CHAPTER VII
NEUTRON DISTRIBUTIONS IN REACTORS
VII.1 INTRODUCTION

(Chapter VI ended with a discussion of approach to criticality of a spherical reactor chosen for its simplicity as a one dimensional model.

(This chapter deals with the spatial distribution of neutrons within finite cylindrical systems that correspond to the cores of power reactors.

(Chapter Summary:

· Reformulation of the diffusion equation in an eigenvalue form that yields both the multiplication and the flux distribution from a time-independent solution.

· Criticality equation and flux distribution for a bare, uniform reactor and its relation to reactor power.

· A more detailed treatment of the nonleakage probability and the effects that neutron slowing-down and diffusion have on it.

· Reflected reactors.

· The effects of control poisons: single control rod and a bank of control rods.

VII.2 THE TIME-INDEPENDENT  DIFFUSION EQUATION
(Steady-state diffusion equation for a multiplying system in the absence of a source:
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· (7.1) has a positive flux solution within a reactor only if  the reactor is exactly critical.

· Otherwise, the flux will vary with time and the kinetics equations of Chapter 5 are needed for a description of the system behavior.

· Often, however, we’ll be searching only for the critical state by varying the reactor’s geometry (e.g. its radius or height) or its material composition (e.g. fuel enrichment or fuel to moderator atom ratio).
· We do such searches iteratively by hypothesizing a reactor of a particular size, shape and composition and determining how far from the critical the system is and what the spatial neutron distribution will be.

(This can be accomplished without doing any time-dependent calculations through the following artifice:

Suppose we could vary the average number of neutrons emitted per fission (, by a ratio (0/(. (7.1) then becomes:
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     (7.2)

· Now suppose that (0 is the number of neutrons per fission that we would require to make the reactor configuration exactly critical (i.e. it would yield a multiplication of k=1), while ( is the number of neutrons actually produced per fission. Since k is proportional to the number of neutrons per fission, we have
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and  (7.2) becomes:


[image: image4.wmf]0

k

1

D

.

a

f

=

f

S

-

f

S

u

+

f

Ñ

Ñ

v

v

           



           (7.3)

( If the number of neutrons needed to make the reactor critical (0 is larger than its actual value (, then the reactor is subcritical and k<1.
( If the number of neutrons needed to make the reactor critical (0 is smaller than its actual value (, then the reactor is supercritical and k>1.

( If the number of neutrons needed to make the reactor critical (0 is equal to its actual value (, then the reactor is critical and k=1
(The reactor described by (7.3) may be called a pseudo-critical reactor.
(By solving (7.3) for k, the foregoing technique converts the problem from trying to find a combination of cross sections and dimensions for which a solution of (7.1) exists to specifying   a set of cross sections and dimensions and determining how far from critical the configuration is.

((7.3) has the form of an eigenvalue problem where k is the eigenvalue and ( is the eigenfunction. 
(In general, there will be many-in some cases an infinite number of- eigenvalues and eigenfunctions that will solve (7.3) and meet the appropriate boundary conditions.
(We are only interested, however, in the physically meaningful solution for which the flux is positive everywhere within the reactor.

(This solution may be shown to correspond to the largest eigenvalue, which is the multiplication; we refer to the corresponding eigenfunction (, which is positive everywhere within the reactor, as the fundamental mode solution.

VII.3 UNIFORM REACTORS
(For a uniform pseudo-critical reactor, the cross sections are independent of time and (7.3) becomes:
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or:     
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                                              (7.4)

Equivalently:
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                                                       (7.5)
Since the RHS of (7.5) is independent of the spatial variables, the LHS also is. If we let B2 to be a constant then:
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and:
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Solving for the multiplication:
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This is called the one-group criticality equation.      

To determine B, referred to as geometrical buckling or simply as the buckling, we must solve:


[image: image11.wmf]0

2

2

=

+

Ñ

f

f

B

                                                               (7.7)

which is a Helmholtz equation. The solution must meet the condition 0<(<( within the reactor and satisfy the boundary conditions.
(We have already encountered such a problem in Chapter VI. (6.105) is identical to (7.6), but with k set equal to zero and the buckling given for the sphere by B=(/R. And the nonleakage probability of (6.106) takes the form:
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((7.6) through (7.8) are valid for uniform reactors of all shapes. In what follows, we analyze a cylindrical reactor of finite length to determine the multiplication and flux distribution in term of reactor’s dimensions and material properties.

Finite Cylindrical Core

[image: image13.jpg]FIGURE 7.1 Cylindrical reactor core.




