Flexible frequency control of cortical oscillations
enables computations required for working memory
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Cognitive effort leads to a seeming cacophony of brain oscillations.
For example, during tasks engaging working memory (WM), specific
oscillatory frequency bands modulate in space and time. Despite
ample data correlating such modulation to task performance, a
mechanistic explanation remains elusive. We propose that flexible
control of neural oscillations provides a unified mechanism for the
rapid and controlled transitions between the computational oper-
ations required by WM. We show in a spiking network model that
modulating the input oscillation frequency sets the network in
different operating modes: rapid memory access and load is enabled
by the beta-gamma oscillations, maintaining a memory while ignor-
ing distractors by the theta, rapid memory clearance by the alpha.
The various frequency bands determine the dynamic gating re-
gimes enabling the necessary operations for WM, whose succes-
sion explains the need for the complex oscillatory brain dynamics
during effortful cognition.
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As effortful cognition unfolds multiple frequency bands of
oscillations play out in the brain. However, no coherent the-
ory exists to explain the progression of frequencies and how they
relate to implementing the tasks at hand. Recently it has been
speculated that individual bands may implement elementary
computations constituent in cognitive tasks (1, 2) as is seen during
working memory (WM) performance. Human electrophysiology
studies show clearly that memory maintenance correlates posi-
tively with oscillations in the theta band (4-8 Hz, refs. 3-8), in the
beta band (13-30 Hz, ref. 9), and in the gamma band (30-120 Hz,
refs. 10-12). On the other hand, suppression of irrelevant in-
formation is associated with oscillations in the alpha band (8-13
Hz, refs. 13-15). In lateralized WM tasks where the subject should
ignore cues in one hemifield, alpha power increases in the hemi-
sphere encoding such irrelevant information (8, 16, 17). However,
a mechanistic theory explaining why oscillations of various fre-
quency bands wax and wane in time and space during effortful
tasks and in particular WM remains outstanding.

WM actively maintains and processes information necessary to
carry out actions and decisions. WM is critically capacity limited
to a handful of items “held on-line” (18, 19), and operated upon
in real time (20). Thus, WM requires obsolete memories to be
rapidly cleared and to selectively prevent irrelevant information
from being loaded. One of the central unresolved issues is how
these WM operations, and in particular selective gating, are
carried out by the brain circuits. Ample data (21-24) and clas-
sical theoretical arguments (25, 26) point to the selectively tuned
persistent neuronal activity as the prevalent mechanism for WM
storage (27-29). However, what causal role oscillatory frequency
dynamics play in sustained activity and in task performance has
remained unclear.

We propose a resolution of these issues by constructing a
computational framework that mechanistically links the individual
oscillatory bands with implementing canonical WM computations.
The oscillatory frequency bands define distinct dynamical regimes
(or gating modes) for the WM network: the gamma band allows
coexistence of persistent activity and a ground state (a transient
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input can initiate a persistent state), the alpha-band oscillations
allow only the ground state (a transient input can evoke only
a transient response), and theta-band oscillations set the network
into a regime where an a priori active persistent state remains
stable, yet a de novo transient stimulus evokes only a transient
response. By modulating the frequency of externally driven oscil-
lations, the WM network shifts between dynamical regimes en-
abling the necessary canonical computations. We show how in
a local version of the network (Fig. 1C), where oscillations are
common to all of the neural populations, temporal modulation of
the frequencies allows all WM operations to be executed. Con-
sistent with data, the theta band is for memory maintenance and
the alpha band ensures functional inhibition. In a model where
information is segregated in two hemispheres (Fig. 1D), a lat-
eralized increase in alpha power blocks erroneous activations
by distractors.

Results

To home in on a specific example, we require our models to cor-
rectly perform the delayed match to sample (DMS) with dis-
tractors task (30). In this task, a visual sample cue is presented
to the subject followed by a delay period; during this period a
random number of test cues are presented, yet the subject should
respond only when the test cue matches the sample cue. To model
this task we considered two stimulus-selective neural population
units (R representing red or B for blue) that can be independently
activated from a resting state to a persistent state by a sensory
stimulus (Fig. 14). For the task to be executed, the neural circuitry
needs to perform four computational operations: load the sample,
maintain the sample trace during the delay period, block the ir-
relevant distractor activation, and clear the sample trace upon
match (Note that we do not focus on the “read-out” response—
decision mechanism).

