                             CHAPTER V
                     REACTOR KINETICS

V.1 INTRODUCTION

( Subject: Time-Dependent Behavior of Neutron Chain Reactions
(Two simplifications:

1. Cross sections have been averaged over energy(no energy dependence.

2. No explicit treatment of spatial effects  ( neutron leakage treated by the nonleakage probability approximation (no spatial dependence.
( Summary:

-Nonmultiplying systems (systems with no fissionable material)

-Multiplying systems with delayed neutrons ignored.

 Infinite and finite systems

-Multiplying systems accounting also for the delayed neutrons.
V.2 NEUTRON BALANCE EQUATIONS

Definitions:

n(t)=total number of neutrons at time t,
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=average neutron speed,

(x=energy-averaged cross section for reaction type x.

Infinite Medium Nonmultiplying Systems

S(t)=number of neutrons produced by external sources per unit time.
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S

=probability that a neutron will be absorbed per unit time.
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Governing Equation:
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Assume: S(t)=0:
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Solution:
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Probability that a neutron, present at t, will be absorbed in the following dt =
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Probability that a neutron, present at t, will not be absorbed until t

=
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Probability that a neutron, present at t=0, will be absorbed between t and t+dt=
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Note:
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Neutron lifetime=average time a neutron survives=l(
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or:
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 EMBED Equation.3  [image: image14.wmf]
Inserting this result into (*):
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  (5.4)
and
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Also in terms of the probability density function p(t):
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(5.6)
( Using this result, (5.2) can be written as:


[image: image18.wmf])

t

(

n

1

S

dt

)

t

(

dn

0

¥

-

=

l

         
                        

          (5.7)
where we have assumed the source to be independent of time. 
( Consider the situation where no neutrons are present until the source is inserted at t=0. We rewrite (5.7) as:
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Introducing the integration factor:
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Integrating from 0 to t and using the initial condition:
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Carrying out the integration and rearranging:
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(5.8)

Thus the neutron population first increases but then stabilizes at 
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( According to (5.5), the neutron lifetime is inversely proportional to
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(a, the probability of absorption per unit time. Since this probability is small in thermal systems due to the much smaller value of 
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 compared to fast systems, the average neutron lifetime is expected to be long in thermal reactors and short in fast reactors. 

( (5.8) indicates that the rate at which the neutron population builds up to its asymptotic value of l(S0 depends strongly on the neutron lifetime. 

Infinite Medium Multiplying Systems
( We assume:

a. The medium is infinite

b. The medium is multiplying

c. All fission neutrons are prompt

With these assumptions, the neutron balance equation verbally is:
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                   - # of neutrons absorbed/s                              (5.9)

Mathematically:
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(5.10)

We recall the definition:
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(5.11)

Using (5.5) and (5.11):
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Using this last result in (5.10):
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(5.12)

If there are no external neutron source, (5.12) becomes:
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(5.13)

If
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, the infinite system is supercritical, n(t) increases with time

k( = 1, the infinite system is critical and n(t) is constant 
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, the infinite system is subcritical, n(t) decreases with time

Finite Multiplying Systems

( This time we again assume that the system is multiplying and all fission neutrons are prompt, but we allow the system to be finite in size. Hence, neutron leakage from the system must be taken into account. To simplify things we assume the ratio of the neutron leakage rate to the neutron absorption rate is (.
( The neutron balance equation verbally is:
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             - # of neutrons leaking from system/s                 
(5.14)

Mathematically:
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(5.15)

( It is physically more meaningful to express (5.15) in terms of neutron nonleakage probability. Since neutrons born by the external source or fission have two fates (namely absorption or leakage) we can write the neutron leakage probability PL as:
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(5.16)
Thus the nonleakage probability is 1-PL or:
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(5.17)

( For large reactors PNL would approach 1 while the value of PNL would deviate from 1 for small reactors.

( We multiply both sides of (5.15) by the nonleakage probability:
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By (5.17), the last equation becomes:
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(5.18)

Again
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Inserting this result into (5.18):
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(5.19)

Now recalling the definitions:
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(5.20)

and 
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(5.21)

, we divide (5.18) by PNL to obtain:
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(5.22)

which is identical to (5.12) if the infinite medium subscripts are removed. 

( Both the multiplication and neutron lifetime are smaller for the finite than for the infinite system, because of the neutrons lost to leakage. 

