A Novel Method for ICSI: Rotationally Oscillating Drill, Design and Control

Ali Fuat Ergenc

Problem Statement

Micro Injection Experiment

Designing Minimally Invasive Mercury-Free μ-drill for Micro Injection

What is Micro-Injection?

Micro injection is a method widely used in cell biology.

-ICSI
(Intracytoplasmic sperm injection).
-Nuclear Transfer for cloning.

Current Setup

(for mouse ICSI)

Manipulator drive signal

Current Feedback \& Controller

Disadvantages

- Piezo-ICSI needs to have highly toxic mercury to increase success rate.
- The operation is highly dependent on human expertise.
- Piezo-ICSI devices are considerably expensive

Amplitudes of the oscillations without mercury

Why does mercury increase the success rate?

Amplitudes of the oscillations with mercury

Euler method

E: Young's Modulus
I: Bending moment of inertia
ρ : Mass per unit length
V : Shear force
M : Moment
w : Deformation function

Forcing in transverse direction
Moment around O

$$
\begin{array}{ll}
\frac{\partial V}{\partial x}=-\rho \frac{\partial^{2} w}{\partial t^{2}}+f \quad & \text { Thin beam theory } \\
& M(x, t)=E I \frac{\partial^{2} w}{\partial x^{2}}(x, t)
\end{array}
$$

$$
\frac{\partial M}{\partial x}=V
$$

Euler-Bernoulli beam equation

$$
E I \frac{\partial^{4} w}{\partial x^{4}}(x, t)+\rho \frac{\partial^{2} w}{\partial t^{2}}(x, t)=f(x, t)
$$

Euler method

Separation of variables

$$
\mathrm{w}(\mathrm{x}, \mathrm{t})=\mathrm{T}(\mathrm{t}) \mathrm{U}(\mathrm{x})
$$

$$
\underbrace{\frac{\mathrm{EI}}{\rho} \frac{U^{\prime \prime \prime}}{U}}=\frac{\ddot{\mathrm{T}}}{\mathrm{~T}}=\omega^{2}
$$

Eigenvalues problem

$$
\begin{gathered}
\mathrm{U}(\mathrm{x})=\mathrm{C}_{\mathrm{i}}\left(\operatorname{Cosh}\left(\beta_{\mathrm{i}} \mathrm{x}\right)-\operatorname{Cos}\left(\beta_{\mathrm{i}} \mathrm{x}\right)+\alpha_{\mathrm{i}}\left(\operatorname{Sin}\left(\beta_{\mathrm{i}} \mathrm{x}\right)-\operatorname{Sinh}\left(\beta_{\mathrm{i}} \mathrm{x}\right)\right)\right. \\
\alpha_{i}=\frac{\operatorname{Cos}\left(\beta_{i} L\right)+\operatorname{Cosh}\left(\beta_{\mathrm{i}} L\right)}{\operatorname{Sin}\left(\beta_{i} L\right)+\operatorname{Sinh}\left(\beta_{i} L\right)} \\
\begin{aligned}
& \mathrm{w}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{i}=1}^{\infty}\left\{\mathrm { C } _ { \mathrm { i } } \left(\operatorname{Cosh}\left(\beta_{\mathrm{i}} \mathrm{x}\right)-\operatorname{Cos}\left(\beta_{\mathrm{i}} \mathrm{x}\right)+\alpha_{\mathrm{i}}\left(\operatorname{Sin}\left(\beta_{\mathrm{i}} \mathrm{x}\right)\right.\right.\right. \\
&\left.\left.-\operatorname{Sinh}\left(\beta_{\mathrm{i}} \mathrm{x}\right)\right)\left(\operatorname{Sin}\left(\omega_{\mathrm{i}} \mathrm{t}\right)\right)\right\}
\end{aligned}
\end{gathered}
$$

Mode shapes

$$
\begin{aligned}
\omega_{1} & =10 \mathrm{~Hz} \\
\omega_{2} & =63 \mathrm{~Hz} \\
\omega_{3} & =175 \mathrm{~Hz} \\
\omega_{4} & =341 \mathrm{~Hz}
\end{aligned}
$$

Galerkin method

- In this method two different models are analytically studied. The only difference between them is the existence of the mercury.
- The aim of this analysis is to simulate the difference between the transverse micro-dynamics of the drawn sections with and without the mercury.
- In these simulations, different from the Euler method an impulse force is applied very close to the base of the drawn section.

