CHAPTER 2

A General Framework for
Parallel Distributed Processing

D. E. RUMELHART, G. E. HINTON, and J. L. McCLELLAND

In Chapter 1 and throughout this. book, we describe a large number
of models, each different in detail—each a variation on the parallel dis-
tributed processing (PDP) idea. These various models, and indeed
many in the literature, clearly have many features in common, but they
are just as clearly distinct models. How can we characterize the general
model of which these specific models are instances? In this chapter we
propose a framework sufficiently general so that all ‘of the various
models discussed in the book and many models in the literature are
special cases. We will proceed by first sketching the general framework
and then by showing properties of certain specific realizations of the
general model.!

The General Franiev?ork

It is useful to begin with an analysis of the various components of
our models and then describe the various specific assumptions we can

1 We are, of course, not the first to attempt a general characterization of this general
class of models. Kohonen (1977, 1984), Amari (1977a), and Feldman and Ballard (1982
are papers with similarly general aims.

46 THE PDP PERSPECTIVE

make about these components. There are eight major aspects of a
parallel distributed processing model:

A set of processing units

A state of activation

An output function for each unit

A pattern of connectivity among units

A propagation rule for propagating patterns of activities through

the network of connectivities

An gctivation rule for combining the inputs impinging on a unit

with the current state of that unit to produce a new level of

activation for the unit,

® A learning ritle whereby patterns of connectivity are modified by
experience

® An environment within which the system must operate

Figure 1 illustrates the basic aspects of these systems. There is a set of
processing units generally indicated by circles in our diagrams; at each
point in time, each unit # has an activation value, denoted in the
diagram as @; (¢); this activation value is passed through a function f; to
produce an output value o, (¢). This output value can be seen as pass-
ing through a set of unidirectional connections (indicated by lines or
arrows in our diagrams) to other units in the system. There is associ-
ated with each connection a real number, usually calted the weight or
strength of the connection designated w; which determines the amount
of effect that the first unit has on the second. All of the inputs must
then be combined by some operator (usually addition)—and the com-
bined inputs to a unit, along with its current activation value, deter-
mine, via a function F, its new activation value. The figure shows illus-
trative examples of the function f and F. Finally, these systems are
viewed as being plastic in the sense that the pattern of interconnections
is not fixed for all time; rather, the weights can undergo modification
as a function of experience. In this way the system can evolve, What a
unit represents can change with experience, and the system can come
to perform in substantially different ways. In the following sections we
develop an explicit notation for each of these components and describe
some of the alternate assumptions that have been made concerning
each such component.

A set of processing units. Any parallel activation model begins with
a set of processing units. Specifving the set of processing units and
what they represent is typically the first stage of specifying a PDP
model, In some models these units may represent particular conceptual
objects such as features, letters, words, or concepts; in others they are

2. A FRAMEWORK FOR PDP 47

Qm 486 +m

ret; = So;o,(r)

Threshold Qutput
Function Sigmoid Activation
Funetion

FIGURE 1. The basic components of a parallel distributed processing system.

simply abstract elements over which meaningful patterns can be
defined. When we speak of a distributed representation, we mean one
in which the units represent small, feature-like entities. In this case it is
the pattern as a whole that is the meaningful level of analysis. This
should be contrasted to a one-unit—one-concept representational system
in which single units represent entire concepts or other large meaning-
ful entities.

We let N be the number of units. We can order the units arbitrarily
and designate the ith unit #. All of the processing of a PDP model is
carried out by these units. There is no executive or other overseer.
There are only relatively simple units, each doing it own relatively sim-
ple job. A unit’s job is simply to receive input from its neighbors and,
as a function of the inputs it receives, to compute an output value
which it sends to its neighbors. The system is inherently parallel in that
many units can carry out their computations at the same time.

48 THE PDP PERSPECTIVE

Within any system we are modeling, it is useful to characterize three
types of units: input, output, and hidden. Input units receive inputs from
sources external to the system under study. These inputs may be either
sensory input or inputs from other parts of the processing system in
which the model is embedded. The output units send signals out of the
system. They may either directly affect motoric systems or simply
influence other systems external to the ones we are modeling. The hid-
den units are those whose only inputs and outputs are within the sys-
tem we are modeling, They are not "visible” to outside systems.

The state of activation. In addition, to the set of units, we need a
representation of the state of the system at time ¢. This is primarily
specified by a vector of N real numbers, a (¢), representing the pattern
of activation over the set of processing units. Each element of the vec-
tor stands for the activation of one of the units at time ¢. The activa-
tion of unit u; at time ¢ is designated a; (¢). It is the pattern of activa-
tion over the set of units that captures what the system is representing
at any fime. It is useful to see processing in the system as the evolu-
tion, through time, of a pattern of activity over the set of units.

Different models make different assumptions about the activation
values a unit is allowed to take on. Activation values may be continu-
ous or discrete. If they are continuous, they may be unbounded or
bounded. If they are discrete, they may take binary values or any of a
small set of values. Thus in some models, units are continuous and
may take on any real number as an activation value. In other cases,
they may take on any real value between some minimum and max-
imum such as, for example, the interval [0,1]. When activation values
are restricted to discrete values they most often are binary. Sometimes
they are restricted to the values (0 and 1 where 1 is usually taken to
mean that the unit is active and 0 is taken to mean that it is inactive.
In other models, activation values are restricted to the values {—1,+1}
(often denoted simply {—,+}). Other times nonbinary discrete values
are involved. Thus, for example, they may be restricted to the set
{— 1,0,+ 1}, or to a small finite set of values such as {1,2,3,4,5.6,7,8,9}.
As we shall see, each of these assumptions leads to a model with
slightly different characteristics. It is part of the program of research
represented in this book to determlne the implications of these various
assumpiions.

Output of the units. Units interact. They do so by transmitting sig-
nals to their neighbors, The strength of their signals, and therefore the
degree to which they affect their neighbors, is determined by their
degree of activation. Associated with each unit, u;, there is an output
function, £, (g, ()}, which maps the current state of activation &, (r) to

2. A FRAMEWORK FOR PDP 49

an output signal o; (1) (i.e., 0; () = f;(a;(£))). In vector notation, we
represent the current set of output values by a vector, o (t). In some of
our models the output level is exactly equal to the activation level of
the unit. In this case fis the identity function f (x)=x. More often,
however, f is some sort of threshold function so that a unit has no
affect on another unit unless its activation exceeds a certain value.
Sometimes the function f is assumed to be a stochastic function in
which the output of the unit depends in a probabilistic fashion on its
activation values.