5.3 MULTIPLYING SYSTEMS BEHAVIOR

( Although (5.22) does not allow for delayed neutrons, it provides us with an at least qualitatively correct description of multiplying systems. When the external source is set equal to zero:
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(5.23)

the solution of (5.23) yields:
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(5.24)

( The system is defined to be critical if there is a time-independent chain reaction in the absence of external source. 
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(5.25)
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FIGURE 5.1 Neutron populations in subcritical, critical, and supercritical
systems. (a) n(0) =1, no source present, (b) n(0)=0, source present.




Figure 5.1a shows the behavior of multiplying systems in the absence of sources. 

( When there is a time-independent external source S0 and there are no neutrons at t=0, (5.22) becomes:
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Introducing the integration factor:
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Integrating from 0 to t and using the initial condition:
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Carrying out the integration and rearranging:
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(5.26)

The neutron population would stabilize only if the system is subcritical.
( Figure 5.1b indicates the behavior of a multiplying system with a time-independent external source present. 
( For a supercritical system, k>1, the neutron population rises at an increasing rate, becoming exponential at long times. 

( Te behavior of the subcritical system, k<1, becomes more transparent if we rewrite (5.26) in the form:
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(5.27)

Thus for k<1, the number of neutrons increases at first, but then as the exponential term decays away, the population stabilizes at long times to a time-independent solution of:
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(5.28)

(The behavior of (5.26) or (5.27) is more subtle for the case of a critical system. To understand it we use the power series 
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for the exponential term in (5.26) to obtain:
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(5.29)

We rearrange and take the limit as k goes to 1:
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Thus 
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(5.30)
The neutron population in a critical system will increase linearly with time in the presence of a time-independent source.

( There are two situations in which a time-independent population of neutrons can be established:

1. A critical system in the absence of an external source (k=1, S0=0).

2. A subcritical system in which there is a time-independent external source (k<1, S0(0).

( Even small deviations of the multiplication from 1 cause large time rates of change in the neutron population according to (5.24) or (5.26).

( These are caused by the small value of l (10-8 s< l<10-4 s), which appears in the denominator of the exponentials in both (5.24) and (5.26). 
( With such small neutron lifetimes, controlling a nuclear reactor would be very difficult if all the neutrons born in fission were prompt. 

( Fortunately, the delayed neutrons which we have neglected until now greatly decreases the rates of change in the neutron populations to more manageable levels, provided certain restrictions are met. 
5.4 DELAYED NEUTRON KİNETİCS
( More than 99% of fission neutrons are prompt neutrons. That is neutrons emitted at the instant of fission. 
( The remaining fraction, ( results from the decay of the neutron-emitting fission products. 

( These neutron precursors are typically lumped into six groups with half-lives ranging from a fraction of a second to nearly a minute.
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Delayed Neutron Properties

Delayed Neutron Fraction

Approximate

Half-Iife (sec) ee Uess Pu239
56 0.00023 0.00021 0.00007
23 0.00078 0.00142 0.00063
6.2 0.00064 0.00128 0.00044
-3 0.00074 0.00257 0.00069
0.61 0.00014 0.00075 0.00018
0.23 0.00008 0.00027 0.00009
Total delayed fraction 0.00261 0.00650 0.00210

Total neutrons/fission 2.50 2.43 290





Table 5.1 displays the six group half-lives (ti1/2) and delayed fractions ((i) for the three most common fissile isotopes. Note that ( is just the sum of the delayed fractions for each group:
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(5.31)
( The average half-life of the delayed neutrons is:
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(5.32)

Since half-lives are related to the decay constants by:
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(5.33)

, the average decay constant ( can be defined by:
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(5.34)

( In the preceding equations the quantity l designates the prompt neutron lifetime, which is the average lifetime of those neutrons produced instantaneously at the time of fission. 

( If we define the average delayed neutron lifetime, ld, as the time interval between fission and the time at which the delayed neutrons are absorbed or leak from the system, then it has a value of 
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(5.35)

( Hence including the lifetimes of both prompt and delayed neutrons, we obtain the average neutron lifetime as:
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(5.36)

( Although delayed neutrons are a small fraction of the total, they dominate the average neutron lifetime, because (/(>>l.
( The delayed neutrons have profound effects on the behavior of chain reactions. 

( But the effects are not adequately described by simply replacing  l with 
[image: image66.wmf]l

in the foregoing equations.

( Proper treatment requires a set of differential equations to account for the time-dependent behavior of both prompt and delayed neutrons.

Kinetics Equations
( To derive a neutron balance equation in which the effects of delayed neutrons are included, we divide the fission term in (5.15) into prompt and delayed contributions.

( The rate at which prompt neutrons are produced is 
[image: image67.wmf](

)

(

)

t

n

v

1

f

S

u

b

-

.