Simulation models

Galerkin Method

E: Young's Modulus
I : Bending moment of inertia
ρ : Mass per unit length
$\phi_{i}(\mathrm{x})$: Mode shape for the $\mathrm{i}_{\text {th }}$ mode of vibration.
$\mathrm{q}_{\mathrm{i}}(\mathrm{t})$: Time dependent generalized coordinate for the i_{th} mode

Kinetic energy
$\mathrm{T}=\frac{1}{2} \rho \int_{0}^{\mathrm{L}}\left(\frac{\partial \mathrm{y}}{\partial \mathrm{t}}\right)^{2} \mathrm{dx}$
Deformation function

$$
\mathrm{y}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \phi_{\mathrm{i}}(\mathrm{x}) \mathrm{q}_{\mathrm{i}}(\mathrm{t})
$$

Ortogonality conditions between the mode shapes

$$
\begin{array}{cc}
\int_{0}^{\mathrm{L}} \rho \phi_{\mathrm{i}}(\mathrm{x}) \phi_{\mathrm{j}}(\mathrm{x}) \mathrm{dx}=\mathrm{N}_{\mathrm{i}} \delta_{\mathrm{ij}} & \int_{0}^{\mathrm{L}} \mathrm{E} I \phi_{\mathrm{i}}^{\prime \prime}(\mathrm{x}) \phi_{\mathrm{j}}^{\prime \prime}(\mathrm{x}) \mathrm{dx}=\mathrm{S}_{\mathrm{i}} \delta_{\mathrm{ij}} \\
\mathrm{~T}=\frac{1}{2} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~N}_{\mathrm{i}} \dot{q}_{\mathrm{i}}^{2} & \mathrm{U}=\frac{1}{2} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~S}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}^{2}
\end{array}
$$

Galerkin Method

Lagrange equation

$$
\frac{\partial}{\partial \mathrm{t}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{q}_{\mathrm{i}}}\right)-\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{i}}}=\mathrm{Q} \quad \mathrm{Q}=\mathrm{F}(\mathrm{t}) \frac{\partial}{\partial \mathrm{q}_{\mathrm{i}}}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \phi_{\mathrm{i}}\left(\mathrm{x}_{0}\right) \mathrm{q}_{\mathrm{i}}\right)
$$

$$
\mathrm{N}_{\mathrm{i}} \ddot{\mathrm{q}}_{\mathrm{i}}+\mathrm{S}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}=\mathrm{F}(\mathrm{t}) \phi_{\mathrm{i}}\left(\mathrm{x}_{0}\right) \quad \text { For } \mathrm{i}=1 . .3
$$

Laplace form

$$
\left(\mathrm{N}_{\mathrm{i}} \mathrm{~s}^{2}+\mathrm{S}_{\mathrm{i}}\right) \mathrm{Q}_{\mathrm{i}}(\mathrm{~s})=\mathrm{F}(\mathrm{~s}) \phi_{\mathrm{i}}\left(\mathrm{x}_{0}\right) \quad \text { For } \mathrm{i}=1 . .3
$$