(For a uniform cylindrical reactor with an extrapolated radius 
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as shown in Figure 7.1, (7.7) is a partial differential equation. It may be expressed in terms of the radial and axial coordinates r and z. With the r-z geometry form of the Laplacian operator given in Appendix A, we have the Helmholtz equation:
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(7.9)

Subject to the conditions
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(7.10)
We look for a solution by separation of variables:
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(7.11)

Inserting this expression into (7.9) and dividing by ((, we obtain:
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(Since the first term depends only on r while the second term depends only on z, both terms must be equal to constants 
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so that:
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Thus the PDE of (7.9) is transformed into the two ODE’s (7.14) and (7.15). 

(If we substitute:
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into (7.15) we readily see that it satisfies it.

( The boundary conditions on ((z) are 
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The boundary condition at the upper plane requires:
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C2(0 since that would mean zero flux. Hence:
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This requires:
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However, only for the case of n=1, we will get a positive flux. Thus, we reject the solutions that correspond to n>1and we have:
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( If we take the derivative in the radial equation, we can rewrite (7.14) as:
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From Appendix B we see the Bessel equation of order n is:


[image: image36.wmf]0

r

n

dr

d

r

1

dr

d

2

2

2

2

2

=

F

÷

÷

ø

ö

ç

ç

è

æ

-

a

+

F

+

F


With the solution:
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Thus in our case we have:
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(7.18)
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FIGURE 7.2 Ordinary and modified Bessel functions of order zero.




Where C(1 and C(2 are arbitrary constants and J0(Brr) and Y0(Brr) are zero’th order Bessel functions of the first and the second kind respectively. We again have two arbitrary constants to determine. From Figure 7.2:
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Thus for the flux to be finite C(2=0 and 
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The second boundary condition is:
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Again to have a nonzero flux C(2(0. Thus:
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This equation is satisfied only if 
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 equals to one of the roots of the zero’th order Bessel function of the first kind. Although J0(x) has infinitely many roots only the smallest positive root, namely (2.405 results in a nonnegative flux. Hence 
[image: image45.wmf]405

.

2

R

~

B

r

»

 or:

[image: image46.wmf]R

~

405

.

2

B

r

»









(7.19)

Substituting (7.17) and (7.19) into (7.13):
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(7.20)

The flux distribution results from inserting (7.16) and (7.18) into (7.11) with C1=C(2=0:
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(7.21)

where C=C(1C2
Reactor Power
( The remaining undetermined constant C can be specified in term of the reactor power. Let
                              (=3.1x10-11J/fission 
represent the average recoverable energy per fission and let P represent the reactor thermal power in watts (J/s).  Then:
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which in cylindrical geometry reduces to 
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(7.23)

 Inserting (7.21) then yields:
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(7.24)

We may separate this expression into more convenient radial and axial contributions by multiplying the numerator and denominator by the volume 
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(7.25)

Using the Bessel function identity 
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found in Appendix B:


[image: image55.wmf](

)

405

.

2

405

.

2

J

2

R

~

R

405

.

2

J

R

R

~

405

.

2

2

R

~

R

405

.

2

J

)

R

~

/

405

.

2

(

R

R

2

rdr

R

~

r

405

.

2

J

R

2

1

1

1

2

R

0

0

2

@

÷

ø

ö

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

ò

 

                                                                                       (7.26)


Also:
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Noting that J1(2.405)(0.519, we combine the three preceding equations to obtain:


[image: image57.wmf](

)

VC

275

.

0

VC

)

405

.

2

519

.

0

4

(

2

519

.

0

405

.

2

2

VC

P

f

f

f

S

g

»

S

g

p

=

÷

ø

ö

ç

è

æ

p

÷

ø

ö

ç

è

æ

S

g

@


(7.28)

Or:
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(7.29)

Inserting (7.29) into (7.21):
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(7.30)

7.4 TWO-GROUP AND ONE-AND-A HALF GROUP MODELS
( In thermal reactors, neutrons are born as fast neutrons and they travel certain distances during slowing down. After they become thermal they diffuse in the medium until they are absorbed or leak out. Thus, it has been found convenient to collect the neutrons in a thermal reactor in two energy groups. The first group involves the epithermal neutrons (that is neutrons that are not thermal) and the second group involves the thermal neutrons.
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Two Group Approximation
( To model a reactor with two group theory, we begin by defining the fast and thermal flux as (1 and (2. 

( To obtain the source for the fast group, we note that 
· The number thermal neutrons absorbed per unit time and per unit volume =
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 is the thermal neutron(thermal group) absorption cross section.)
· The number thermal neutrons absorbed in the fuel per unit time and per unit volume =
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(f is the thermal utilization)

· The number of fission neutrons(fast neutrons) emitted as a result of thermal neutron induced fissions per  unit time and per unit volume=
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(
[image: image65.wmf]T

h

is the average number of fission neutrons(fast neutrons) emitted per thermal neutron absorbed)
· The number of fission neutrons(fast neutrons) emitted as a result of thermal neutron induced fissions per  unit time and per unit volume in the pseudo-critical reactor :=
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· The number of fission neutrons(fast neutrons) emitted as a result of all fissions(thermal or fast neutron induced) per  unit time and per unit volume in the pseudo-critical reactor =
[image: image67.wmf](

)

(

)

r

r

f

k

1

2

a

T

v

v

f

S

eh

 

(
[image: image68.wmf]e

 is the fast fission factor)

The fast group diffusion equation is then:
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(7.31)

Noting 
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we can write also as:
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The first term on the left is the fast leakage. The fast diffusion coefficient is defined as:
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The second term (r(1 account for the neutrons removed from the fast group either by absorption or slowing-down to the thermal group.
 (r is called the removal cross section. 