The pattern of connectivity. Units are connected to one another. It
is this pattern of connectivity that constitutes what the system knows
and determines how it will respond to any arbitrary input. Specifying
the processing system and the knowledge encoded therein is, in a paral-
lel distributed processing model, a matter of specifying this pattern of
connectivity among the processing units. '

In many cases, we assume that each unit. provides an additive contri-
bution to the input of the units to which it is connected. In such cases,
the total input to the unit is simply the weighted sum of the separate
inputs from each of the individual units. That is, the inputs from all of
the incoming units are simply multiplied by a weight and summed to
get the overall input to that unit. In this case, the total pattern of con-
nectivity can be represented by merely specifying the weights for each
of the connections in the system. A positive weight represents an exci-
tatory input and a negative weight represents an inhibitory input. As
mentioned in the previous chapter, it is often convenient to represent
such a pattern of connectivity by a weight matrix W in which the entry
w; represents the strength and sense of the connection from unit ; to
unit »;. The weight w; is a positive number if unit ; excites unit #; it
is a negative number if unit #; inhibits unit ; and it is 0 if unit 2; has
no direct connection to unit ;. The absolute value of wj specifies the
strength of the connection. Figure 2 illustrates the relationship between
the connectivity and the weight matrix. '

In the general case, however, we require rather more complex pat-
terns of connectivity. A given unit may receive inputs of different kinds
whose effects are separately summated. For example, in the previous
" paragraph we assumed that the excitatory and inhibitory connections
simply summed algebraically with positive weights for excitation and
negative weights for inhibition. Sometimes, more complex
inhibition/excitation combination rules are required. In such cases it 18
convenient to have separate connectivity matrices for each kind of con-
nection. Thus, we can represent the pattern of connectivity by a set of
connectivity matrices, W ;, one for each type of connection. [t is com-
mon, for example, to have two types of connections in a model: an

THE PDP PERSPECTIVE

50

“AIANaUL0D Jo urened sy £)eds 01 uoHEILSSEIda) XIIIBIL A1) 95N A[dWIs UJO {[l4 o Y1M HIOM O] JNOLJIP Tk STUIMEIDP YIoMjau
950E3Q “|RIAULT Ul IOMIAU AU U1 UONEBLWIIOJUI ALANDOUUOD Y] JO ||k 2inmden (NS PINOA X11JBW 1] PUe ‘3SIN0O JO ‘ARM SIUL U1 UMRID 2q 0]
SAEL 10U P[NOM YIOmIU YL "XLIIBW Y1 Ul uoNRae] S11 Jo uonised Suipuodsalios oyl up S| JI0MIBU Ul U YSIp Yoed XHIRW 91 JO J2UI0D 1J9[
Jaddn a1 1 g— 201 0 SPUOdSAII0D YIoMIaU 241 Jo Jaus0d Yy 1addn ayy ur ¥sIp ¥2e|q YL xieW 9y) Jo ssinue 3y ¢) puadsalions 03 Mo pief
U39 SARY HI0MISU 31 Ul SUONOAUUND 31 JBYI PRICT 29 OS[E JYBIW I "XLIBW 31) Wi A11UD a1 Jo apnuuSewl S1) Ja1eaIF oy ¥SIp 2yl Jesiel Ay,
aansod s Anus sy1 ‘usdo s1 ¥sIp 9y J1 eaneSou §) XLEW By} Uk A17UB SY) PI(IY SI NSIP AY1 §] "XUIBW AUt W £RUL 0IZUOU Fwpuodsoiied
® S§] a1al) welSelp YIomdu sui wi f2yjout jo ndup oyp 03 NUN auo Jo jndino 3U1 SUIBULOD AU B U0 YSIP B 5] 2430 ISASUIYM 1BUT PIIOU
99 PINOYS I “Z Hun sA)pxe ABuUoss § jun eyl sajeapur Tn 10§ MOJ 1) pue & 10J Utunjod ay) w1 94 YL Yol Ayl ue uoNEIULsaIdal XIHEW
91 Ul UMOYS 20e SUOMNDIIUU0D SWEs S, " Nun §119x2 A]BUONS § JTUNn 1BY) SMRIIPUL 7 NUR 01 § nun woldj suf ndine ayi uoe ysip uado oy
oy} “A[TRIIWIS g 01 [WI0J) UOND2UUOD AIolqiyur Buolis v $1B2IPUL § J1UN 0} [N FUPIUVOI SUI Y] WO HSIP YovEg 23Ie] Ay ‘sayL ‘UoN3aun0s
JO yiduaais 2u1 SOIBIIPUT NSIP Y1 JO 9IS QYL ‘SYSIP Pl puk uado 3yl 4q pajealpul sre spun oY) Suole suOTRAUUD Ayl ‘g yInouyy § sJun
—SHun INdine Y1 Wo13 3OeqPady pue plIoM SpISINO 2y} Woij sindur 9A1R09) ASy L ‘suun wndut S1e $ 01 [SYUN 'R 07 | WO} pelaquinu spun
UM HI0MIBU JUN-1YBIA UB SMOUS 2INSY JyJ, "XIEW B Ul puk Fuimelp Yiomiau & £q pojussaidal YIomIoU ® JO ANANRAUUD Byl 7T TUNOL

0o o [fo |o |1-|e+]o |a |%n |

. {
o o |oa |o |v+f{o |o |vt]%n Y ¥ ¥ A [
t+fo (o |{v-|o o o [0 |*n +

gt | g [e-|¢C Q 4] 0 o} n

ot [o |[s+]|erlo [o [o |o |Zn (z

nduy

uoljejuesalday xLBp uolejuasalday ylomieN

2. A FRAMEWORKFOR PDP 51

inhibitory connection and an excitatory connection. When the models
assume simple addition of inhibition and excitation they do not consti-
tute different sypes of connections in our present sense. They only con-
stitute distinct types when they combine through some more complex
rules.

The pattern of connectivity is very important. It is this pattern which
determines what each unit represents. As we shall see below, many of
the issues concerning whether top-down. or bottom-up processing systems
are correct descriptions or whether a system is hierarchical and il so
how many levels it has, etc., are all issues of the nature of the connec-
tivity matrix. One important issue that may determine both how much
information can be stored and how much serial processing the network
must perform is the fan-in and fan-out of a unit. The fan-in is the
number of elements that either excite or inhibit a given unit. The fan-
out of a unit is the number of units affected directly by a unit. Note,
in some cases we need more general patterns of connectivity. Specify-
ing such a pattern in the general case is complex and will be addressed
in a later section of this chapter.

The rule of propagation. We also need a rule which takes the output
vector, o (), representing the output values of the units and combines
it with the connectivity matrices to produce a net input for each type of
input into the unit. We let net; be the net input of type i to unit ;.
Whenever only one type of connectivity is involved we suppress the
first subscript and use nef; to mean the net input into unit %;. In vec-
tor notation we can write net; () to represent the net input vector for
inputs of type i. The propagation rule is generally straightforward. For
example, if we have two types of connections, inhibitory and excitatory,
the net excitatory input is usually the weighted sum of the excitatory
inputs to the unit. This is given by the vector product net, = W.o(1).
Similarly, the net inhibitory effect can be written as net; = W,eo(z).
When more complex patterns of connectivity are involved, more com-
plex rules of propagation are required. We treat this in the final section
of the chapter.