Internal damping

$$
\mathrm{S}_{\mathrm{i}}=\mathrm{S}_{\mathrm{i}}+\mathrm{cs}
$$

Galerkin method

Matrix form of the equations of motion for 3 modes

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mathrm{s}^{2} \mathrm{~N}_{1}+\mathrm{S}_{1}+\mathrm{cs} & 0 & 0 \\
0 & \mathrm{~s}^{2} \mathrm{~N}_{2}+\mathrm{S}_{2}+\mathrm{cs} & 0 \\
0 & 0 & \mathrm{~s}^{2} \mathrm{~N}_{3}+\mathrm{S}_{3}+\mathrm{cs}
\end{array}\right]\left[\begin{array}{l}
\mathrm{Q}_{1} \\
\mathrm{Q}_{2} \\
\mathrm{Q}_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{F}(\mathrm{~s}) \phi_{1}\left(\mathrm{x}_{0}\right) \\
\mathrm{F}(\mathrm{~s}) \phi_{2}\left(\mathrm{x}_{0}\right) \\
\mathrm{F}(\mathrm{~s}) \phi_{3}\left(\mathrm{x}_{0}\right)
\end{array}\right]} \\
\phi_{i}(x)=H_{i}\left[\operatorname{Sin}\left(\kappa_{i} x\right)-\operatorname{Sinh}\left(\kappa_{i} x\right)-\alpha_{i}\left(\operatorname{Cos}\left(\kappa_{i} x\right)-\operatorname{Cosh}\left(\kappa_{i} x\right)\right)\right] \\
\alpha_{i}=\frac{\operatorname{Sin}\left(\kappa_{i} L\right)+\operatorname{Sinh}\left(\kappa_{i} L\right)}{\operatorname{Cos}\left(\kappa_{i} L\right)+\operatorname{Cosh}\left(\kappa_{i} L\right)} \quad H_{i} \text { is defined by normalizing } \\
\rho \int_{0}^{L} \phi_{i}(x) \phi_{j}(x) d x=\rho
\end{gathered}
$$

> Deformation function

$$
\mathrm{y}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \phi_{\mathrm{i}}(\mathrm{x}) \mathrm{q}_{\mathrm{i}}(\mathrm{t})
$$

Motion of the Micro-Pipette

- The flexible pipette shows extensive lateral oscillations [1,2].
-The mercury increases the mass of the drawn section. Amplitudes of the lateral oscillations of the pipettes without the mercury are significantly higher than with the mercury [1,2].
-The natural frequencies of the pipette filled with the mercury are lower than the natural frequencies of the pipette without the mercury [1,2].

[^0]
Natural Frequencies

Damped natural Frequencies	
With mercury	Without mercury
7 Hz	12 Hz
50 Hz	79 Hz
139 Hz	221 Hz

Goal

 Rotationally Oscillating Drill Ros-Drill ${ }^{\ominus}$

Rotationally Oscillating Drill Ros-Drill ${ }^{\odot}$

Rotation Profile

Ros-Drill ${ }^{\oplus}$ Assembly and Controller

Flowchart of the controller program

Controller Design

Modes of Operation

1. Sperm head isolation

2. Oocyte membrane piercing

1. Sperm Head-Tail Separation

2. Oocyte Membrane Piercing

Reference and Actual Rotational Oscillatory Trajectories

Drilling Protocol

1. Hold the egg with holding pipette
2. Set the parameters
i) Dimple depth ($\boldsymbol{\delta}$) -
ii) Rotation angle amplitude (θ) -
iii) Rotation Frequency (f)-
iv) Rotation acceleration time $\left(\mathrm{T}_{0}\right)$ -
90% of oocyte size
~0.6-1.2 deg (pp)
$100-500 \mathrm{~Hz}$
v) Duration $\left(T_{1}\right)$ -
0.6 sec
up to 3 sec
3. Create a dimple
4. Push the button and apply rotational oscillation with some negative suction until successful piercing

Drilling Protocol cont'd

Oolemma pierced rotational oscillations

Prototype and Experimental Setup

Prototype cont'd

Preliminary Experiments

Preliminary Experiments cont'd

Experiments	injected	survived	survival \%	PN	cleaved	cleavage $\%$
Month 1						
Exp 1	60	25	$\mathbf{4 2 \%}$	25	22	$\mathbf{8 8 \%}$
Exp 2	20	6	$\mathbf{3 0 \%}$	4	4	$\mathbf{6 7 \%}$
Exp 3	44	13	$\mathbf{3 0 \%}$	9	9	$\mathbf{6 9 \%}$
Month 2						
Exp 1	70	19	$\mathbf{2 7} \%$	15	15	$\mathbf{7 9 \%}$
Exp 2	96	31	$\mathbf{3 2 \%}$	25	22	$\mathbf{7 1 \%}$
Exp 3	50	14	$\mathbf{2 8} \%$	13	11	$\mathbf{7 9} \%$
Exp 4	72	20	$\mathbf{2 8} \%$	19	17	$\mathbf{8 5 \%}$

$$
\mathrm{A}=0.6^{\circ}, \mathrm{f}=100 \mathrm{~Hz}, \mathrm{~T}_{0}=0.5 \mathrm{sec} \text { and } \mathrm{T}_{1}=1 \mathrm{sec}
$$