( The source for thermal neutrons is simply equal to the number of fast neutrons which are removed from the fast group without getting absorbed (in the resonances), that is, p(r(1, where p is the resonance  escape probability. 

Thus the thermal diffusion equation is:
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(7.33)

where the first term accounts for thermal neutron leakage and the second for the thermal absorption. The thermal diffusion coefficient is defined as:
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(7.34)

(a is the thermal absorption cross section. 

( For a uniform region the diffusion coefficients are space independent and may be pulled outside the divergence operator. The two-group diffusion equations are:

[image: image75.wmf]2

1

1

2

1

1

f

f

f

a

r

p

k

k

D

S

=

S

+

Ñ

-

¥



[image: image76.wmf]1

r

2

a

2

2

2

p

D

f

S

=

f

S

+

f

Ñ

-


Dividing the former by -D1 and  the latter by -D2  and defining fast and thermal diffusion lengths as:
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and
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We obtain:
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(7.37)
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(7.38)

( To solve the coupled differential equations (7.37) and (7.38), we first consider a uniform reactor with zero flux boundary conditions on all its outer surfaces.
 (For this case, we may assume that the fast and the thermal flux have the same spatial dependence as:
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Using (*) , (**) in (7.37) and collecting terms:
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where
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Using

 (**) an (*) in (7.38) and again collecting terms
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Since ( must also vanish at the outer surface of the reactor, both of these equations reduce to the same Helmholtz equation we have met in our one-group analysis. That is:


[image: image87.wmf]0

2

2

=

+

Ñ

f

f

B


with 


[image: image88.wmf]2

2

2

1

2

B

B

B

=

=


By (*) and (**), we have also:

 
[image: image89.wmf]0

B

1

2

1

2

=

f

+

f

Ñ









(7.39)
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(7.40)

Using these equations to replace the Laplacian terms in (7.37)  obtain:
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which can also be written as:


[image: image92.wmf](

)

0

1

1

2

1

2

1

2

=

S

S

=

+

¥

A

p

k

k

A

L

B

r

a

                         (7.41)

Using again (7.39) and (7.40)  to replace the Laplacian terms this time in (7.38)  we obtain:
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which can also be rewritten as:
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Dividing (7.42) by (7.41) we obtain 
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and solving for k:
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(7.43)

This is the two-group criticality equation.

From (7.43), we infer the nonleakage probability as:
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(7.44)

( The definition of the thermal diffusion length (L2)  is straightforward, with both the transport and absorption cross sections appearing in (7.34) and (7.36) averaged over the thermal neutron spectrum.
( However, the diffusion length for fast neutrons, fast diffusion length (L1)  requires more careful scrutiny. 
The Fermi age, (, is the most frequently employed approximation for 
[image: image98.wmf]2

1

L

. The Fermi age is defined as:


[image: image99.wmf](

)

(

)

ò

S

x

=

t

1

2

E

E

s

dE

E

E

E

D








(7.45)

where the integral extends from fission energy neutrons down to thermal neutrons. Typically E1 is the average energy of fission neutrons, approximately 2MeV. On the other hand E2 is the most probable energy of the thermal neutrons at room temperature, that is 0.0253eV. We note that the slowing-down power ((s appears in the denominator. Thus, if we take
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we see that a strong moderator  results in a small diffusion length for fast neutrons. 

( We may gain some further insight with the following simplified model. Over the energy range included in (7.45) we approximate the diffusion coefficient and scattering cross section as energy independent. (7.46) combined with (7.45) then reduces to:
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By (7.35) 
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with (7.47), we have:
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If we recall, n, the average number of elastic scattering collisions requires to slow down a neutron from E1 to E2 is:
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Using this in the previous equation, we may approximate the removal cross section as:
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From (*): 
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That is, the smaller the number of collisions required to  slow down the fission neutrons to thermal energies, the smaller is the fast diffusion length. 
Or the smaller n is, the shorter is the distance that fast neutrons will diffuse before being slowed down to thermal energies. 

