CHAPTER VI
SPATIAL DIFFUSION OF NEUTRONS

VI.1 INTRODUCTION

(What have we done up to this point?

   Chapter 3(Energy dependence 
   Chapter 4(Energy + very crude spatial dependence

   Chapter 5(Time dependence. 

(This chapter deals with:

    *Spatial distribution of neutrons

     *Relationships between reactor size, shape and      
       criticality
(Assumptions (simplifications) of this chapter:
i. One energy group model (cross sections averaged over the entire energy spectrum)

ii. Flux and cross sections, spatially averaged over the lattice cell. Dealing only with the global neutron distribution not with the spatial fluctuations within the lattice cell.

 (Neutron diffusion equation provides the most  

    straightforward approach to determining the spatial 

    distribution of neutrons.

Summary:

*Derivation of neutron diffusion equation an its associated 

   boundary conditions. 

*Applications of neutron diffusion theory to problems in

   nonmultiplying media (highly idealized one-dimensional 
   geometries- first plane then spherical geometry).

*Applications of neutron diffusion theory to problems in

  multiplying media:

   i. Subcritical spherical systems with external source.

   ii. Criticality equation. 

(Chapter 7( Spatial distribution of flux and power in the 
   finite cylindrical cores of power reactors.
VI.2 THE NEUTRON DIFFUSION EQUATION

The Neutron Current Vector:
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where 
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Similarly:
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Let u be any direction then:

[image: image13.wmf](

)

r

J

u

v

 is the net number of neutrons that pass through the unit area perpendicular to the u-axis in the +u direction per unit time. 

Let 
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be the unit vector in the u direction, then:
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( Current has the units of cm-2 s-1 which are identical to the unit of the flux, (. 

( In most of the circumstances that we will consider we may reasonable apply Fick’s law or more precisely, Fick’s approximation to relate the current to the flux:
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where the gradient operator is defined as:
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(D is referred to as the diffusion coefficient. More advanced neutron transport techniques employed in Appendix C shows that:
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(The transport cross section is defined as:
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 is the average cosine of the scattering angle. 
( For isotropic scattering in the lab system 
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and the transport cross section, (tr, reduces to the total cross section,(t.
(Since mean free path, (=1/(t, we have: 
[image: image22.wmf]3

D

l

=

 if scattering is isotropic in the lab system.

( Neutron transport theory may be employed as shown in Appendix C, that in the diffusion approximation:
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( If Fick’s law is employed to eliminate the current:
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Spatial Neutron Balance

[image: image25.png]FIGURE 6.1  Control volume for neutron balance equation.




( Consider the neutron balance within an infinitesimal volume element 
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. Under steady state conditions neutron conservation requires that:
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(6.1)
( The leakage is the sum of the net number of neutrons passing out through the six surfaces of the cubical volume.
( For the cubical volume, the net number of neutrons passing out of the cube through the front, right, and top faces is then Jx(x+dx/2,y,z)dydz, Jy(x,y+dy/2,z)dxdz, Jz(x,y,z+dz/2)dxdy.
( Likewise, the net number of neutron passing out of the rear, left, and bottom faces is -Jx(x-dx/2,y,z)dydz, 

-Jy(x,y-dy/2,z)dxdz, -Jz(x,y,z-dz/2)dxdy.
( Thus the net leakage per second from the cube is:
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(6.2)
( Since by definition the partial derivative is:
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(6.3)


and similarly in the y and z directions.

( If we multiply and divide the three terms on the right of (6.2) by dx, dy and dz respectively, we obtain:
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(6.4)

( The remaining terms are:
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(6.5)
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(6.6)
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(6.7)

( Inserting (6.4)-(6.7) into (6.1) and eliminating dxdydz:
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(6.8)
( For compactness, we may write the current in the vector form:
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(6.9)
Using the definition of the gradient operator:
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      (6.10)

Diffusion Approximation

( We recall Fick’s law:
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(6.11)

( Inserting (6.11) into (6.10) then yields the neutron diffusion equation:
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(6.12)

recalling the definition of the diffusion coefficient
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(6.13)

( In what follows, 

1. We first solve the diffusion equation for nonmultiplying media in simple one dimensional geometries and stipulate the boundary conditions that apply to it under a variety of circumstances.

2. We then return to examine the circumstances under which the diffusion approximation is valid and the meaning of the diffusion length, which appears in so many solutions of the diffusion equation.