We suggest that the correct execution of the four operations is
ensured by setting the short-term memory network in appropriate
gating modes: gate-in, selective-gating, and gate-out (Fig. 1B).
When in the gate-in mode, the system allows a sensory stimulus to
be stored as a memory into the network. The selective-gating
mode corresponds to maintaining previously encoded memories,
while blocking the loading of new sensory stimuli into the memory
store. In the gate-out mode, the system impedes any memory load
or maintenance. We propose that the WM system selects the
gating modes by controlling input oscillations projected to the
network (Fig. 1B).
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Fig. 1. Outline of the working memory task, gating modes, and network
models. (A) Delay match-to-sample task with distractors and the various
operations to be executed by the network with the underlying gating
modes. The two rastergrams represent the two populations B (in blue) and R
(in red). The phases of operations are outlined in a white box showing the
succession of the gating modes and operations: (/) Gate-in mode: the sample
stimulus (blue arrow) activates population B (load). (/) Selective-gating: the
distractor stimulus (red arrow) is not able to activate population R persis-
tently (block distractor) and the memory in population B is held (maintain).
(/ll) Gate-out: upon match-stimulus presentation, persistent activity is deacti-
vated in the blue population (clear). (B) Input oscillations enabling the gating-
modes: beta-gamma band ensures the gate-in mode at the beginning of the
task, theta band ensures the selective-gating mode during the delay period
(memory maintenance together with protections from the distractors), and
alpha band ensures the gate-out mode at the task completion (memory is
rapidly cleared). (C) Local two-population unit network: populations B and R
receive input by sources modulated by the shared background oscillation. (D)
Bihemispheric two-population unit network: populations B and R receive in-
put by sources modulated by independent background oscillations.

Oscillations Influence Persistent Activity in a Frequency-Dependent
Manner. We determine the dynamic gating modes (gate-in, se-
lective-gating, and gate-out) using a single population model to
characterize how oscillations impact reverberant sustained
spiking activity. The individual neurons are in an excitable regime
such that the network is bistable and can be activated in a per-
sistent state or deactivated to the resting state (Materials and
Methods). In addition to the recurrent excitation and constant
inhibition, the neurons receive excitatory random external spiking
inputs from independent sources, the firing rate of which is
modulated by a global input oscillation of frequency v;.

We find that when the input oscillations are within the beta—
gamma band (e.g., v; =45 Hz), the persistent state can be both
activated by the sensory stimulus and maintained in the face of
the input oscillation (Fig. 24). In dynamical terms, the network is
in a regime with two stable states: the ground state (with a low
random activity) and a persistent state. The sensory stimulus
effectively transitions the network from the ground to the per-
sistent state. The other two bands put the network into more
nuanced dynamical states. When the oscillations start after the
activation of the persistent state by the transient sensory stimu-
lus, the theta-band oscillations (e.g., v; =6.5 Hz) do not perturb
the persistent memory trace (no erasing). Alpha-band oscil-
lations (e.g., s =10 Hz), on the other hand, efficiently deactivate
the persistent activity (erasing the trace). When the oscillations
are present before and during the stimulus presentation, both the
theta and alpha bands prevent the activation of the persistent
activity. Thus, the theta oscillations put the network into a dy-
namical regime where ongoing persistent activity that has been
activated before the onset of theta remains stable, yet new tran-
sitions from the ground state to the persistent state are effectively
forbidden or selectively gated. Alpha oscillations, on the other
hand, define a dynamical regime for the network where no per-
sistence is stable, and only the ground state is possible. Hence
theta-band selectively prevents activation yet ensures persistence
(example shown in Fig. 2B), but the alpha band efficiently assures
clearance (Fig. 2C). It is interesting to find that the oscillation-
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induced erasing is not due to a decrease excitation during the
oscillatory input (Fig. S1).

To show that the different oscillatory bands generically set the
network into distinct dynamic gating regimes, we analyze two key
measures of network behavior: the “erase” probability P(erase)
and the “block” probability P(block). P(erase) is the fraction of
trials where the oscillations erase a preactivated persistent
trace. P(block) gives the fraction of trials where a de novo trace
is not allowed to be turned on by a transient stimulus (Materials
and Methods).