( If we define Ci(t) as the number of radioactive precursors producing neutrons with a half-life ti1/2, then the rate of delayed neutron production is (iCi(t).

( Then (5.15) becomes:
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(5.37)

( We require six additional equations to determine the precursor concentration for each delay group. Each has the form:
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(3.38)
( The number of precursors of type I produced per unit time is 
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(5.39)

( Taken together, (5.37) and (5.39) constitute the neutron kinetics equations.
( (5.37) can be written in a physically more meaningful form by noting:
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Thus
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(5.40)

On the other hand:
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Using this result in (5.39)
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(5.41)

( Under what conditions can (5.40) and (5.41) have a steady state solution? Assuming a time-independent source, we would have:
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(5.42)

and 


[image: image77.wmf],6

1,2,

i

   

,

 

C

n

k

0

i

i

i

L

=

l

-

b

=

l






(5.43)

Solving for Ci:

[image: image78.wmf],6

1,2,

i

   

n

k

 

C

i

i

i

L

=

l

b

=

l


Substituting this result into (5.42)
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That is:
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(5.44)

( When a source is present: 
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 which gives a positive result only when k<1. 
( If S0=0, (5.44) is satisfied only if k=1. That is when the system is critical. Moreover, if k=1, any value of n satisfies the equation.

( These are the same conditions for steady state solutions as shown in Figure 5.1 and given by (5.24) and (5.28).

( Thus the presence of delayed neutrons has no effect on the requirements for achieving steady state neutron distributions. 

Reactivity Formulation

( Since the time-dependent behavior of a reactor is very sensitive to small deviations of the multiplication from one it is convenient to define a term called reactivity, (, to highlight this behavior:
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(5.45)

( Thus:
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( The prompt generation time, (, is defined as:
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(5.46)

( We can write the neutron kinetics equation (5.40) and (5.41) in terms of the reactivity and the neutron generation time. For this we note from (5.45)
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From (5.46) and this last result:
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If we use these two results as:
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Using (*) in (5.40):
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(5.47)
Using (**) in (5.41):
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(5.48)

( Usually the reactivity is not large and the deviation of k from one is minimal. Then we can approximate ((l without appreciable effecting solutions to the equations. 
( The neutron and precursor numbers under steady state conditions with subcritical system and external source can be readily obtained from (5.47) and (5.48). Under steady state conditions from (5.48), 

[image: image91.wmf]n

C

i

i

i

L

l

b

=

          (***)
Inserting this result into the steady-state form of (5.47), we get:
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( Finally we note 
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. Thus from (***) it follows Ci>>n. That is, the number of neutron emitting fission products in a reactor is much larger than the number of neutrons.

5.5 STEP REACTIVITY CHANGES
( We consider what happens when a step change in reactivity is applied to an initially critical reactor that has been operating at steady state. 
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IGURE 5.2 Neutron populations following reactivity insertions of +0.108.





(The two curves in Figure 5.2 show solutions to (5.47) and (5.48) for positive and negative reactivity insertions. At first glance the curves appear similar to those in Figure 5.1a. However, on further inspection we observe that the curves in Figure 5.2 are more nuanced. This results from both prompt and delayed neutrons being taken into account.

( First, in less than a second, a prompt jump occurs in the neutron population. The jump is abrupt because it is controlled by the prompt neutron lifetime, here taken as (=50x10-6 s, which is typical for a water-cooled reactor. 

( There then follows the exponential growth or decay that appears similar to Figure 5.1a. The exponential behavior in Figure 5.2 occurs quite slowly because the precursor half-lives determine the neutron population’s growth or decay after the prompt jump. 

( The asymptotic behavior may be represented as n(t)(et/T where T is defined as the reactor period. 
( The period is positive or negative depending on whether the reactor is super- or subcritical. 

( The period is the length of time required for the reactor power to increase or decrease by a factor of e.
( The period is the most important quantity derivable from the kinetics equations. 

Reactor Period
( To determine the reactor period, we return to the kinetics equations and set the source equal to zero. We then look for a solution of the seven equations set in the form:
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where A, Bi and ( are constants. Inserting these expressions into (5.47) and (5.48) yields:
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(5.49)

and
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(5.50)

When we solve (5.50) for Bi, we obtain:
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When we insert this result into (5.49):
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(5.51)

We rearrange the RHS of (5.51) to get:
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When we take the term in parenthesis under a common denominator, we obtain: 
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(5.52)

Finally solving for ( yields
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(5.53)

This is known as the inhour equation, since the units of ( are commonly taken as inverse hours.