Oocytes were collected from female B6D2F-1 strain mice, 10 weeks old, superovulated with 7.5 IU PMSG and 7.5 IU hCG at 48 -hour intervals, and sacrificed 14 hours after hCG injection. Embryo were cultured in CZB-G medium at $37^{\circ} \mathrm{C}$ in an atmosphere of 5\% CO2.

Extensive Biological Experiments

Success Rate
 - Verification
 -Comparison

Conducted at the University of California, Davis by a biologist.

$$
\mathrm{A}=0.3^{\circ}, \mathrm{f}=500 \mathrm{~Hz}, \mathrm{~T}_{0}=0.5 \mathrm{sec}
$$

Experimental Results

Method	Injected $(\%)$	Survivors $(\%)$	Developers (2-cells, $\%)$	Blastocysts (\%)
Ros-Drill ICSI	$\mathbf{1 1 6 (1 0 0)}$	$\mathbf{9 5 (8 1 . 9)}$	$83(87.4)$	$47(56.6)$
Piezo ICSI	$111(100)$	$106(95.5)$	$103(97.2)$	$76(73.8)$

Number of ova that survived, developed to 2-cell embryos and blastocyst after injection of sperm heads using either Ros-Drill-ICSI or Piezo-ICSI. The sperm heads were separated by freeze-thawing in Na-EGTA medium

Method	2-cell embryos (\%)	3-4-cell embryos (\%)	Non-compacted morulae (\%)	Compacted morulae (\%)	Blastocysts $(\%)$	Total (\%)
Ros-Drill ICSI	$3(3.6)$	$9(10.8)$	$12(14.5)$	$12(14.5)$	$47(56.6)$	$83(100)$
Piezo ICSI	$7(6.8)$	$8(7.8)$	$7(6.8)$	$5(4.9)$	$76(73.8)$	$103(100)$

Development of embryos (2-cell stage through blastocysts) after 96 hours of in vitro culture after injection of sperm heads using either Ros-Drill-ICSI or Piezo-ICSI.

Experimental Results cont'd

Method	$\begin{array}{c}\text { 2-cell } \\ \text { embryos (\%) }\end{array}$	$\begin{array}{c}\text { 3-4-cell } \\ \text { embryos }(\%)\end{array}$	$\begin{array}{c}\text { Non-compacted } \\ \text { morulae (\%) }\end{array}$		$\begin{array}{c}\text { Compacted } \\ \text { morulae (\%) }\end{array}$	
Blastocysts						
(\%)						

embryos (\%)\end{array}\right]\)

Development of embryos (2-cell stage through blastocysts) after 96 hours of in vitro culture. Sperm heads were isolated by freeze-thaw in HCZB medium, Na-EGTA medium and Ros-Drill pulses.

Sperm head preparation	No. blastocysts	No. pups born(\%)	No. pups weaned(\%)
Freeze-thaw in HCZB	36	$\mathbf{9 (2 5)}$	$9(100)$
Freeze-thaw in Na-EGTA	47	$\mathbf{2 0 (4 3)}$	$20(100)$
Ros-Drill	20	$\mathbf{6 (3 0)}$	$6(100)$

Number of pups born and weaned after embryo transfer of blastocysts ; sperm heads were isolated by freeze-thaw in HCZB medium, Na-EGTA medium and Ros-Drill pulses.

Experimental Results cont'd

[^0]: [1] Kerem Ediz, Nejat Olgac, "Micro-dynamics of the piezo-driven pipettes in ICSI", Biomedical Engineering, IEEE Transactions on ,Volume:51
 [2] K. Ediz, N. Olgac, "Effect of Mercury Column on the Microdynamics of the Piezo-Driven Pipettes", ASME Journal of Biomechanical Engineering, Vol. 127, pp. 531-535, June 2005)