We find that P(erase) differs from P(block) as a function of v,
allowing us to define functional gating modes for the network.
The gate-in mode is defined by probability that the persistent
activity is both activated by the sensory stimulus and is persistently
maintained in the face of oscillations (the memory trace is neither
erased nor blocked): [1 — P(erase)] - [1 — P(block)| (Fig. 3B, green
line). The selective-gating mode reflects the probability that an
existing sustained state is maintained, yet no new activation by the
sensory stimulus is allowed: [1 — P(erase)] - P(block) (Fig. 3B, yel-
low line). The gate-out mode, defining the no-memory state, is
tracked by the probability that a de novo persistent state is pre-
vented from being activated and an existing state is also deacti-
vated: P(erase) - P(block) (Fig. 3B, red line).

Our studies (Fig. 3B) show that the gate-in mode is ensured by
beta—gamma-band oscillations (> 12 Hz). The selective-gating
mode, and thus the ability to selectivity maintain in memory a
previously loaded item, is ensured by the theta-band oscillations
(3-8 Hz), in agreement with experiments showing that theta
oscillations are associated with memory maintenance (4-7). Fi-
nally, the gate-out mode, where a memory cannot be either loaded
nor maintained, is ensured by the alpha-band oscillations (8-12
Hz), thus in agreement with experiments showing that alpha is
associated with functional inhibition (14, 15).

The frequency tunings we observed were largely invariant to
modulating a number of network properties. Our extensive
searches indicate that the tuning for the gating modes is stable to
changes in the duty cycle of the oscillations (Fig. S2 4 and E), the
network size (Fig. S2C), and the synaptic strength (Fig. S2D). Of
all of the parameters we explored, the membrane time constant t
had the strongest influence on the optimal frequency values for the
gating modes (Fig. S2 B and F). It is interesting to note that the
value of the membrane time constant that has been experimentally
determined for pyramidal neurons (r=20 ms, refs. 31, 32), and
that we used, also yields the frequency tuning most consistent with
the experimental data on memory retention (4-7) and distractor
suppression (14, 15).

Execution of the Working Memory Task by Oscillation Modulation. To
assess the prototypical DMS with distractor task, we first consider
a local network, presumably localized in the prefrontal cortical
circuit where the persistent activity representing the two items is
robust to distractors (23). Data also show that cells responding to
different items, presented in the same visual hemifield, are inter-
mixed (23, 33) so the two item-specific neuronal populations are
likely modulated by the same oscillation source (Fig. 1C).

As the DMS task unfolds, the sample is presented transiently,
a distractor arrives during the delay period, and the response is
elicited at the end of the trial. Depending on the phase of the task,
the frequency of the background oscillation shifts to optimal val-
ues (as determined by the curves in Fig. 3B) to select among the
different gating modes: in the selective-gating mode v;=6.5 Hz
(black triangle in the figure), in the gate-out mode v,=10 Hz
(black star in the figure), and in the gate-in mode v;=45 Hz
(every value > 20 Hz is acceptable in this case).

We can see that the appropriate frequency-control sequence
can implement all of the operations for the DMS task (Fig. 4). The
input oscillation is initially in the gamma frequency range enabling
the gate-in mode and the memory in population B is loaded by the
sample stimulus. After few hundred milliseconds delay, the oscil-
lation frequency shifts to theta as in (7), switching the network into
the selective-gating mode. The distractor is presented when the
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system is in this mode, which causes the block of activation of
population R and the maintenance of memory in population B. At
match presentation, the system recognizes the read-out (we stress
again that we do not focus on the read-out mechanism) and the
oscillation frequency is switched to alpha enabling the gate-out
mode. At the match-stimulus offset, the memory in population B
is cleared.

It is noteworthy that the network oscillations in the theta band
track the input frequency during the task (see the time-frequency
plot, Fig. 4C). Such theta oscillations have been observed in the
WM system during the delay period and correlate positively with
delay-response task performance in humans (6). Note that in Fig.
4C also the higher harmonics of the theta band (harmonic at 13
Hz) and alpha band (harmonic at 20 Hz) appear. Also it is
striking that the response to the distractor is a rapid transient
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Fig. 3. Gating modes of the networks determined by the oscillations fre-
quency. (A) Erasing probability (dashed line) and blocking probability
(continuous lines). Red stars correspond to the values of the oscillation in
Fig. 2B and black triangles to the value in Fig. 2C. (B) Probability of the
gating modes determined by the joint probability: of erase and block (Py.o.,
red line), not-erase and not-block (Py;, green curve), and not-erase and
block (Psg., yellow curve). The gate-out mode corresponds to domination
of Py, and falls in the range 8.5 Hz <vs<12 Hz with maximal value at

=6.5 Hz (red star). The gate-in mode corresponds to the dominance of
Py and falls in the range vs > 12 Hz. The selective-gating mode corresponds
to the dominance of P4 and falls in the range 4.5 Hz <v;<8.5 Hz, with
maximal value at v;=6.5 Hz (black triangle). The filled space around the
curves represent SEM.
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increase of the firing rate whose amplitude, consistent with the
results of ref. 23, is qualitatively equal to the response to the item
presentation at the beginning of the task (Fig. 4B): the transient
sensory response to the distractor is not suppressed, yet the
distractor is unable to activate the persistent memory trace.