( The solution of the inhour equation may be examined by defining the RHS as:
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and plotting f(() as a function of (. If we draw a horizontal line for the specific value of (, the (’s that correspond to the intersections of f(() and ( are the roots of the inhour equation. Since the inhour equation is basically a seventh degree polynomial set equal to zero, there are a total of seven roots. Figure 5.3 illustrates this graphical representation.
[image: image105.jpg](adapted from A. F. Henry,

Nuclear-Reactor Analysis, 1975, by permission of the MIT Press).

FIGURE 5.3 Solution of the in-hour equation




( The seven roots are numbered as (1>(2>…>(7, regardless of whether the reactivity positive or negative. Accordingly, the time dependent behavior of neutron population takes the form
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(5.54)

( Figure 5.3 indicates that for positive reactivity only (1 is positive. The remaining terms rapidly die away, yielding an asymptotic solution of the form
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(5.55)

where 
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is the reactor period.

( Figure 5.3 also shows that a negative reactivity leads to a negative period: All the (I are negative, but T=1/(1 will die away more slowly that the others. Thus (5.55) is valid for negative as well as positive reactivities.
( The plots in Figure 5.2 are for reactivities of (=(0.1(, using parameters for U-235 and (=50x10-6 s. The prompt jump magnitude at the beginning of the curves is approximately (A1-n(0)(
( To determine the reactivity required to produce a given period –or vice versa- a plot of ( vs. T must be constructed used the delayed neutron data for a particular fissionable isotope or isotopes, and for a given prompt neutron lifetime. Figure 5.4 employs U-235 data in such a plot. 
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( Note that the very rapid decrease in the period takes place as ( exceeds (. The condition (=( defines prompt critical, for at that point the chain reaction is sustainable without delayed neutrons as indicated by the change in sign from negative to positive of the second term in (5.47).
( As prompt criticality exceeded, the distinction between the prompt jump and the reactor period vanishes, for now the prompt neutron lifetime rather than the delayed neutron half-lives largely determines the rate of exponential increase. 
( Indeed, as prompt critical is approached, the period becomes so short that controlling the reactor by mechanical means such as the movement of control rods becomes exceedingly difficult if not impossible.

( So important is it to avoid approaching prompt critical that reactivity is often measured in dollars, $=(/(, or in cents. 

( For negative reactivities there is an asymptotic limit to how fast the neutron population can be decreased. 

( Note from figure 5.3 that the smallest negative period possible – that is, the fastest a reactor’s power can be decreased after the initial prompt drop- is determined by the longest half-life of delayed neutrons or 
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which is approximately 80 s for a U-fueled reactor. 

( Figure 5.3 indicates that when the reactivity is small, so is the largest value of omega, (1. Suppose for a small reactivity we take (1<<(I for all i. We may then eliminate omega from the denominator of the inhour equation, yielding:
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(5.56)

Using (5.34) the definition of ( we can write:
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Since T=1/(1, we obtain:
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(5.57)
( Thus for small reactivities –positive or negative- the reactor period is governed is almost completely by the delayed neutron properties ( and (. This may seem surprising since delayed neutrons are such a small fraction of the fission neutrons produced. But when this small fraction is multiplied by the average half-life (/(=0.693 (t1/2, a time substantially longer than the prompt neutron lifetime results.

( Above prompt critical the period is very small, and thus (1 is very large. In this situation, we may take (1>>(i for all i in the inhour equation, reducing it to:
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( Thus, the reactor period is very short for (>(, for it is proportional to the prompt neutron generation time and independent of the delayed neutron half-lives:
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(5.58)
Prompt Jump Approximation

( The prompt jump that occurs following small step changes in reactivity may be utilized in making experimental determination of kinetics parameters (especially reactivity) using the rod drop and source jerk experiments. 
( The prompt jump is presented clearly below in Figure 5.5 where the initial part of the transient appearing in Figure 5.2 has been magnified. 
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FIGURE 5.5 Prompt jump in neutron populations following reactivity
insertions of +0.104.




( In Figure 5.5 the neutron population jumps rapidly at first. Then it undergoes change much more slowly. 
( As the neutron population undergoes the initial jump up or down, the precursor concentration behaves much more slowly than the neutron population. Even it can be set that the precursor concentrations change hardly at all during the prompt jump. 

( The slow behavior of the precursor concentrations stem from the long precursors half-lives compared to the prompt generation time. 

( We can make use of the approximate constancy of the precursor concentrations during the prompt jump in simplifying the solutions of the kinetics equations during this time period.