3. Then we will examine a spherical subcritical assembly using the diffusion equation and then discuss the criticality condition that follows from the study.

VI.3 NONMULTIPLYING SYSTEMS-PLANE GEOMETRY
( Consider a uniform medium with no fissionable material, that is a nonmultiplying medium.
((f=0, D and (a are constants. Thus (6.12) becomes:
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         (6.14)

where the Laplacian operator is defined as:
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or in summary:
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and the diffusion length, L, is defined by:
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(6.15)

which has units of length.

Source Free Example
( To illustrate the significance of diffusion length we consider a simple problem in plane geometry, that is, where the flux varies so slowly in y and z that it can be ignored, allowing us to eliminate the y and z derivatives from the Laplacian. We also set the source to zero so (6.14) becomes
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(6.16)
( We look for a solution of the form:
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(6.17)

If this is inserted into (6.16):
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(6.18)

For (6.18) to be true for all x, either C=0 or 
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. If C=0, we get the uninteresting solution that there no neutrons in the system. Therefore 
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(6.19)

Thus there are two possible solutions, and the flux takes the form:
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(6.20)

( To determine the coefficients C1 and C2, we must apply boundary conditions. 

( Suppose we have a semi-infinite medium occupying the space 
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. Further assume that the neutrons are supplied from the left to provide a known flux at x=0:
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( If no neutrons are entering from the right, then all of the neutrons entering from the left will eventually be absorbed as they diffuse to the right, thus:
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(We thus have the two needed boundary conditions. Inserting them into (6.20) we have 


[image: image54.wmf]L

0

2

L

0

1

0

e

C

e

C

-

+

=

f








(6.21)

and
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(6.22)

Because e(=( and e-(=0, the second equation satisfied only if C1=0. Then because e0=1 we obtain C2=(0 and the solution is:
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(6.23)

Uniform Source Example
( We next examine the case where there is a uniform source
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. In plane geometry (6.14) reduces to
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(6.24)
( Solutions to problems containing source terms are divided into general and particular solutions:
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(6.25)

where (g(x), the general solution (sometimes also called the homogeneous solution) satisfies (6.24) with the source set to zero. Thus (g(x) is identical in form to the solution of (6.16) given by (6.20). 

( The particular solution, (p(x) must satisfy (6.24) with the source present. For a uniform source the particular solution is a constant, since its derivative is zero. That is:
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(6.26)

( Substituting this expression along with (6.20) into (6.25) yields:
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(6.27)
( Once again we need two boundary conditions to specify the constants C1 and C2. Suppose the uniform source is distributed throughout a slab extending between -a(x(a and that we specify the two boundary conditions as the flux vanishing at the slab surfaces:
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The conditions on C1 and C2 then follow from (6.27):
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(6.28)

and


[image: image64.wmf]a

0

L

a

2

L

a

1

s

e

C

e

C

0

S

¢

¢

¢

+

+

=

-








(6.29)

Subtracting (6.29) from (6.28):
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Adding (6.28) and (6.29):
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where the hyperbbolic cosine , cosh is defined as:
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Substituting C1 into (6.27) 
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or simplifying:
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(6.30)

Boundary Conditions
( The problems introduced above indicate some general procedures used to solve the diffusion equation, which is a second order differential equation. 

( In one-dimensional problems solutions contain to arbitrary constants. Two boundary conditions are needed to determine these coefficients. 

( The conditions that we have used thus far are on the flux itself. Often other conditions more accurately represent the physical situation at hand. In deriving such conditions we recall the concept of partial currents, 
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(6.31)

( Also recall the equations relating partial currents to flux and the current under the diffusion approximation:
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(6.32)

When Fick’s law is applied to (6.32) we got:
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(6.33)

Vacuum Boundaries
( Suppose we have a surface across which no neutrons are entering. This would be the case if a vacuum containing no neutron sources extended to infinity, we refer to this as a vacuum boundary. If the boundary is on the left, say, at xl, the condition is 
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If it is on the right, say, at xr, the condition is 
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Using (6.33) we may the condition on the right as:
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(6.34)

where since the derivative is negative on the right, for clarity we have taken the negative of its absolute value.
 Recalling that for isotropic scattering 
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, we may rewrite the vacuum boundary condition as:
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(6.35)
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FIGURE 6.2 Neutron flux extrapolation distance at a vacuum boundary.