We statistically assessed the performance of the operations of
load, maintain, block distractor, and clear (Materials and Meth-
ods) finding that all of them are performed with high probability
(Fig. S34). Furthermore there is an optimal amplitude for the
oscillations to maximize the overall task performance (Fig. 4D):
for small amplitudes, the system is not able to block the dis-
tractor activation, so the performance is at chance, and for large
values the task performance approaches zero because the oscil-
lations perturb the item loading and maintenance of the memory
trace. Finally, we found that the theta phase significantly mod-
ulates the ability of the network to block distractors, but clearing
is only weakly modulated by the phase of the oscillation in the
alpha range (Fig. S3 B and C).

WM Task Implementation in a Bihemispheric Network: Role of Hemisphere
Lateralized Alpha-Band Oscillations in Distractor Inhibition. In WM tasks
where the stimuli are presented in separate visual hemifields, al-
pha-band oscillation shows lateralized increase in the distractor
hemisphere contralateral to the relevant stimuli (8). This is inter-
preted as alpha-inhibiting areas encoding irrelevant information
(note that WM is processed contralaterally, ref. 34, similarly to the
visual system). Our model, properly modified to reflect such lat-
eralization, gives a mechanistic explanation for this alpha-band
modulation. We consider a bihemispheric WM system consisting
of the short-memory storage compartments located in the oppo-
site cortical hemispheres (Fig. 1D). This bihemispheric network
differs from the local network above in the sense that oscil-
lations can be modulated differently between the two cortical
hemispheres.

To execute the lateralized DMS task with distractors, the os-
cillation frequency in the network is modulated as follows (Fig. 5).
The population selective to the distractor (ipsilateral to the rel-
evant stimulus) receives alpha-band oscillations (v, =10 Hz) that
are present from the task start, throughout the delay period until
the task completion. This alpha oscillation sets the ipsilateral
subnetwork into the gate-out mode. The oscillation in the rele-
vant population B (contralateral to the relevant stimulus) starts in
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gamma-band frequency (v; =45 Hz) ensuring the gate-in mode.
Then this is shifted to the theta band (v;=6.5 Hz) during
maintenance phase of the task setting the system in a selective-
gating mode. Before the end of the task at 1,550 ms, the oscilla-
tion in the contralateral population can relax back to the gamma
band. The simulated local field potentials (LFPs) and the gating
modes are represented together (Fig. 54). The plot of the dif-
ference between time-frequency characteristics of the two pop-
ulations (Fig. 5B) shows that there is an increase in the alpha-band
power for the ipsilateral (irrelevant, Fig. S4D) vs. the contralateral
(relevant, Fig. S4C) population during the task execution. Note
that the small dip in the alpha-power difference at the distractor
presentation is due to the transient activation of the network by
this input. The gate-out mode in the ipsilateral population blocks
the distractor to activate the persistent state. In contrast, the se-
lective-gating and the gate-in modes in the contralateral population
allow the loading and maintenance of the sample stimulus. The
strong match stimulus directly suppresses the memory trace at the
offset of match presentation, at 1,800 ms (see LFP and rastergram
in Fig. 54 and Fig. S4A4).

Compiling statistics for numerous sample runs for this network,
we see that all of the operations are performed above chance level
(Fig. S54). In fact, the overall task performance depends critically
on the alpha amplitude (Fig. S4B). For sufficiently large values of
the amplitude the task is performed correctly, because the alpha-
oscillation blocks the distractor loading in the ipsilateral pop-
ulation and drops to chance as the alpha amplitude decreases. We
also found that the phase of alpha oscillations modulates the
amplitude of the transient response (Fig. S5B) consistently with
ref. 35. We note that for the lateralized task to be performed
correctly only the alpha-band oscillations to the ipsilateral pop-
ulation are strictly necessary (Fig. S6).