Migration Length 
( Retaining the one group theory form of the results can simplify our analysis. For this we note that the two-group theory gives by (7.43):
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(7.48)

Since B2 is inversely proportional to the square of the characteristic dimension of the reactor, B4 would be a very small number provided the reactor is large enough.
 In that case it is a reasonable approximation to ignore the third term in the denominator of the right hand side of (7.48) and write:
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where the migration area, M2,  is defined as 
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and correspondingly the migration length, M, is:
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(5.51)

[image: image111.jpg]TABLE 7.1
Representative Diffusion Properties for Moderators and Thermal Reactors

Ly (cm)
Ly=uJr (em) Thermal M (cm)
Fast Diffusion  Diffusion Migration
Type  Description Length Length Length
H,O  Light Water 5.10 2.85 5.84
PWR  Pressurized-H,O 736 1.96 762
Reactor
BWR  BoilingH,0 7.16 1.97 7.43
reactor
D,O  Heavy water 11.5 173 174
PHWR CANDU-D,0O 1.6 15.6 19.4
reactor
] Graphite 19.5 59.0 62.0
HTGR Graphite-
moderated He- 171 10.6 20.2

cooled reactor

Source: Data courtesy of W. S. Yang, Argonne National Laboratory.





( Table 7.1 lists the values of L1, L2 and M
for the three most common moderators and also representative values for power reactors using each of them. 
The table indicates that the largest correction to the thermal diffusion length is for water moderated systems. 
This comes out primarily because hydrogen’s large thermal absorption cross section causes L2 to be quite small compared to reactors utilizing other moderators. If we look at Figure 2.3a we see that hydrogen scattering cross section decreases over the range where fission neutrons are born. This increases the value of L1 since (s appears in the denominator of (7.45). 
( For fast reactors the diffusion and migration lengths are one and the same. To complete the Table 7.1, a representative value for a sodium cooled fast reactor (SFR) we have M=19.2cm. for a gas cooled fast reactor (GCFR) M=25.5cm. 
One-and-a-Half Group Theory

(In the analysis of large thermal reactors it is sometimes possible to simplify the two-group diffusion equations by ignoring thermal leakage. 
If we note that in a large LWR, 

D2~0.5 cm, B2(10-4 cm-2, while (a(0.1 cm-1, then we find
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Hence the neglect  of  
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 in (7.33),
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 may occasionally be valid for the investigation of problems in which thermal neutron diffusion does not have a significant reactivity effect.

(If we now neglect thermal leakage term in (x), we obtain:
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Solving the last equation for the thermal flux:
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and substituting this into the fast group equation (7.32),
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Dividing by -
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 and collecting terms:
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This model is sometimes referred to as one-and-a-half group diffusion theory, since it is midway between one- and two-group schemes.
(If we define
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this would lead to:

                                     
[image: image123.wmf]NL

P

k

k

¥

=

 
where 
                                     
[image: image124.wmf]pf

k

T

eh

=

¥


and

                                    
[image: image125.wmf]2

2

1

NL

B

L

1

1

P

+

=


for one-and-a-half group theory.

But the nonleakage probability derived above is obviously less accurate than (7.49) which gives 
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due to the total neglect of the thermal neutron leakage.
( A very useful (and common) modification of this scheme which takes some account of both fast and thermal leakage within a one-group treatment is obtained by replacing 
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to obtain
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(
[image: image131.wmf]Since this version of one-and-a-half group theory involves just one flux, the subscript of the flux is usually omitted to write:
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(xxxx) is called the modified one-and-a-half group diffusion equation.
(If the medium is nonmultiplying (xxxx) reduces to:
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(xxxxx) is called the modified one-and-a-half group diffusion equation for nonmultiplying systems. 
(Further in this chapter, the modified one-and-a-half group theory will be used for the analysis of thermal reactors instead of one or two group theories since it can model both fast and thermal leakage without introducing extra mathematical complications associated with two group theory and provide a more accurate treatment of leakage than one-group theory.
(Actually the only difference between one-group and modified one-and-a-half-group theories is the replacement of the diffusion length in the one-group theory by the migration length in the

 one-and-a-half-group theory.
One and a Half Group Criticality Expression for a Cylindrical Reactor
( With the approximation of (7.49), we may write:

[image: image134.wmf]¥

+

@

k

B

M

1

1

k

2

2









(7.52)

( Suppose we make this expression more explicit by assuming that the reactor is a cylinder with a height to diameter ratio of 1. Then by (7.20) 
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Using this result in (7.52):


[image: image136.wmf]¥

÷

ø

ö

ç

è

æ

+

=

k

H

~

M

0

.

33

1

1

k

2








(7.53)

Thus the primary determinant of neutron leakage is 
[image: image137.wmf]M
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 , the
characteristic dimension of the reactor measured in migration lengths. 
((7.53) indicates how the reactor’s multiplication may be adjusted. 
k( strongly depends on the fuel enrichment but it is also dependent on factors like moderator to fuel volume ratio, fuel radius, control poison concentration etc.(See Section 4.4).

( The lattice parameters are selected so that
(a) for a given fuel enrichment the value of k( is near optimum 

(b) the power per unit volume (i.e. 
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, the power density) that can be transported from fuel to coolant outlet  is maximized.

