120.wmf]5129

.

11

10

ln

5

10

ln

E

dE

E

dE

5

eV

10

eV

1

I

5

=

=

=

=

ò

ò


Using this result in Eq. (3.51)
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Table 3.2 includes the resonance integrals for common reactor materials. 

( As the thermal reactor spectrum in Fig. 3.6 indicates, the 1/E -that is, the E((E)=constant- spectrum is a reasonable approximation through the slowing down region. However, the dips that appear represent the resonance self shielding that decreases the number of neutrons that are lost to absorption. Since Eq. (3.52) does not include the effects of self shielding, numbers listed in Table 3.2 only provide an upper bound on resonance absorption, which would be only obtained in the limit of an infinitely dilute mixture of the resonance absorber in a purely scattering material. 

( In reactor cores self shielding dramatically reduced the amount of absorption. Advanced methods for calculating resonance absorption accurately are beyond the level of are treatment. However, Chapter IV will include empirical formulas that provide reasonable approximations to resonance absorption with the effects of self shielding included. 

Thermal Cross Section Averages
( Although accurate determination of the thermal spectrum also requires advanced computational methods, averages over simplified spectra often serve as a reasonable first approximation. We approximate the thermal flux with the Maxwell-Boltzmann distribution of Eq.(3.35). 
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With the normalization above, Eq.(3.48) reduces to:
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(3.54)


Since (M(E) is vanishingly small 
for energies greater than 1eV the upper limit of the integral is increased from 1eV to infinity without effecting its value. Since the Maxwell-Boltzmann distribution (M(E) is dependent on the temperature, any list of thermal cross sections calculated Eq.(3.54) must be given for a specific temperature. The cross sections given in Table 3.2 assume a room temperature of 20oC (293K). Appendix E provides a more comprehensive table of microscopic thermal cross sections, again evaluated 
by (3.54) at room temperature. 
( The maximum –or most probable- value of  (M(E) occurs at 
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(3.55)

where T is degrees Kelvin. The speed corresponding to this most probable energy is:
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and is called the most probable speed. 
Cross section measurements are usually done at room temperature T0=293.61K which yield 
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.
The cross sections tabulated in Table 3.2 and Appendix E, however, are the averages over the Maxwell-Boltzmann spectrum  given by Eq.(3.54), rather than the cross sections evaluated at E0=0.0253eV.

( In the many cases where thermal scattering cross sections are independent of energy, Eq.(3.54) reduces to
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. At thermal energies, however, the binding of atoms to molecules or within crystal lattices can significantly affects the thermal scattering cross sections. To account for this the cross sections for H, D and C given in Table 3.2 and Appendix E are corrected to include the effects of such binding. 

( Many thermal absorption cross sections are proportional to 1/v:
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If we substitute this equation and Eq.(3.35) into Eq.(3.54):
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Evaluating this integral 
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we obtain:
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(3.59)

( Thus the 1/v absorption cross section is dependent on the absolute temperature, and even if T=T0, the averaged absorption cross sections are not the same as those measured at E0. 

( To correct these 1/v thermal cross sections for temperature we note that 
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(In dealing with macroscopic thermal cross sections correcting for temperature becomes more complex if the material has a significant coefficient of thermal expansion. Since (x=N(x, and the atom density is given by N=(N0/A, density decreases with increasing temperature will also cause macroscopic cross sections to decrease even if the microscopic cross sections remain constant.

III.6 INFINITE MEDIUM MULTIPLICATION
( For the infinite systems considered in this chapter the multiplication, k( is the ratio of the number of fission neutrons produced to the number of neutrons absorbed:
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(3.60)

Using the definitions of the energy averaged cross sections and flux, we may express as:


[image: image139.wmf]a

f

k

S

S

u

=

¥
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( In the homogeneous infinite systems considered in this chapter, the fuel, moderator, coolant and other constituents are all exposed to the same energy dependent flux ((E). However, in power reactors fuel elements, coolant channels etc. do not occupy the same volume and the fluxes to which they are subjected often are not identical. Power reactor cores consist of lattices of cells, each consisting of a fuel element, coolant channels and in some cases a separate moderator region. The expressions derived above remain valid provided we interpret them as spatial averages over the constituents of one such cell, with account taken for differences in flux magnitudes. 
( In the following chapter we first examine the lattice structures of power reactors. We then take up the modeling of fast and thermal reactor lattices in order to examine these differences in flux magnitudes and then to obtain expressions for k(.
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