( Figure 6.2 provides a visual interpretation of the condition. If the flux is extrapolated linearly according to (6.35) it will go to zero at a distance 
[image: image82.wmf]l

3

2

outside the boundary; thus we refer to 
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 as the extrapolation distance. 

( Frequently, when vacuum boundaries are encountered is simply adjusting the dimensions and using a zero flux boundary condition is more straightforward. Thus for a problem with left and right boundaries at xl and xr, we would take 
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For brevity, we shall frequently denote such an extrapolated boundary simply by adding tilde. Thus 
[image: image86.wmf](

)

0

x

~

=

f

l

and 
[image: image87.wmf](

)

0

x

~

r

=

f

.
( In situations where the problem dimensions are large when measured in (, a common practice consists of ignoring the small correction for the extrapolation distance and simply taking 
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Reflective Boundaries
( If the current Jx is known at a boundary, it also may be used as a condition. 

( Current conditions appear most frequently as a result of problem symmetry. Suppose, as in the uniform problem described above, the solution is symmetric about x=0, such that the net number of neutrons crossing the plane at x=0 vanishes. Then we may solve the problem only for x>0 using the boundary condition on the left as:
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Or simply
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Surface Sources and Albedos

( Partial currents are particularly useful in specifying boundary conditions in situations where surfaces are bombarded by neutrons. To illustrate, consider a source free condition such as (6.23). For this solution to hold, neutrons must be being supplied from the left. We can relate the boundary flux (0 to a surface source of 
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 by noting that the number of neutrons entering from the left is just 
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Substituting (6.23) into (6.33):
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(6.38)

If we use (6.38) in (6.37):
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Using this last result in (6.23):
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(6.39)

( Of the surface source neutrons entering the medium, some fraction will make scattering collisions and then come back out. The ratio of exiting to entering neutrons is termed to albedo. We express it in terms the partial currents as:
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(6.40)

( For the semi-infinite problem we are considering, we note that from (6.40) and (6.33) 
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If we use this last equation and (6.38) in (6.40)
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If we multiply both the numerator and denominator with 4 the last equation:
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(6.41)

( Thus for the semi-infinite medium, (s( neutrons/(cm2s) will be reemitted from the surface at x=0 to the left. While the remaining neutrons, that is, (1-()s( neutrons(cm2s) will be absorbed within the medium. 

( (6.40) is applicable to any surface with 
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interpreted as the outgoing and 
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Interface Conditions

(If more than one region is present with different cross sections, the diffusion equation will contain two arbitrary constants for each region.
(Thus two conditions are required at each interface: They are that both the flux and the current be continuous. Thus for an interface at x=x0 we have:
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and


[image: image105.wmf](

)

(

)

(

)

(

)

+

-

=

+

=

-

f

=

f

0

0

x

x

0

x

x

0

x

dx

d

x

D

x

dx

d

x

D

             



   (6.43)

where x0- and x0+ indicate evaluation immediately to the left and right of x0.
( An exception to (6.43) occurs if there is a localized source present. If an infinitely thin surface source emits 
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along the interface to the right, the neutron balance at the interface is

J(x0-)+s(pl=J(x0+) or more explicitly
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   (6.44)
Boundary Conditions in Other Geometries

(The foregoing boundary conditions are applicable in cylindrical and spherical as well as Cartesian geometries: x is simply replaced by the direction normal to the surface.
(In spherical or cylindrical geometries, however, boundary conditions at the origin or centerline must be treated somewhat differently:

i. For a point source emitting sp neutrons/s at the center of a sphere:
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ii.      For a line source emitting sl' neutrons/(cmxs) along the centerline of the cylinder:
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(If no such sources are present then these two conditions are equivalent simply by requiring that the flux be finite at r=0.

VI.3 NONMULTIPLYING SYSTEMS - SPHERICAL GEOMETRY

(We consider two spherical geometry problems:
i. A point source of neutrons is located in an infinite medium.

ii. A two-region problem with a distributed source.

( We begin by replacing 
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 in (6.14) by its one-dimensional spherical form found in Appendix A:
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(6.45)

Point Source Example

( Assume there is a point source emitting sp neutrons/s at the center of an uniform infinite medium. If we apply (6.45) for r>0 with s(((r)=0:
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(6.46)
( We propose the substitution:
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Then 
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If this last result and (6.47) is inserted into (6.46):
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(6.48)
which has the same form as (6.16) with x replaced by r. Thus we look for a solution of the form:
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(6.49)

and use the previous procedure to get:
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(6.50)

Thus from (6.47) 
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(6.51)

( The first boundary condition is that the flux must go to zero infinitely far from the source. This can be accomplished only if C1=0. 