( The results of the simplified analysis can be utilized in the rod drop and source jerk experiments to experimentally determine the amount of the step change in reactivity. 

( The assumed constancy of the precursor concentrations during the prompt jump constitutes what is known as prompt jump approximation. 

Rod Drop Experiment
( Rod drop experiment involves the rapid insertion of a control rod to an initially critical reactor that has been operating at steady state for some time. By measuring the initial reactor power and the reactor power immediately after the insertion of the control rod, the step reactivity inserted by the control rod can be determined.

( Since the reactor has been operating at steady state initially, the initial precursor concentration can be readily determined by setting the time derivative in (5.48) equal to zero, yielding:
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(5.59)
( For times shorter compared to the smallest half-life of precursors ((it<<1, for all i), the precursor concentrations can be assumed to keep their value given by (5.59). This is essentially the prompt jump approximation. When (5.59) is used in (5.47), also taking the fact that the inserted reactivity is negative (
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(5.60)

Rearranging (5.60)
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Introducing the integration factor:
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Carrying out the integration
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Solving for n(t):
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Thus 
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(5.61)

( After the very rapid decay of the second term in (5.61), we have for times substantially greater than the prompt generation time, but less than the half-lives of the delayed neutrons (i.e., (/((((+()<<t<<1/(i), a neutron population of approximately 
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(5.62)

From (5.62):
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That is:
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(5.63)

( If we measure the initial power ((n0) and the power immediately after control rod insertion ((n1), the inserted reactivity in dollars can be calculated by (5.63)

Source Jerk Experiment
( This experiment is performed on a subcritical reactor ((= -(((), containing a neutron source S0. Since the system is in a steady state, (5.59) holds. 
( Then the external neutron source is suddenly removed and the neutron population undergoes a prompt drop. We can model this transient using (5.47) with the source term set equal to zero and Ci(t) replaced by Ci0 for times t<<1/(i. (5.60) once again results, with a solution given by (5.61). (5.62) and (5.63) remain valid in describing the relationship between reactivity, delayed neutron fraction and the decrease in neutron population.
( By measuring the initial power (n0) and the power immediately after the withdrawal of the external source (n1), we can determine the reactivity of the subcritical system (( in dollars) by utilizing (5.63).

( Despite their difference in the physical setup, both rod drop and source jerk experiments use the same equation, (5.63) and the same approximation, namely the prompt jump approximation.

Rod Oscillator Experiment
( In this experiment we introduce a sinusoidal reactivity of the form ((t)=(0sin((t). Equations (5.47) and (5.48) can be solved with the source term set equal to zero to determine n(t). Since the solution involves Laplace transforms or related techniques, we will omit the solution and just give the result: If n0 is the initial neutron population, then after transients have died out the neutron population will oscillate as:
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(5.64)

where A(() is a function of frequency. 

( If sin((t) is averaged over time, the sinusoidal term vanishes leaving
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Thus plotting 
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5.6 PROLOGUE TO REACTOR DYNAMICS

( Thus far our treatment of the time-dependent behavior of chain reactions has not accounted for thermal feedback effects. For this reason such treatments are frequently referred to as zero-power kinetics.
( If the energy created by fission is large enough to cause the temperature of the system to rise, the material densities will then change. Since macroscopic cross sections are proportional to densities they too will change.

( Another feedback effect will result from the resonance cross sections which broaden and flattened with increasing temperature ( Doppler broadening).

( In thermal reactors the spectrum will also hardened as a result of the temperature dependence of the Maxwell-Boltzmann distribution. 

( As a result of these feedback effects, the reactivity will change. In reactor design, it must be assured that the feedback is negative for increasing in temperature under all operating conditions. 

(  Negative feedback impacts the curves in Figure 5.2 in the following way. When the neutron population becomes large enough for a temperature rise to occur, the curve will flatten if negative feedback is present, and then stabilize and possibly decrease with time. 

( In Figure 5.6 below we have redrawn the positive reactivity curve of Figure 5.2 on a logarithmic scale, along with a curve for the same reactivity inserti0n but for which the effects of negative temperature feedback are included.
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FIGURE 5.6  Effect of negative temperature feedback on neutron population

following a reactivity insertion of -+ 0.103.




( Both curves initially follow the same period as indicated by the straight line behavior on the logarithmic plot. But as the power becomes larger the curve with feedback becomes concave downward and stabilizes at a constant power. At this point the negative feedback has completely compensated for the initial reactivity insertion. 
( In Chapter 9 we shall take up the reactivity feedback in detail and examine its interaction with reactor kinetics to determine the transient behavior of power reactors.
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