(On the other hand, the migration length, M, is largely determined by the chosen moderator but also it depends on the lattice parameters. M is only very weakly dependent on fuel enrichment. Since 
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for a cylindrical reactor whose height equals its radius and 
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, we have H(P1/3. That is the required thermal power P specifies the reactor height and the nonleakage probability (assuming
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With increased height in units of migration length, the nonleakage probability approaches one.

7.5 REFLECTED REACTORS
( Some fraction of the neutrons that escape the core will make scattering collisions in the surrounding reflector so that they turn around and reenter the core. We say neutrons are reflected back into the core. 

[image: image143.jpg](@) (b)

FIGURE 7.4 Reflected reactor cores. (a) Axial reflector, (b) radial reflector.




( Figure 7.4 shows schematic diagrams of cylindrical cores with axial and radial reflectors. 
Reflectors have their larger impacts on smaller cores, where the leakage probability is significant. A reflector’s importance diminishes as the size of the reactor -
[image: image144.wmf]M
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- becomes larger. 
( If both axial and radial reflectors are employed the solution of the diffusion equation by the elementary separation of variables technique is not possible and more sophisticated methods are required. 
If only an axial or a radial reflector –but not both- is present, the solution by elementary means is possible. 

( An axial reflector results in a decrease in the height H of a critical core. On the other hand, a radial reflector results in a decrease in the radius R of a critical core. 

( Conversely, if a reflector is added and the core dimensions are not reduced, the multiplication will increase and this must be compensated by decreasing k(, for example, by reducing the fuel enrichment or adding a neutron absorber to the core. 

( We treat only the axial reflector here; the effects would be analogous for a radial reflector. 

Axial Reflector Example

( We consider a critical cylindrical reactor with a core situated for 0(r(R and -H(/2(z(H(/2 and reflected axially. The reflector exists both below and above the core. Its thickness is assumed to be a, both below and above the core. That is the upper reflector is situated for 0(r(R, H(/2(z(H(/2+a, while the lower reflector is in the region described by 0(r(R, -(H(/2+a)(z(-H(/2.  This reflected reactor has the same core radius R as a so called “reference bare (unreflected)  critical reactor”.The extrapolated height of the reference critical bare reactor is 
[image: image145.wmf]H
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 .The core is made of the same material as the reference reactor. The governing equation in the core is taken as the modified one-and-a-half group diffusion equation (xxxx) of the previous subsection. The prime’s in this equation below  are introduced to allow variation of the material properties or height of the axially reflected reactor from the “reference bare reactor”.
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( Using the same separation of variables technique in (7.2), 
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Using the same boundary conditions as in (7.3), we have,
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(**)
On the other hand, 
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Since the flux is symmetric about the midplane at z=0, C1=0 and 
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( In the reflector region, the governing equation is again taken as the modified one-and-a-half group diffusion equation but this time for nonmultiplying systems, that is, (xxxxx) of the previous subsection:
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(7.54)

where 
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is the migration length of the reflector. If we write the Laplacian explicitly:
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                                                                H(/2(z(H(/2+a

We use the separation of variables technique as:
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(7.56)

to yield 
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(7.57)

The radial function ( and Br must still satisfy (**). On the other hand we assume, 
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So that
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(7.58)

( From (****) it follows:
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(7.59)

which has a solution of the form:
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(7.60)

Alternately, using the definitions of the sinh and cosh functions we may replace this by:
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(7.61)

At the top of the reflector, the flux must vanish, thus:
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Solving for 
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Thus:
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(*****)
Defining:
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and recalling the difference formula for sinh:
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(*****) can be rewritten as:
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(7.62)

(To determine ((z) for the lower reflector, we note
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Thus we must have:
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These two results can be combined:
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to include both the upper and lower axial reflectors.
(We recall the axial function of the core from (***) as:
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Now the interface conditions of (6.42) and (6.43) are applied at z=H(/2 as the continuity of the flux:
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and the continuity of the current:
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where 
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 is the reflector diffusion coefficient. Inserting (7.62) and (7.63) into (7.64) and (7.65):
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and
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Taking the ratio of these two equations then yields:
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[image: image186.wmf]                                           (7.68) 
( For thick reflectors (i.e. ones which are several diffusion lengths thick) the fraction of neutrons that escapes from the outer surface becomes negligible. We may then approximate the reflector as infinite, taking the limit as a goes to infinity.
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(7.69)

or, solving for H(:
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(7.70)
( Note that once the radial dimension of the reactor and the reflector material properties have been specified, (, given by (7.58), and 
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are specified. For simplicity we assume D is fixed. Then of the only remaining quantity to be determined is 
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Reflector Savings and Flux Flattening

( Since Bz=
[image: image193.wmf]H

~

p

. we replace the buckling in (7.70) and  get:

[image: image194.wmf]÷

÷

ø

ö

ç

ç

è

æ

p

a

p

=

¢

D

H

~

D

ˆ

arctan

H

~

2

H








(7.71)
But the graph of y=arctan(x) is:
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Since
 arctan(x)<(/2
, we have 
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( The reduction in the half core height of the critical reactor is defined as the axial reflector savings:
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Multiplying both sides by Bz:
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Using this result in (7.68)  which is
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Now we have:
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From  the trigonometric identity
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This equation can be readily solved for the reflector savings:
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This result can be simplified by noting:
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Assuming the reflector savings is much less than the core height (
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This result can be further simplified for thick reflectors by noting the definition (7.58) and (7.19):
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In general reactor cores are thick enough so that
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Using this in (xxxxxx):
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For thick reflectors we also have:

                                                   
[image: image221.wmf]1

M

ˆ

a

tanh

@

÷

ø

ö

ç

è

æ

     (***)
and
                                                 
[image: image222.wmf]D

D

M

z

ˆ

ˆ

@

d


[image: image223.jpg]Neutron flux

FIGURE 7.5 Axial flux distributions for bare (—) and reflected (- -) reactors
with the same core composition.




( Figure 7.5 provides a comparison of the flux distributions for a bare and the reflected reactor in which the core composition is held constant and the axial dimension reduced to maintain criticality. 
( The treatment of the radial reflector is analogous, with the complication that Bessel functions are involved. Applying the thick reflector approximation to the radial reflector savings defined by 
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, again for a thick reflector.

[image: image226.jpg]Neutron flux
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FIGURE 7.6 Comparison of bare and axial reflected reactor flux distributions
with the same core height.




( Figure 7.6 compares the normalized flux distributions for bare and reflected reactors in which the height is held constant and the composition changed to maintain the criticality. 
( Adding a reflector to a reactor allows either the volume of the reactor or the value of k( to be reduced, or some combination of the two. 

( Figure 7.6 also illustrate the third effect: adding a reflector flattens the flux distribution, thus lowering the ratio of peak to average flux. 

( This effect, however, becomes less significant as the size of the reactor measured in migration lengths increases. 

( Clearly, the reflector savings amount to a smaller fraction of the core dimension as its size becomes larger.

( Likewise, if the core dimension is held constant, adding a reflector has a smaller effect on the multiplication of a large reactor than on a small one.

[image: image227.jpg]TABLE 7.2
Flux Characteristics for axial Reflected and Bare Reactors

Reactor Maximum ¢ Minimum ¢ Average ¢
Reflected, H/M = 10 1.373 0.323 1.00
Reflected, H/M = 50 1.515 0.091 1.00
Bare 1:571 0.000 1.00





( Table 7.2 compares the maximum and minimum flux for two reflected reactors with height to migration length ratios of 
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to a bare reactor, with each of the three average fluxes normalized to one. The numbers clearly indicate the reflector’s diminishing effect on flux flattening as the size of the reactor increases. 

7.6 CONTROL POISONS

(Control poisons are neutron absorbers that are deliberately included in a reactor core.
(They may take the form of
i. Control rods,

ii. Soluble poisons dissolved in liquid coolants(H3BO3(boric acid) in PWR’s)
iii. Burnable poisons permanently embedded in the fuel or other core constituents.(Gd2O3(gadolinium oxide))
(Control rods serve a number of purposes:

a. They are inserted or withdrawn to control the value of k as needed for startup, shutdown and changes in power level.

b. They may also be used to keep the reactor critical at a constant power by compensating for fuel depletion, fission product buildup, temperature changes or other phenomena that affect the multiplication.

(Control poisons affect both the multiplication and the flux distribution of a core; thus we must consider both.
( A Simple Model For Control Poisons: 
We assume:

i. We have a uniform, unreflected reactor to which we add a control poison.
ii. The control poison has 
no effect on the fission cross section and that
 its small effects on the diffusion cross section can be ignored.
iii. Its primary effect will be an increase in the absorption cross section. We designate this increase by letting (a((a+((a.
iv. Here, the additional absorption, ((a, may be 
uniform across the core, as in the case of boron absorber that is added to the coolant of pressurized water reactors., 
or it may be localized as in the form of one or more control rods.
v. Burnable poisons typically are distributed throughout the core but in an optimized, nonuniform manner that is beyond the scope of the following analysis.
     Reactivity Worth

( Before examining specific control rod configurations, we will derive a general expression for the reactivity decrease resulting from the addition of a neutron absorber. 
Such a decrease frequently is referred to as the worth of the absorber.
(We designate k and ( as the multiplication and flux distribution before the neutron poison is inserted and k( and (( as the corresponding values following insertion.
(The system is described before poison insertion by (7.3):
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The addition of the absorber causes (7.3) to be replaced by
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   (7.72)
(We multiply by ( and integrate over the reactor volume, V:
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(Likewise, we multiply (7.3) by (( and perform the same volume integration to obtain:
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(Subtracting (7.74) from (7.73) then yields