( The second boundary condition is more subtle. To apply it, we must calculate the current as a function of r. Since:
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(6.52)
we have:
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(*)
The central boundary condition is:
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(6.53)

Using (*) in (6.53):
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Using this last result in (6.51):
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(6.54)

( Clearly all the neutrons produced by the point source must be absorbed in the infinite medium. Thus:
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(6.55)
where dV=4(r2dr

Check:
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Two Region Example

(Suppose a sphere of radius R with material properties D and (a contains a uniform source 
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. The sphere is surrounded by a second source free medium with properties 
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( The governing differential equations are:
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and
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(Within the sphere we must superimpose general and particular solutions for (6.56):
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(For a uniform source the particular solution is a constant. Thus,
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(6.59)

( The general solution satisfies (6.46) and following the same transformation of variables we obtain (6.51) for (g(r). Thus inserting (g and (p into (6.58):
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(6.60)

( (6.46) and (6.57) are identical in form. Thus the solution to (6.57) has the same form as (6.51):
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(6.61)

where 
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( The four arbitrary constants in (6.60) and (6.61) are determined from the four boundary and interface conditions:
#1. 0<(0<(
#2. ((()=0
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(6.62)
#4. 
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( Applying boundary condition 1 to (6.60):
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Thus:
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and ((0) remains finite. In that case (6.60) becomes:
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Recalling the definition of the hyperbolic sine:
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(6.63)

( We next apply the condition 2 to (6.61). Since the first term becomes infinite, but the second vanishes as r((, the condition is met if C(1=0:
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(6.64)
( Finally we apply interface conditions 3 and 4 to obtain the remaining arbitrary coefficients:
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(6.65)
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(6.66)

( Solving this pair of equations for C1 and C(2 and inserting the results into (6.63) and (6.64) gives:

[image: image148.wmf](

)

R

r

0

   

,

 

s

L

R

sinh

L

r

sinh

r

R

C

1

r

a

o

£

£

S

¢

¢

¢

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

-

=

f





(6.67)

and 
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(6.68)

where


[image: image150.wmf]1

1

L

R

1

L

R

coth

L

R

D

D

1

C

-

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

-

÷

ø

ö

ç

è

æ

+

=

)

)







(6.69)

6.6 DIFFUSION APPROXIMATION VALIDITY
( In this subsection we will question the circumstances under which the neutron diffusion equation provides a reasonable approximation. 
[image: image151.jpg](@) (b) (©)

FIGURE 6.3 Polar distributions of neutrons. (a) Neutron beam,
(b} neutrons diffusing to the right, (c) isotropic neutron distribution.




( Figure 6.3 shows polar plot of the directions of neutron travel for three different points in space. In each, the length of the arrows indicates the number of neutrons traveling in that direction. 

( The plot of Figure 6.3a indicates a beam of neutrons all traveling within a very narrow cone of directions. This is the situation we stipulated for the uncollided flux in Chapter 2 in order to define the cross section. The use of the diffusion equation in such situations would be inappropriate, leading to gross errors in the prediction of the spatial distribution of neutrons. 

( In Figure 6.3b neutrons travel in all directions. More are traveling to the right than to the left, but the distribution is not highly peaked. Use of the diffusion approximation is appropriate, for it will reasonably represent the flux, which decreases as we move from  left to right, because the net diffusion of neutrons is in that direction. 
( Figure 6.3c represent an isotropic distribution of neutrons such as would occur if there were no spatial variation in the flux at all. In this case the use of the diffusion equation is valid, but if the spatial variation vanishes, we would have 
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 and the leakage term would disappear from the neutron diffusion equation.