Activation rule. We also need a rule whereby the net inputs of each
type impinging on a particular unit are combined with one another and
with the current state of the unit to produce a new state of activation.
We need a function, ¥, which takes a () and the vectors net; for each
different type of connection and produces a new state of activation. In
the simplest cases, when F is the identity function and when all connec-
tions are of the same type, we can write a(t+1) = Wo (1) = net ().
Sometimes F is a threshold function so that the net input must exceed
some value before contributing to the new state of activation. Often,

52 THE PDP PERSPECTIVE

the new state of activation depends on the old one.as well as the
current input., In general, however, we have :

a(t+1) = F@(t),net (¢),,net (¢),,...);

the function F itself is what we call the activation rule. Usually, the
function is assumed to be deterministic. Thus, for example, if a
threshold is involved it may be that g, (¢) = 1 if the total input exceeds
some threshold value and equals 0 otherwise. Other times it is
assumed that F is stochastic. Sometimes activations are assumed to
decay slowly with time so that even with no external input the activa-
tion of a unit will simply decay and not go dlrectly to zero. Whenever
a;(t) is assumed to take on continuous values it is common to assume
that F is a kind of 51gm01d function. In this case, an individual unit can
saturate and reach a minimum or maximum value of activation.

Perhaps the most common class of activations functions is the quasi-
linear activation function. In this case the activation function, ¥, is a
nondecreasing function of a single type of input. In short,

a; (t+1) = F (net; (1)) = F(Ewuq,)

it is sometimes useful to add the constraint that F be a differentiable
function. We refer to differentiable quasi-linear activation funct10ns as
semilinear functions (see Chapter 8).

Modifying patterns of connectivity as a function of experience.
Changing the processing or knowledge structure in a parallel distributed
processing model involves modifying the patterns of interconnectivity.
In principle this can involve three kinds of modifications:

‘1. The development of new connections.

2. The loss of existing connections.

3. The modification of the strengths of connections that already
exist. '

Very little work has been done on (1) and (2) above. To a first order
of approximation, however, (1) and (2) can be considéred a special
case of (3). Whenever we change the strength of connection away
from zero to some positive or negative value, it has the same effect as
growing a new connection. Whenever we change the strength of a con-
nection to zero, that has the same effect as losing an existing connec-
tion. Thus, in this section we will concentrate on rules whereby
strengths of connections are modified through experience.

2. A FRAMEWORK FOR PDP 53

Virtually all learning rules for models of this type can be considered a
variant of the Hebbian learning rule suggested by Hebb in his classic
book Organization of Behavior (1949). Hebb’s basic idea is this: If a
unit, #,, receives a input from another unit, #;; then, if both are highly
active, the weight, w;;, from u; to % should be strengthened. This idea
has been extended and modified so that it can be more generally stated

as
sz‘j =g (ai (l‘),tj (t))h (Oj (t),wjj)a

where £ () is a kind of feaching input to »;. Simply stated, this equa-
tion says that the change in the connection from u; to u; is given by the
product of a function, g(), of the activation of »; and its teaching input
1, and another function, #(), of the output value of u; and the con-
nection strength w;. In the simplest versions ‘of Hebbian learning there
is no teacher and the functions g and 4 are simply proportionat to their
first arguments. Thus we have '

Aw; = na;0;,

where n is the constant of proportionality representing the learning
rate. Another common variation is a rule in which 4 (o; ¢t),w;) = 0; ()
and g (a; (), (t)) = m((t)—a; (:)). This is often called the Widrow-
Hoff rule (Sutton & Barto, 1981). However, we call it the delta rule
because the amount of learning is proportional to the difference (or
delta) between the actual activation achieved and the target activation
provided by a teacher. (The delta rule is discussed at length in
Chapters 8§ and 11.) In this case we have

AWU = T](f, (t)—a,- (f))o_’, (f)

This is a generalization of the perceptron learning rule for which the
famous perception convergence theorem has been proved. Still another
variation has

This is a rule employed by Grossberg {1976} and a simple variant of
which has been emploved in Chapter 5. There are many variations on
this generalized rule, and we will describe some of them in more detail
when we discuss various specific models below.

Representation of the environment. Tt is crucial in the development
of any model to have a clear model of the environment in which this
model is to exist. In PDP models, we represent the environment as a
time-varying stochastic function over the space of input patterns. That

54 THE PDP PERSPECTIVE

is, we imagine that at any point in time, there is some probability that
any of the possible set of input patterns is impinging on the input units.
This probability function may in general depend on the history of
inputs to the system as well as outputs of the system. In practice, most
PDP models involve a much simpler characterization of the environ-
ment. Typically, the environment is characterized by a stable probability
distribution over the set of possible input patterns independent of past
inputs and past responses of the system. In this case, we can imagine
listing the set of possible inputs to the system and numbering them
from 1 to M. The environment is then characterized by a set of proba-
bilities, p; for i=1,...,M. Since each input pattern can be con-
sidered a vector, it is sometimes useful to characterize those patterns
with nonzero probabilities as constituting orthogonal or linearly indepen-
dent sets of vectors.? Certain PDP models are restricted in the kinds of
patterns they are able to learn: some being able to learn to respond
correctly only if the input vectors form an orthogonal set; others if they
form a linearly independent set of vectors; and still others are able to
learn to respond to essentially arbitrary patterns of inputs.

CLASSES OF PDP MODELS

There are many paradigms and classes of PDP models that have been
developed. In this section we describe some general classes of assump-
tions and paradigms. In the following section we describe some specific
PDP models and show their relationships to the generat framework out-
lined here.

Paradigms of Learning

Although most learning rules have roughly the form indicated above,
we can categorize the learning situation into two distinct sorts. These
are: :

® Associative learning, in which we learn to produce a particular
pattern of activation on one set of units whenever another par-
ticular pattern occurs on another set of units. In general, such
a learning scheme must allow an arbitrary pattern on one set of

2 See Chapter 9 for explication of these terms.

3. A FRAMEWORK FOR PDP 35

units to produce another arbitrary pattern on another set of
units,

® Regularity discovery, in which units learn to respond to "interest-
ing" patterns in their input. In general, such a scheme should
be able to form the basis for the development of feature detec-
tors and therefore the basis for knowledge representation in a
PDP system.

In certain cases these two modes of learning blend into one another,
but it is valuable to sec the different goals of the two kinds of learning.
Associative learning is employed whenever we are concerned with stor-
ing patterns so that they can be re-evoked in the future. These rules
are primarily concerned with storing the relationships among subpat-
terns. Regularity detectors are concerned with the meaning of a single
units response. These kinds of rules are used when feafure discovery is
the essential task at hand. :

The associative learning case generally can be broken down into two
subcases—pattern association and auto-association. A paitern association
paradigm is one in which the goal is to build up an association between
patterns defined over one subset of the units and other patterns defined
over a second subset of units. The goal is to find a set of connections
so that whenever a particular pattern reappears on the first set of units,
the associated pattern will appear on the second set. In this case, there
is usually a-feaching input to the second set of units during training indi-
cating the desired pattern association. An aufo-association paradigm is
one in which an input pattern is associated with itself. The goal here is
pattern completion. Whenever a portion of the input pattern is
presented, the remainder of the pattern is to be filled in or completed.
This is similar to simple pattern association, except that the input pat-
tern plays both the role of the teaching input and of the pattern to be
associated. It can be seen that simple pattern association is a special
case of auto-association. Figure 3 illustrates the two kinds of learning
paradigms. Figure 3A shows the basic structure of the pattern associa-
tion situation. There are two distinct groups of units—a set of input
units and a set of output units. Each input unit connects with each out-
put unit and each output unit receives an input from each input unit.
During training, patterns are presented to both the input and output
units. The weights connecting the input to the output units are modi-
fied during this period. During a test, patterns are presented to the
input units and the response on the output units is measured. Figure
3B shows the connectivity matrix for the pattern associator. The only
modifiable connections are from the input units to the output units.
All other connections are fixed at zero. Figure 3C shows the hasic