[image: image234.wmf](

)

0

dV

dV

k

1

k

1

dV

D

a

f

2

2

=

f

¢

S

fd

-

f

¢

S

u

f

÷

ø

ö

ç

è

æ

-

¢

+

f

Ñ

f

¢

-

f

¢

Ñ

f

ò

ò

ò

 











(7.75)
(Next we demonstrate that the first integral on the left vanishes. Noting that
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giving,
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and
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Giving
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Subtracting (**) from (*):
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  (***)
We substitute (***)  into the first integral of (7.75) and then use the divergence theorem to convert the volume integral to an integral over the reactor’s outer surface area A:
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   (7.78)
Assuming zero-flux boundary conditions on system outer surface S, the surface integral vanishes since both the flux before and after the change in absorption, that is ( and ((, must vanish on A.
(With the first term eliminated, (7.75) reduces to
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(Since
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we have,
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Using the last equation in (7.79):
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      (7.80)
(We have made no approximations in obtaining this equation. Thus (7.80) is exact.
(If the added absorption is uniform over the core, the cross sections may be pulled outside the integrals, yielding for the reactivity,


[image: image245.wmf]÷

÷

ø

ö

ç

ç

è

æ

S

S

-

=

S

S

-

=

D

¥

a

a

f

a

k

d

u

d

r

1

                    

  
        (7.81)
which is also exact.

(If the control material is localized within some volume of the reactor, the distribution of the perturbed flux (( must be treated explicitly. Let’s say:
((=(+((
then from (7.80),
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( Provided the perturbation, 
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        (7.82)
(The significance of (7.82) is that it allows us to calculate the reactivity worth of the control poison only using the initial(unperturbed)flux. But (7.82) is approximate due to the perturbation theory approximation.

Partially Inserted Control Rod
((7.82) serves as a basis for estimating the reactivity worth of a partially inserted control rod, provided the reactivity associated with it is not large enough to significantly distort the flux distribution.
 (Consider a uniform, cylindrical reactor and begin by rewriting the numerator of (7.82) explicitly :
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Here A(=
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R

p

 ) designates the cross sectional area of the reactor.
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v

 is  a position vector within A.

(Assume that the rod is located at a distance r from the center of the core.
 The center of the rod is described by the position vector 
[image: image259.wmf]0

r

v

 within the plane of A and the rod is assumed to have a small cross sectional area ac. 
The rod is inserted into the core a distance x from its top as indicated in Fig. 7.7. 
The perturbation caused by the rod in the absorption cross section can be approximately modeled by utilizing Dirac delta function as:
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(If the cross-sectional area of the rod, say ac, is small we can ignore the r variation of the flux over its diameter and approximate the above expression as
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By the integration property of Dirac delta function:
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Thus:
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(For the uniform core with the flux described by (7.21) as:
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, we obtain:
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        (7.85)
(This expression simplifies when normalized to a fully inserted control rod (x=H) at the same radial location. Dividing (r,x by  (r,H we obtain
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          (**)
( Now we carry out the integrations. The integral in the numerator:
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and noting sin(()=0 and sin((-y)=sin(y):
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The integral in the denominator:
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Then in summary:
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(7.86)
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( Figure 7.8 shows the control rod worth, that is, the negative reactivity created by the rod, normalized to the fully inserted rod. Note that the worth changes most rapidly where the tip is near the midplane of the core, where the flux is largest. 

( Control rod worth also varies with the radial position of the core as in (7.85):
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since J0(0)=1. Thus:
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 (This equation   compares  the reactivity worth of  a rod situated at a radius r to one located along the core’s centerline.
Control Rod Bank Insertion

( Normally, control rods are grouped into banks, which may be inserted or withdrawn in unison. 
As such, rod banks have large enough effects on reactivity and on the flux distribution that the perturbation technique described above is no longer applicable.
 To model the reactivity worth of a bank of control rods, we again consider a uniform cylindrical reactor.
 To simplify the derivation we take the origin of our r-z coordinates at the base of the reactor, as indicated in Figure 7.9, and assume that the bank is inserted a distance x from the top of the reactor as indicated.
[image: image283.jpg]FIGURE 7.9 Cylindrical reactor with a control rod bank inserted to depth x.