( Generally, diffusion theory is valid if the neuron distribution is changing gradually in space. It tends to lead to significant errors for spatial distribution of neutrons near boundaries and at interfaces between materials with sharply different properties.
( In reactor lattices consisting of fuel, coolant, moderators, and/or other materials, we use diffusion theory to examine the global distribution of neutrons only after taking appropriate averages over the lattice size as discussed in Chapter 4. 
Diffusion Length
( We can gain a physical interpretation of the diffusion length by examining the mean square distance between the point of birth and point of absorption of a neutron. To do this we assume that a neutron is born at r=0 and then calculate the mean square distance by weighting with the absorption rate:
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(6.70)

Inserting (6.54) for the flux resulting from a point source and noting that dV=4(r2dr, we have:
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But:
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Using this result in (6.71) we obtain:
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Or       
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(6.73)

Thus the diffusion length is proportional to the root mean square (i.e., rms) distance between the point of birth and the point of absorption of a neutron.
( During its life the neutron undergoes a number of scattering collisions, which changes its direction of travel. 
( (=1/(t,  the mean free path, is the average distance between such collisions. 
( L and ( can easily be related. If we assume isotropic scattering in the lab system D=1/(3(t)=(/3. If we also define the ratio of scattering to total cross section as
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(6.74)

Since (a=(t-(s=(1-c)(t=(1-c)/(, we have 
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(6.75)

Thus, for example, a material for which c=0.99 would yield L(6(.

( The relationship between the mean free path and diffusion length is shown heuristically in Figure 6.4.
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FIGURE 6.4 Diffusion length L between neutron birth and absorption



 

The dashed lines between scattering collisions averaged to a value of (, while the length of the solid line is L. 
(In general if c is less than about 0.7, the diffusion approximation loses validity, and more advanced methods of neutron transport must be used.

Uncollided Flux Revisited

( Further insight to the range of validity of the diffusion equation may be gained by comparing the uncollided flux from a point source to the total (i.e., uncollided+collided) flux attributable to the source. Recall from (2.9) that the uncollided flux from a point source is:
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(6.76)

Comparing this expression to (6.54) reveals that the uncollided flux drops off as 1/r2 while the total flux –uncollided+collided- drops off only as 1/r. Likewise, the mean free path appears in the exponential of the uncollided flux while the diffusion length –which is larger- appears in the exponential of the total flux. Thus the total flux will decay more slowly with distance. 

( A second point for comparison between uncollided and diffusing neutrons is the rms distance to first collision and to absorption, respectively. To obtain the rms distance traveled by uncollided neutrons we again consider a point source at the origin, but now we employ the first collision rate, (t(u, instead of the absorption rate:
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(6.77)
Using (6.76) in (6.77) yields
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but
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Using this last result in (6.78)
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Or correspondingly, 
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Meaning that the mean free path is proportional to the rms distance of a neutron before making its first collision. The ratio of the mean square distances can be calculated as:
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(6.80)

( As the distance from the source increases, the importance of the uncollided source rapidly diminishes provided that c is close to one.  If it is not, then on average the neutrons will not make enough scattering collisions before absorption for the diffusion equation to be valid. 

( Examining angular distribution of neutrons further illuminates the distinction between uncollided and diffusing neutrons, the uncollided neutrons at a point some distance r from a point source all travel in directions radially outward from the source. Their angular distribution is then like Figure 6.3a while the diffusing neutrons will be dispersed in angle more like Figure 6.3b.

( For the diffusion equation to be valid, only a small fraction of neutrons can remain uncollided. This condition exists when c>0.7. 

6.7 MULTIPLYING SYSTEMS
( The subsection deals with time independent neutron populations in subcritical systems with external neutron source (subcritical assemblies). We will deal with spherical systems since they are more realistic then the slab systems and do not posses the two dimensional complexity of cylindrical systems. Cylindrical geometry constitutes the subject matter of Chapter 7. 
Subcritical Assemblies

( The diffusion equation describing a uniform subcritical assembly is:

 
[image: image170.wmf](

)

(

)

(

)

r

k

L

1

s

D

1

r

L

1

r

2

0

2

2

r

r

r

f

+

¢

¢

¢

=

f

+

f

Ñ

-

¥





(6.81)

In one dimensional spherical geometry (6.81) becomes:
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(6.82)

( To solve (6.82) we assume again:
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(6.83)

The particular solution is again a constant and given by:
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(6.84)

The general solution must satisfy:
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(6.85)

With the same substitution as in (6.47),
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(6.86)

The equation simplifies to:
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(6.87)
The form of the solution depends on whether k(<1 or k(>1. 
( We first consider k(<1 and look for a solution of the form used earlier:
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(6.88)

Because 
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(6.87) is satisfied if 
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(6.90)

Thus there are two solutions giving:
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(6.91)
Inserting this to (6.86) and combining the result with (6.83) and (6.84) we obtain for the flux:
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(6.92)
( We next apply the boundary conditions to determine C1 and C2.