56 THE PDP PERSPECTIVE

Input Unitz Cutput Units

Matrix of Connectivities w
Input

Units

Quiput | pogifiable

Units | Weights

Connectivily Matrix

Set of Input Units Set of Cutput Units for
Patlern Associator

Input & Al woights
Output Units ara Modifiable

Connectivity Malrix
: for
Auto Associator

FIGURE 3. ‘4: The basic structure of the paltern association situation. There are two
distinct groups of units—a set of input units and a set of output units. Each input unit
connects with each -output unit and each output unit receives an input from each input
unit. During training, patterns are presented to both the input and output units. The
weights connecting the iutput to the output units are modified during this period. During
a test, patterns are presented io the input units and the response on the output units is
measured. (After Anderson, 1977.) B: ‘The connectivity matrix for the patfern associa-
tor. The only modifiable connections are.from the input units to the output uuits. All
other connections are fixed at zero. C: The basic structure of the auto-association situa-
tion. All units are both input and output units. The figure shows a group of 6 units
feeding back on itself through modifiable connections. Note that each unit feeds back on
itself as well as on each of its neighbors. (After Anderson, Silverstein, Ritz, & Jones,
1977.) D: The connectivity matrix for:the auto-associator. All units connect to all other
units with modifiable weights. :

structure of the auto-association situation. All units are both input and
output units. The figure shows a group of 6 units feeding back on itself
through modifiable connections. Note that each unit feeds back on
itself as well as on each of its neighbors. Figure 3D shows the connec-.
tivity matrix for the auto-associator, All units connect to all other units
with modifiable weights. In the case of auto-association, there is

2 A FRAMEWORK FOR PDP 57

potentially a modifiable connection from every unit to every other unit.
In the case of pattern association, however, the units are broken into
two subpatterns, one representing the input pattern and another
representing the teaching input. The only modifiable connections are
those from the input units to the output units receiving the teaching
input. In other cases of associative learning the teaching input may be
more or less indirect. The problem of dealing with indirect feedback is
difficult, but central to the development of more sophisticated models
of learning. Barto and Sutton (1981) have begun a nice analysis of
such. learning situations. :

In the case of regularity detectors, a teaching input is not explicitly
provided; instead, the teaching function is determined by the unit itself.
The form of the internal teaching function and the nature of its input
patterns determine what features the unit will learn to respond to. This
is sometimes called unsupervised learning. Each different kind of
unsupervised learning procedure has its own evaluation function. The
particular evaluation procedures are mentioned when we treat these
models. The three unsupervised learning models discussed in this book
are addressed in Chapters 5, 6, and 7.

Hierarchical Organizations of PDP Networks

It has become commonplace in cognitive science to describe such
processes as top-down, bottom-up, and interactive to consist of many
stages of processing, etc. It is useful to see how these congepts can be
represented in terms of the patterns of connectivity in the PDP frame-
work. It is also useful to get some feeling for the processing conse-
quences of these various assumptions.

Bottom-Up Processing

The fundamental characteristic of a bottom-up system is that units at
level i may not affect the activity of units at levels lower than i. To
see how this maps onto the current formulation, it is useful to partition
the coalitions of units into a set of discrete categories corresponding to
the levels their inputs come from. There are assumed to be no coali-
tions with inputs from more than one level. Assume that there are L;
units at level 7 in the system. We then order the units such that those
in level L, are numbered u, . . ., 1y, those in level L, are numbered

Up o1+« s ULkl etc. Then, the constraint that the system be a pure

58 THE PDP PERSPECTIVE

bottom-up system is equivalent to the constraint that the connectivity
matrix, W, has zero entries for wy; in which #; is the member of a level
no higher than ;. This amounts to the requirement that the upper
right-hand region of W contains zero entries. Table 1 shows this con-
straint graphically. The table shows an exampie of a three-level system
with four units at each level.? This leads to a 12x 12 connectivity matrix
and an a vector of length 12. The matrix can be divided up into 9
regions. The upper-left region represents interactions among Level 1
units. The entries in the left-middle region of the matrix represents
the effects of Level 1 units on Level 2 units. The lower-left region
represents the effects of Level 1 units on Level 3 units. Often
bottom-up models do not allow units at level / effect units at level i+2.
Thus, in the diagram we have left that region empty representing no
effect of Level 1 on Level 3. It is typical in a bottom-up system to
assume as well that the lowest level units (Level 1) are input units and
that the highest level units (Level 3) are output units. That is, the
lowest level of the system is the only one to receive direct inputs from
outside of this module and only the highest level units affect other
units outside of this module.

TABLE 1

Level 1 Level 2 Level 3
Input Units Hidden Units Qutput Units
ul u2 u3 ud u5 ubu? ug w9 uld ull ul2

ul within
Level 1 uz Level 1
Units ul effects

ud

ud Level 1 within
Level 2 ub affecting Level 2
Units u? Level 2 effects

u

u9 Level 2 within
Level 3 ul0 : affecting Level 3
Units ull Level 3 - effects

ul2

3 In general, of course, we would expect many levels and many units at each level.

2. A FRAMEWORK FOR PDP 59

Top-Down Processing

The generalization to a hierarchical top-down system should be clear
enough. Let us order the units into levels just as before. A top-down
model then requires that the lower-left regions of the weight matrix be
empty—that is, no lower level unit affects a higher level unit. Table 2
illustrates a simple example of a top-down processing system. Note, in
this case, we have to assume a top-down input or "message” that is
propagated down the system from higher to lower levels as well as any
data input that might be coming directly into Level 1 units.

Interactive Models

Interactive models are simply models in which there can be both
top-down and bottom-up connections. Again the generalization is
straightforward. In the general interactive model, any of the cells of
the weight matrix could be nonzero. The more restricted models in
which information flows both ways, but in which information only
flows between adjacent levels, assume only that the regions of the
matrix more than one region away from the main diagonal are zero.
Table 3 illustrates a simple three-level interactive model with both top-
down and bottom-up input. Most of the models that actually have been
suggested count as interactive models in this sense.