( Our starting point is therefore (7.4)
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(*)
where we have replaced the diffusion length with the migration length. 
In (*),  k( is no longer a constant, but a function of z, taking different values k( and k((, in the unrodded and rodded volumes of the core.
 The migration length M is assumed to be unaffected by the presence of the rods. 
( In the unrodded volume of the core, the governing differential equation is:
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(**)
On the other hand, the governing differential equation in the rodded volume is:
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(***)

( Since the core is uniform in the radial direction, however, we may again employ separation of variables as in (7.11):
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 Inserting these separated variables into (**) or (***), we obtain:
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In both cases the radial solution is the same as before. 
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( Using the last equation in the previous two equations we obtain:
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    (7.89)
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(****)
( The existence of the rod bank decreases the infinite multiplication in the rodded  part as:
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where (b is the reactivity worth of the bank (negative). Combining the last two equations:
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Since (b<0, we can write:
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(7.90)

( To differentiate the ( -function in the unrodded and rodded parts, we define:
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With these definitions we can write (7.89) 
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and (****) 
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Thus:
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(7.91)
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(7.92)

where:
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(7.93)

and
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( The solutions must meet the boundary conditions 

(u(0)=0








(*****)
and 
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(******)

as well as the interface conditions 
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(7.95)

and
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(7.96)

where we have made the assumption that the diffusion coefficients in the rodded and unrodded core regions are the same. 

( The general solution of (7.91) is:
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 To satisfy the boundary condition (*****), E=0. Thus:
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(7.97)
( The general solution of (7.92) depends on whether (2>(2 or (2<(2. 
If (2>(2, the general solution of (7.92) is:
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Applying the boundary condition (******)
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Inserting this last result into the previous equation:
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Defining
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and noting
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we may write:
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If (2>(2 
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that is, (7.92) can be rewritten as:
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Following the same steps as in case (2>(2 but just substituting hyperbolic functions instead of trigonometric functions and exchanging ( and (:
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So in summary:
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(7.98)
( Application of the interface conditions, (7.95) and (7.96) leads to two additional equations relating C and C(. 
If (2>(2
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Taking their ratio yields the transcendental equation:
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(7.99)
If (2>(2
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taking again their ratio:
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(7.100)
( Given the reactor’s material properties, along with the definitions of ( and (, these transcendental equations can be solved numerically for k. 
( The two limiting values of k reduce to be what is expected.
 For the rods out case, 
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that is, (7.97) is applicable over the entire core. Thus we must have 
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Thus, from  (7.93) 

[image: image328.wmf]2

r

u

2

2

z

2

u

B

1

k

k

M

1

B

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

=

a

¥


Solving for ku, we obtain
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(7.101)

as expected.
( For the control rods fully in case, (7.98) holds over the entire core, and we must have 
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If (2>(2, this boundary condition can not be satisfied. 
Thus, only the case (2>(2 is relevant.
 When the boundary condition is applied
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Since from (7.93) and (7.94),
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we can write:
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Thus, solving for kr: 
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Comparing this last equation with (7.101):
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( Next we consider situations where the rod bank is partially inserted to a distance x. 
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FIGURE 7.10 Normalized control rod bank worth vs insertion depth for
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( Figure 7.10 is a plot of the reactivity versus insertion length for two cores, both with height to diameter ratios of one, and both with rod bank worths of (b=0.02. 

( The ratio of core dimension to migration length, 
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 is central to understanding the reactivity curves and flux distributions. 
( A core with a smaller value of 
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 is referred to as neutronically tightly coupled, because disturbances, such as control rod bank insertions, travel across it in relatively few migration lengths, and therefore over relatively few neutron generations. 

( In a loosely coupled core –one with a large 
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 ratio- the converse is true: Many neutron generations are required to propagate a disturbance across the reactor. The net effect is that in the more tightly coupled core, distribution of the neutron flux deviates less from that of a uniform core, and the pattern of control rod worth is closer to that of (7.86); this can be observed by comparing the 
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=10 curve to Figure 7.8, which assumes no disturbance to the flux distribution.
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 In contrast, the 
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=50 curve is quite skewed; the rod bank has little effect until it is inserted more than half way into the core. 
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( The effects on flux distributions are also pronounced. As Figure 7.11a indicates, as the rod bank is inserted into the more tightly coupled core, with 
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=10, the perturbed flux does not deviate greatly from the standard axial cosine distribution. 
( For the more loosely coupled core, however, the flux is pushed toward the bottom of the core as the rods are inserted. This is illustrated for the 
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=50 case shown in Figure 7.11b. Note that all the curves in Figures 7.11a and 7.11b are normalized to the same average flux, thus illustrating that the flux peaking can become quite severe in the more loosely coupled core. 
( A reactor’s power density (i.e. power per unit volume) is limited by thermal-hydraulic considerations. Thus, for a given class of reactors, higher powers imply larger volumes, and therefore larger values of 
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, and more loosely coupled cores.
( Comparing Tables 4.1 and 7.1 we see that both achievable power densities and migration lengths vary greatly between reactor designs.

( Generally, thermal reactors are more loosely coupled than fast reactors, and they may have values of 
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 substantially exceeding 50. Thus prevention of excessive power peaking from control rod movements, refueling patterning and other phenomena becomes an increasing concern.  
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