( The condition that ((0) must be finite requires the two exponential terms to cancels exactly when r=0 as we have seen before. Thus we take C2= - C1. Using the definition of the hyperbolic sine:
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(6.93)

( With 
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(6.94)
Solving for C1:
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Inserting this into (6.93) yields
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(6.95)

( For k(<1, the system must be subcritical, even if there were no neutrons leaking from the sphere. We next consider the system for k(>1, where criticality becomes possible. Once again we must have a general and a particular solution as in (6.83). (6.84) remains the particular solution. (6.85) – (6.87) remain applicable to the general solution. However, the general solution takes the different form. This is most easily seen by noting that for k(>1, the second term of (6.87) is now positive.
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(6.96)

For this differential equation we look for a solution of the form
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(6.97)

Because 
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(6.98)

(6.96) becomes:
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This equation can be satisfied for all r if 
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(6.99)

Hence,
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(6.100)

Therefore
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(6.101)
( We determine the constants by applying the same boundary condition as in the k(<1: The condition at the origin is that ((0) must be finite. The first term is finite since 
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(6.102)

(We determine C1 by requiring this equation to meet the boundary condition 
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Inserting this into (6.102):


[image: image201.wmf](

)

(

)

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

-

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

-

S

-

¢

¢

¢

=

f

¥

¥

¥

1

L

1

k

R

~

sin

L

1

k

r

sin

r

R

~

1

k

s

r

a

0





(6.103)
( Figure 6.5 shows the spatial distribution of ((r) for increasing values of k(, first using (6.95) for k(<1 and then (6.103) for k(>1. 
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FIGURE 6.5 Flux distributions in subcritical spheres.




The Critical Reactor
( Figure 6.5 indicates that the flux level increases with the value of k(. With increasing k(, the argument of the sine in the denominator of (6.103) becomes larger, until

  
[image: image203.wmf]p

=

-

¥

L

1

k

R

~









(6.104)
At which point the flux level becomes infinite, since sin(()=0. At this point the sphere has become critical. As we saw in the preceding chapter subcritical reactors have time-independent solutions in the presence of source, but critical reactors do not. Thus we should expect the flux given by (6.103) to become singular for a critical system. 
(Recall that for a finite reactor the criticality condition on the multiplication is just
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, where PNL is the nonleakage probability. Squaring (6.104) and rearranging terms,
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or,
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    (6.105)
Thus for the critical sphere, the nonleakage probabibility is:
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        (6.106)

Or, using the notation introduced in Chapter 5, from (5.17) and (6.106):
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(As expected the nonleakage probability increases with 
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, the extrapolated radius of the reactor measured in diffusion lengths.

(Just as a subcritical reactor has a time-independent solution if and only if there is a source present, a critical reactor has a solution only if no source is present.
( For the sphere, this is equivalent to specifying:

i. that the general solution, (6.85) must be satisfied
ii. ((0) must be finite

iii. 
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( If we set 
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 in (6.102) we obtain 
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(6.107)

The condition 
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, along with the requirement ((r)>0 then yields (6.104), the criticality condition. 

( Note that the solution is not unique; that is, C1 may take on any nonnegative value. 

( In Chapter 7 we will show that C1 is proportional to the power at which the reactor operates.

( In earlier texts, the term
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that first appeared (without the subscripts) in (6.99) is referred to as the materials buckling. Materials buckling depends only on material properties. 

( For a sphere 
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is referred to as the geometric buckling. Geometric buckling depends only on the sphere’s size. 

( The criticality condition of (6.104) can be rearranged as:
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That is the criticality condition may also be stated as the material and geometric buckling being equal:

Bg = Bm
( The term buckling derived from the notion that the flux had more concave downward or “buckled” curvature in a small reactor than in a large one. Thus small reactors have large geometric buckling while large reactors have small geometric buckling. 

( For a given material Bm is fixed. If a reactor has a smaller size than required for criticality Bg>Bm and the reactor would be subcritical. 

( On the other hand, if a reactor has larger size than required for criticality Bg<Bm and the reactor would be supercritical. 

( For reactors of shapes other than spheres the geometrical buckling takes the form Bg=C/R, where the coefficient C is determined by the shape of the reactor and R is a characteristic dimension. 

( Generally, the multiplication of a uniform reactor of any shape and size is given by k=k(PNL, with the nonleakage probability written as:
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(6.108)

where the subscript is dropped from B, the geometric buckling.
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