TABLE 2

Level 1 Level 2 ' Level 3
[nput Units Hidden Units Qutput Units
ul u2 w3 ud uws ub u7 u8 u9 uld ull ul2

ul within Level 2
Level 1 u2 Level 1 affecting
Units u3 effects Level 1
ud Lo
us within Level 3
Level 2 ub Level 2 affecting
Units u? effects Level 2
ul
u9 within
Level 3 ull Level 3
Units ull effects

ul2

60 THE PDP PERSPECTIVE

TABLE 3

Level 1 Level 2 Level 3
Input Units Hidden Units Qutput Units
ul u2 w3 vd ud ub u7 u uY% uil ult ul2

ul within . Level 2
Level | u2 Level 1 affecting
Units ul effects Level 1
: ud
ud Level 1 within Level 3
Level 2 ub - affecting Level 2 affecting
Units u? Level 2 effects Level 2
u8
u9 Level 2 within
Level 3 uld affecting Level 3
Units ull Level 3 effects
ul2

It is sometimes supposed that a "single level" system with no
hierarchical structure in which any unit can communicate with any other
unit is somehow less powerful than these multilevel hierarchical sys-
tems. The present analysis shows that, on the contrary, the existence of
levels amounts to a restriction, in general, of free communication among
all units. Such nonkierarchical systems actually form a superset of the
kinds of layered systems discussed above. There is, however, some-
thing to the view that having multiple levels can increase the power of
certain systems. In particular, a "one-step” system consisting of only
input and output units and no communication between them in which
there is no opportunity for feedback or for hidden units is less powerfut
than systems with hidden units and with feedback. Since, in general,
hierarchical systems involve many hidden units, some intralevel com-
munication, and some feedback among levels, they are more powerful
than systems not involving such hidden units. However, a system with
an equal number of hidden units, but one not characterizable as
hierarchical by the communication patterns is, in general, of more
potential computational power. We address the issue of hidden units
and "single-step” versus "multiple-step” systems in our discussion of
specific models below.

3 A FRAMEWORK FOR PDP 61

Synchronous Versus Asynchronous Update

Even given all of the components of the PDP models we have
described so far, there is still another important issue o be resolved in
the development of specific models; that is the timing of the application
of the activation rule. In some models, there is a kind of central timing
pulse and after each such clock tick a new value is determined simul-
taneously for all units. This is a synchronous update procedure. It is
usually viewed as a discrete, difference approximation to an underlying
continuous, differential equation in which afl units are continuously
updated. In some models, however, units are updated asynchronously
and at random. The usual assumption is that at each point in time each
unit has a fixed probability of evaluating and applying its activation rule
and updating its activation value. This later method has certain
theoretical advantages and was developed by Hopfield (1982) and has
been employed in Chapters 6, 7, and 14. The major advantage is that
since the units are independently being updated, if we ook at a short
enough time interval, only one unit is updating at a time. Among
other things, this system can help- the stability of the network by
keeping it out of oscillations that are more readily entered into with
synchronous update procedures. :

SPECIFIC VERSIONS OF THE GENERAL PARALLEL
ACTIVATION MODEL

In the following sections we will show how specification of the partic-
ular functions involved produces various Kinds of these models. There
have been many authors who have contributed to the field and whose
work might as well have been discussed. We discuss only a representa-
tive sample of this work.

Simple Linear Models

Perhaps the simplest model of this class is the simple linear model.
In the simple linear model, activation values are real numbers without
restriction. They can be either positive or negative and are not
bounded. The output function, f (a;), in the linear model is just equal
to the activation level g;. Typically, linear models consist of twe sets of
units: a set of imput units and a set of oufput units. (As discussed

62 THE PDP PERSPECTIVE

below, there is no need for hidden units since all computation possible
with a multiple-step linear systemn can be done with a single-step linear
system.) In general, any unit in the input layer may connect to any unit
in the output layer. All connections in a linear model are of the same
type. Thus, only a single connectivity matrix is required. The matrix
consists of a set of positive, negative, and zero values, for excitatory
values, inhibitory values, and zero connections, respectively, The new
value of activation of each unit is simply given by the weighted sums of
the inputs. For the simple linear model with connectivity matrix W we
have

a(r+1) = Wa (7).

In general, it can be shown that a linear model such as this has a
number of limitations. In particular, it can be shown that nothing can
be computed from two or more steps that cannot be computed by a
single step. This follows because the above equation implies

a(r)=Wal0)
We can see this by proceeding step by step. Clearly,
a(2)=Wa(l)=W Wa (D)) = W2a (0).

It should be clear that similar arguments lead to a (z) = W'a (0).
From this, it follows that for every linear model with connectivity
matrix W that can attain a particular state in ¢ steps, there is another
linear model with connectivity matrix W ! that can reach the same state
in one step. This means, among other things, that there can never be
any computational advantage in a linear model of multiple-step sys-
tems, nor can there ever be any advantage for allowing feedback.

The pattern association paradigm is the typical learning situation for a
linear model. There is a set of input units and a set of output units. In
general, each input unit may be connected to any output unit. Since
this is a linear network, there is no feedback in the system nor are
there hidden units between the inputs and outputs. There are two
sources of input in the system. There are the input patterns that estab-
lish a pattern of activation on the input units, and there are the teach-
ing units that establish a pattern of activation on the output units. Any
of several learning rules could be employed with a linear network such
as this, but the most common are the simple Hebbian rule and the
delta rule. The linear model with the simple Hebbian rule is called the
simple linear associator (cf. Anderson, 1970; Kohonen, 1977, 1984). In
this case, the increment in weight wy; is given by Aw; =na;5,. In
matrix notation, this means that AW =nTa7”. The system is then
tested by presenting an input pattern without a teaching input and

2. A FRAMEWORK FOR PDP 63

seeing how close the pattern generated on the output layer matches the
original teaching input. It can be shown that if the input patterns are
orthogonal# there will be no interference and the system will perfectly
produce the relevant associated patierns exactly on the output layer. If
they are not orthogonal, however, there will be interference among the
input patterns, It is possible to make a modification in the learning rule
and allow a much larger set of possible associations. In particular, it is
possible to build up correct associations among patterns whenever the
set of input patterns are linearly independent. To achieve this, an error
correcting rule must be employed. The delta rule is most commonly
employed. In this case, the rule becomes Awy; = n({—a;)a;. What is
learned is essentially the difference between the desired response and
that actually attained at unit % due to the input. Although it may take
many presentations of the input pattern set, if the patterns are linearly
independent the systam will eventually be able to produce the desired
outputs. Kohonen (1977, 1984) has provided an important analysis of
this and related learning rules.

The examples described above were for the case of the pattern asso-
ciator. Essentially the same results hoid for the auto-associator version
of the linear model. In this case, the input patterns and the teaching
patterns are the same, and the input layer and the output layer are also
the same. The tests of the system involve presenting a portion of the
input pattern and having the system attempt to reconstruct the missing
parts.

Linear Threshold Units

The weaknesses of purely linear systems can be overcome through
ithe addition of nonlinearities. Perhaps the simplest of the nonlinear
system consists of a network of linear threshold units. The linear
threshold unit is a binary unit whose activation takes on the values
{0,1}. The activation value of unit # is 1 if the weighted sum of its
inputs is greater than some threshold &; and is 0 otherwise. The con-
nectivity matrix for a network of such units, as in the linear system, is
a matrix consisting of positive and negative numbers. The output func-
tion, f, is the identity function so that the output of a unit is equal to
its activation value.

4 See Chapter 9 for a discussion of orthogonality, linear independence , etc.

64 THE PDP PERSPECTIVE

It is useful to see some of the kinds of functions that can be com-
puted with linear threshold units that cannot be computed with simple
linear models. The classic such function is the exclusive or (XOR) illus-
trated in Figure 4. The idea is to have a system which responds {1} if it
receives a {0,1} or a {1,0} and responds {0} otherwise. The figure
shows a network capable of this pattern. In this case we require two

XOR Network

Output
Unit
Internal
Units
Thresholds=.01
Input Output
Input '
Units 11 '
. 00)]

10
01} !

FIGURE 4. A network of lingar threshold units capable of responding correctly on the
XOR problem. ‘

7. A FRAMEWORK FOR PDP 65

layers of units. Each unit has a zero threshold and responds just in case
its input is greater than zero. The weights are +1. Since the set of
stimulus patterns is not linearly independent, this is a discrimination
that can never be made by a simple lincar model and cannot be done in
a single step by any network of linear threshold units.

Although multilayered systems of linear threshold units are very
powerful and, in fact, are capable of computing any boolean function,
there is no generally known learning algorithm for this general case
(see Chapter 8). There is, however, a well-understood learning algo-
rithm for the special case of the perceptron. A perceptron is essentially
a single-layer network of linear threshold units without feedback. The
learning situation here is exactly the same as that for the linear model.
An input pattern is presented along with a teaching input. The percep-
tron learning rule is precisely of the same form as the delta rule for
error correcting in the linear model, namely, Aw; = n{t;—a;)a;. Since
the teaching input and the activation values are only 0 or 1, the rule
reduces to the statements that: : :

1. Weights\are only changed on a given input line when that line
is turned on (i.e., a; = 1),

2. If the system is correct on unit / (i.e., t, = a;)}, make no change
on any of the input weights.

3. If the unit j responds 0 when it should be 1, increase weights
on all active lines by amount 5. '

4. If the unit j responds 1 when it should be 0, decrease weights
on all active lines by amount 7. '

There is a theorem, the perceptron convergence theorem, that guaran-
tees that if the set of patterns are learnable by a perceptron, this learn-
ing procedure will find a set of weights which allow it to respond
correctly to all input patterns. Unfortunately, even though multilayer
linear threshold networks are potentially much more powerful than the
linear associator, the perceptron for which a learning result exists can
learn no patterns not learnable by the linear associator. It was the limi-
tations on what perceptrons could possibly learn that led to Minsky and
Papert’s (1969) pessimistic evaluation of the perceptron. Unfortunately
that evaluation has incorrectly tainted more interesting and powerful
networks of linear threshold and other nonlinear units. We have now
developed a version of the delia rule—the generalized delta rule—which
is capable of learning arbitrary mappings. It does not work for linear
threshold units, but does work for the class of semilinear activation

66 THE PDP PERSPECTIVE

functions (i.e., differentiable activation functions). See Chapter 8 for a
full discussion. As we shall see in the course of this book, the limita-
tions of the one-step perceptron in no way apply to the more complex
networks.

Brain State in a Box

The brain state in a box model was developed by J. A. Anderson
(1977). This model too is a close relative of the simple linear associa-
tor. There is, however, a maximum and minimum activation value
associated with each unit. Typically, units take on activation values in
the interval [-1,1]. The brain state in a box (BSB)} models are organ-
ized so that any unit can, in general, be connected to any other unit.
The auto-associator illustrated in Figure 3 is the typical learning para-
digm for BSB. Note that with this pattern of interconnections the sys-
tem feeds back on itself and thus the activation can recycle through the
system in a positive feedback loop. The positive feedback is especially
evident in J. A. Anderson and Mozer’s (1981) version. Thelr activation
rule is given by

a; (t+1) = a; (2, wya; ()

if a; is less than 1 and greater than —1. Otherwise, if the quantity is
greater than 1, a; = 1 and if it is less than —1, @; = —1. That is, the
activation state at time r+1 is given by the sum of the state at time ¢
and the activation propagated through the connectivity matrix provided
that total is in the interval [-1,1]. Otherwise it simply takes on the
maximum or minimum value. This formulation will lead the system to
a state in which all of the units are at either a maximum or minimum
value. It is possible to understand why this is called a brain state in a
box model by considering a geometric representation of the system.
Figure § illustrates the "activation space" of a simple BSB system con-
sisting of three units. Each point in the box corresponds to a particular
value of activation on each of the three units. In this case we have a
three-dimensional space in which the first coordinate corresponds to_the
activation value of the first unit, the second coordinate corresponds to
the activation value of the second unit, and the third coordinate
corresponds to the activation value of the third unit. Thus, each point
in the space corresponds to a possible state of the system. The feature
that each unit is limited to the region [-1,1] means that all points must
lie somewhere within the box whose vertices are given by the points
(C1-1-1), C1-141), C141-1), CL+l+1), &G1-1-1),
F1-1+1, *1+1,-1), and +1+1,41). Moreover, since the

2. A FRAMEWORK FOR PDP 67

(—,+,+) (+.+,+)

(_!_s+) (+,_,+)
-_ (+!+vF)
Activation
of Unit 2
(_!_!_) (+,H,—)

—_—

Activation of Unit 1

FIGURE 5. The state space for a three-unit version of a BSB model. Each dimension of
the box represents the activation value of one unit. Each unit is bounded in activation
between [—1,1]. The curving arrow in the box represents the sequence of states the sys-
tem moved through. It began at the black spot near the middle of the box and, as pro-
cessing proceeded, moved to the {—+.4) corner of the box. BSB systems always end up
in one or another of the corners. The particular corner depends on the start state of the
network, the input to the system, and the pattern of connections among the units.

system involves positive feedback, it is eventually forced to occupy one
of these vertices. . Thus, the state of the system is constrained to lic
within the box and eventually, as processing continues, is pushed to
one of the vertices. Of course, the same geometric analogy carries over
to higher dimensional systems. If there are N units, the state of the
system can be characterized as a point within this N-dimensional hyper-
cube and eventually the system ends up in one of the 2V corners of the
hypercube.

68 THE PDP PERSPECTIVE

Learning in the BSB system involves auto-association. In different
applications two different learning rules have been appiied. J. A,
Anderson and Mozer (1981} applied the simplest rule. They simply
allowed the system to settle down and then emploved the simple Heb-
bian learning rule. That is, Aw; = ma,a;. The error correction rule has
also been applied to the BSB model. In this case we use the input as
the teaching input as well as the source of activation to the system.
The learning rule thus becomes Aw,; = 7 (—a;)a; where ¢ is the input
to unit / and where a; and g; are the activation values of the system
after it has stabilized in one of the corners of the hypercube.

Thermodynamic Models

Other more recent developments are the - thermodynamic models.
Two examples of such models are presented in the book. One, har-
mony theory, was developed by Paul Smolensky and is.described in
detail in Chapter 6. The other, the Boltzmann machine, was developed
by Hinton and Sejnowski and is described in Chapter 7. Here we
describe the basic idea behind these models and show how they relate
to the general class of models under discussion. To begin, the thermo-
dynamic models employ binary units which take on the values {0,1}.
The units are divided into two categories: the visible units correspond-
ing to our input and output units and the Aidden units, In general, any
unit may connect to any other unit, However, there is a constraint that
the connections must be symmetric. That is, the w; = w;. In these
models, there is no distinction between the output of the unit and its
activation value. The activation vatues are, however, a stochastic func-
tion of the inputs. That is,

pla()=1) = 1

- (ZW,.J,.aj ;0 UT
g

1+ ¢

where n; is the input from outside of system into unit 7, &, is the
threshold for the unit, and T is a parameter, called temperature, which
determines the slope of the probability function., Figure 6 shows how
the probabilities vary with various values of 7. 1t should be noted that
as T approaches zero, the individual units become more and more like
lirear threshold units. In general, if the unit exceeds threshold by a
great enough margin it will always attain value 1. If it is far enough
below threshold, it always takes on value 0. Whenever the unit is
above threshold, the probability that it will turn on is greater than 1/2.

2. A FRAMEWORK FOR PDP 69

1.0
- Temperature =
0.8
=
i
;:||
o=
L 06
)
0
o
0.4
(a3
0.2
L Lt 1

0.0
25 -20 —15 -10 -5 O 5 10 15 20 25
Net Input

FIGURE 6. Probability of attaining value 1 as a function of the distance of the input of
the unit from threshold. The function is plotted for several values of T.

Whenever it is below threshold, the probability that it will turn off is
greater than 1/2. The temperature simply determines the range of
uncertainty as to whether it will turn on or off. This particular
configuration of assumptions allows a formal analogy between these
models and thermodynamics and allows the proof of theorems concern-
ing its performance as a function of the temperature of the system.
This is not the place to discuss these theorems in detail, suffice it to say
that this system, like the BSB system, can be viewed as attaining states
on the corners of a hypercube. There is a global measure of the degree
to which each state of the system is consistent with its input. The sys-
tem moves into those states that are maximally consistent with the
input and with the internal constraints represented by the weights. It
can be shown that as the temperature approaches 0, the probability that
the system attains the maximally consistent state approaches 1. These
results are discussed in some detail in Chapters 6 and 7.

There is a learning scheme associated with the Boltzmann machine
which is somewhat more complex than the others. In this case, the
learning events are divided into two phases. During one phase, a set of
patterns is randomly presented to the visible units and the system is
allowed to respond to each in turn, During this phase of learning, the
system is environmentally driven; a simple Hebbian rule is assumed 1o

70 THE PDP PERSPECTIVE

apply so that Aw; = ma;a;. Note, since activations take on values of 0
and 1 this says that the weight is incremented by an amount n when-
ever unit / and j are on, otherwise no change occurs. During the
second phase of learning, the system is allowed to respond for an equal
period of time in a so-called free-running state in which no inputs are
presented. Since the system is stochastic, it will continue to respond
even though no actual stimuli are presented. During this phase, a sim-
ple anti-Hebbian rule is employed, Aw; = —na;a;. The intuition is
roughly that the performance during the environmentally driven phase
is determined by both the pattern of interconnections and by the
environment. The performance during the free-running phase is deter-
mined only by the internal set of connections. To correctly reflect the
environment, we should look at its performance due to the environ-
ment plus internal structure and then subtract out its performance due
to internal structure alone. This is actually quite a powerful learning
scheme. It can be shown that if a portion of the input units are turned
on after the system has learned, it will complete the remaining portion
of the visible units with the probability that those units had been
present in the stimulus patterns given the subpattern that had been
turned on. These issues are again addressed in Chapter 7.

Grossberg

Stephen Grossberg has been one of the major contributors to models
of this class over the years. His work is complex and contains many
important details which we cannot review here. We will instead
describe some of the central aspects of his work and show how it relates
to the general framework. Perhaps the clearest summary of
Grossberg’s work appears in Grossberg (1980). Grossberg’s units are
allowed to take on any real activation value between a minimum and a
maximum value. The output function is, in many of Grossberg’s appli-
cations, a threshold function so that a given unit will affect another unit
only if its activation level is above its threshold. Moreover, Grossberg
argues that the output function must be a sigmoid or S-shaped function
of the activation value of the unit. Grossberg’s activation rule is rather
more complex than the others we have discussed thus far in that excita-
tory and inhibitory inputs don’t simply sum, but appear separately in
the activation rule. Grossberg has presented a number of possible
activation rules, but they typically have the form

2. A FRAMEWORK FORPDP 71

a;(t+1) = a; (1) (1-4)+ (B—a; (t))netej' (t)— (a; @+ Cnet; (t)

where A is the decay rate, B represents the maximal degree of excita-
tion of the unit, and C is much smaller in magnitude than B and
represents the maximal amount the unit can be inhibited below the
resting value of 0. Grossberg generally assumes that the inhibitory
inputs come from a kind of recurrent inhibitory field in which the unit
is embedded and the excitatory inputs come from the unit itself and
from another level of the system.

Grossberg has studied learning in these networks over a number of
years and has studied several different learning schemes. The learning
rule he has studied most, however, is similar to the one analyzed in
Chapter 5 and is given by

AWU = mna; (Oj—wy).

Grossberg has applied this and similar learning rules in a number of
cases, but a review of these applications is beyond the scope of the
present discussion.

Interactive Activation Model

The interactive activation model of McClelland and Rumelhart
(1981) and Rumelhart and McClelland (1982) had units which
represented visual features, letters and words. Units could take on any
value in the range [min,max]. The output function was a threshold
function such that the output was 0 if the activation was below
threshold and was equal to the difference of the activation value and
the threshold if the activation was above threshold. The interactive
activation model involves a connectivity pattern in which units are
organized in layers, such that an element in a layer connects with exci-
tatory connections with all elements in the layers above and below that
are consistent with that unit, and connects negatively to all units in the
layers above and below that are inconsistent with that unit. In addition,
each unit inhibits all units in its own layer that are inconsistent with the
unit in question. Thus, the interactive activation model is a kind of
positive feedback system with maximum and minimum values for each
unit, like the BSB model. The information coming into each unit is
weighted (by the interconnection strengths) and summed algebraically
to yield a "net input” to the unit. Let nef; = 3, w;a; be the net input to
unit j. This net input is then combined with the previous activation

72 THE PDP PERSPECTIVE

value to produce the new activation value according to the following
activation rule: '

net; (max—a; (t)) net;>0
4+ 1) =g (_’ H1-0) + netjj(aj (6)~min)) otherwise
where @ is the decay rate of the activation given no input. In other
words, the new activation value is given by the old activation value
properly decayed, plus (or minus) a factor that pushes toward the
minimum or maximum valug depending on the magnitude of the net
input into the unit. This activation rule is similar to that employed by
Grossberg, except in this formulation the excitation and inhibition are
algebraically combined. '

The interactive activation model was designed as 2 model for a pro-
cessing system and our goals were to show how we could account for
specific aspects of word perception. Thus, there was no specific model
of learning proposed to explain where the particular network we
assumed came from. As we shall see, much of the work on learning
reported in this book has been aimed at giving plausible accounts of
how such a network might have been learned. (See especially Chapters
5and 6.)

Feldman and Ballard

Feldman and Ballard (1982) have proposed a framework they call
connectionist modefing. The units have continuous activation values,
which they call potentia! which can take on any value in the range
[-10,10]. Their output function is a kind of threshold function which
is allowed to take on a small number of discrete integer values
(0<0,<9). They have proposed a number of other unit types each
with a somewhat different activation rule. Their simplest unit type is
what they call the P-unit. In this case the activation rule is given by

a; (t+1) = a; (t) + Bret; (t).

Once the activation reaches its maximum or minimum value it is sim-
ply pinned to that value. Decay is implemented by self inhibition.
Feldman and Ballard also have a comjunctive unit similar to our sigma-pi
units described below. Feldman (1981) has also considered learning.
In general, the approach to learning offers more machinery than is
available within our current framework. In practice, however, the
learning rules actually examined are of the same class we have already
discussed.

2. A FRAMEWORK FORPDP 73

SIGMA-PI UNITS

Before completing our section on a general framework, it should be
mentioned that we have sometimes found it useful to postulate units
that are more complex than those described up to this point in this
chapter. In our descriptions thus far, we have assumed a simple addi-
tive unit in which the net input to the unit is given by 2, wya;. This is
certainly the most common form in most of our models. Sometimes,
however, we want multiplicative connections in which the output values
of two (or possibly more) units are multiplied before entering into the
sum. Such a multiplicative connection allows one unit to gate another.
Thus, if one unit of a multiplicative pair is zero, the other member of
the pair can have no effect, no matter how strong its output. On the
other hand, if one unit of a pair has value 1, the output of the other is
passed unchanged to the receiving unit. Figure 7 illustrates several
such connections. In this case, the input to unit A is the weighted sum
of the products of units B and C and units D and E. The pairs, BC and
DE are called conjuncts. In this case we have conjuncts of size 2. In
general, of course, the conjuncts could be of any size. We have no
applications, however, which have required conjuncts larger than size 2.
In general, then, we assume that the net input to a unit is given by the
weighted sum of the products of a set of individual inputs. That is, the
net input to a unit is given by Y, w;[1a; @;, - - - a; where / indexes the
conjuncts impinging on unit j and u;, #;,, ..., ¥, are the & units in
the conjunct. We call units such as these sigma-pi units.

In addition to their use as gates, sigma-pi units can be used to con-
vert the output level of a unit into a signal that acts like a weight con-
necting two units. Thus, assume we have the pattern of connections
illustrated in the figure. Assume further that the weights on those con-
nections are all 1. In this case, we can use the output levels of units B
and D to, in effect, set the weights from C to A and E to A respec-
tively. Since, in general, it is the weights among the units that deter-
mine the behavior of the network, sigma-pi units allow for a dynarni-
cally programmable network in which the activation value of some units
determine what another network can do.

In addition to its general usefulness in these cases, one might ask
whether we might not sometime need still more complex patterns of
interconnections. Interestingly, as described in Chapter 10, we will
never be forced to develop any more complex interconnection type,
since sigma-pi units are sufficient to mimic any function monotonic of
its inputs. ' '

74 THE PDP PERSPECTIVE

Sigma Pi Units

rety = Zwmeani
!

Con\=ag-ac
Cony,=ap - ag

FIGURE 7. Two conjunctive inputs to unit A from the conjunct B and C and D and E.
The input to unit A is the sum of the product of the outputs of units BC and DE.

CONCLUSION

We have provided a very general mathematical and conceptual
framework within which we develop our models. This framework pro-
vides a language for expressing PDP models, and, though there is a lot
of freedom within it, it is at least as constrained as most computational
formalisms, such as production systems or high-level languages such as
Lisp. '

We must take note of the fact, however, that the framework does
not specify alf of the constraints we have imposed on ourselves in our
model building efforts. For example, virtually any computing device,
serfal or parallel, can be described in the framework we have described
here,

3. A FRAMEWORK FORPDP 75

There is a further set of considerations which has guided our particu-
lar formulations. These further considerations arise from two sources:
our beliefs about the nature of the hardware available for carrying out
mental processes in the brain and our beliefs about the essential charac-
ter of these mental processes themselves, We discuss below the addi-
tional constraints on our model building which arise from these two
beliefs.

First, the operations in our models can be characterized as "neurally
inspired." We wish to replace the "computer metaphor” as a model of
mind with the "brain metaphor" as model of mind. This leads us to a
number of considerations which further inform and constrain our
model building efforts. Perhaps the most crucial of these is time. Neu-
rons are remarkably slow relative to components in modern computers.
Neurons operate in the time scale of milliseconds whereas computer
components operate in the time scale of nanoseconds—a factor of 106
faster. This means that human processes that take on the order of a
second or less can involve only a hundred or so time steps. Since most
of the processes we have studied—perception, memory retrieval, speech
processing, sentence comprehension, and the like—take about a second
or so, it makes sense to impose what Feldman (1985) calls the "100-
step program” constraint. That is, we seek explanations for these men-
tal phenomena which do not require more than about a hundred ele-
mentary sequential operations. Given that the processes we seek to
characterize are often guite complex and may involve consideration of
large numbers of simultaneous constraints, our algorithms must involve
considerable parallelism. Thus, although a serial computer could be
created out of the kinds of components represented by our units, such
an implementation would surely violate the 100-step program constiraint
for any but the simplest processes.

A second consideration differentiates our models from those inspired
by the computer metaphor: that is, the constraint that all the
knowledge is in the connections. From conventional programmable com-
puters we are used to thinking of knowledge as being stored in the state
of certain units in the system. In our systems we assume that only very
short term storage can occur in the states of units; long term storage
takes place in the connections among units. Indeed, it is the
connections—or perhaps the rules for forming them through
experience—which primarily differentiate one model from another.
This is a profound difference between our approach and other more
conventional approaches, for it means that almost all knowledge is
implicit in the structure of the device that carries out the task rather
than explicit in the states of units themselves. Knowledge is not directly
accessible to interpretation by some separate processor, but it is built
into the processor itself and directly determines the course of

76 THE PDP PERSPECTIVE

processing. It is acquired through tuning of connections as these are
used in processing, rather than formulated and stored as declarative
facts.

In addition to these two neurally inspired working assumptions, there
are a number of other constraints that derive rather directly from our
understanding of the nature of neural information processing. These
assumptions are discussed more fully in Chapter 4.

The second class of constraints arises from our beliefs about the
nature of human information processing considered at a more abstract,
computational level of analysis.- We see the kinds of phenomena we
have been studying as products of a kind of constraint satisfaction pro-
cedure in which a very large number of constraints act simultaneously
to produce the behavior. Thus, we see most behavior not as the pro-
duct of a single, separate component of the cognitive system, but as the
product of large set of interacting components, each mutually constrain-
ing the others and contributing in its own way to the globally observ-
able behavior of the system. It is very difficult to use serial algorithms
to implement such a conception, but very natural to use highly parailel
ones, These problems can often be characterized as best match or
optimization problems. As Minsky and Papert (1969) have pointed out,
it is very difficult to solve best match problems serially. However, this
is precisely the kind of problem that is readily implemented using
highly parallel algorithms of the kind we consider in this book. See
Kanerva (1984) for a discussion of the best match problem and its
solution with parallel processing systems.

To summarize, the PDP framework consists not only of a formal
language, but a perspective on our models. Other qualitative and quan-
titative considerations. arising from our understanding of brain process-
ing and of human behavior combine with the formal system to form
what might be viewed as an aesthetic for our model building enter-
prises. The remainder of our book is largely a study of this aesthetic in
practice.

ACKNOWLEDGMENTS

This research was supported by Contract N00014-79-C-0323, NR
667-437 with the Personnel and Training Research Programs of the
Office of Naval Research, by grants from the System Development
Foundation, and by a NIMH Career Development Award (MHO00385)
to the second author.