Discussion

We propose a paradigm for online cortical information gating
by flexible task contingency-dependent control of oscillations.
For WM, such flexible gating allows information to be selectively
loaded, maintained, blocked, or cleared. In our paradigm, exter-
nally driven oscillations set the WM store into distinct gating
modes, each defined by the frequency. By shifting the gating
modes as a function of the task phase, the WM system performs
successfully all of the operations of a DMS task with distractors.
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oscillation amplitude (s.u.)

modes. The amplitude of the oscillations is varied
equally in the theta, alpha, and gamma bands.

Furthermore, we show that each of the frequency range-gating
mode associations is consistent with many experimental studies on
oscillations in WM.

The mechanism for gating is based on external oscillations de-
termining the transitions between the resting state and active
state, the latter corresponding to a memory stored in the attractor
framework (25). The frequency of the oscillation modulates the
probabilities of these transitions thereby determining three gating
modes: gate-in, ensuring that a memory item can be loaded and
maintained; selective-gating, ensuring that a given preloaded
memory item can be maintained but no de novo items can be
loaded; and gate-out, where memory can neither be loaded
nor maintained.

We applied the oscillation-induced gating in a local multiitem
spiking network, designed to model WM tasks where all items
are represented in the same area of the prefrontal cortex. In this
version of the model, the populations receive a common back-
ground input oscillation. Flexibly varying the frequency of the
oscillation in time as the demands of the WM unfold enables the
WM system to perform successfully all of the operations. In
particular, increasing theta oscillations during the delay period
allows selective memory maintenance, which is consistent with
experimental observations (6, 7).

We designed a bihemispheric spiking network to explain the
lateralization of alpha frequency in delayed-response tasks where
relevant and irrelevant information are segregated in different
hemifields (8, 16, 17). These experimental results show that alpha
activity increases in the hemispheres encoding irrelevant in-
formation. In our bihemispheric model, each population receives
independent external oscillations. The WM system drives an ex-
ternal alpha oscillation in the population encoding the irrelevant
information. Because the alpha oscillations set this subnetwork in
a gate-out mode the activation is blocked. In further support for
external oscillations controlling the gating modes, it has been
shown that repetitive transcranial magnetic stimulation (rTMS)-
induced alpha directed to the parietal area, encoding relevant
(irrelevant) information, decreases (increases) the task perfor-
mance (8).

In the bihemispheric network, we show that the operation clear
could be executed directly by the match stimulus (Fig. 5 and Fig.
S6). This is likely due to transient spike-time synchronization eli-
cited by the excitatory stimulus, as was found in spatial WM
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Fig. 5. Working memory task execution ina A
bihemispheric network. (A) Simulated LFP (in 0.45

synaptic units) of a network performing the
DMS task correctly: Upper gives the LFP of the
population B (contralateral) that shows per-
sistent activity turned on by the stimulus and
turned off by a second presentation of the same

0.40 contralateral

stimulus (match) and Lower is the LFP of the = 1000

population R (ipsilateral) showing that the lat-
eralized distractor causes only a transient net- &
work response and no persistent activity. Colored ]
area represents different values of oscillation >
frequency; gamma: v;=45 Hz (green), theta: 01
vs=6.5 Hz (yellow), and alpha: vs=10 Hz (red). 0.0
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tween the ipsilateral (population R) and contralateral (population B) populations showing clearly preponderance of alpha band in the R population that
is irrelevant for the task. Note how this compares with data of figure 2a in ref. 8.

networks (36, 37). Note that although we did not describe the
read-out process explicitly, previous computational work shows
that this can be executed directly by the match stimulus (28). Thus,
the match stimulus may result in both the read-out and the clear
operations. Such unification of apparently distinguished oper-
ations is an important issue that has been addressed in the context
of parametric WM (29), yet requiring ad hoc switches between
excitation and inhibition. Because the match stimulus is locally
directed to one population, these mechanisms would allow the
selective removal of the memory of one target item in a network
that is encoding multiple items simultaneously.

Pioneering models have proposed that the presence of multiple
bands in WM, notably theta and gamma oscillations (38) or beta
and gamma oscillations (39), subserves to maintain multiitem
memory via a multiplexing mechanism that nests low-frequency
with fast-frequency oscillations. However, to our knowledge, none
has explained the contraposition between the theta, beta, and
gamma bands associated with memory maintenance (6, 9, 10) and
the alpha band associated with functional inhibition (15). In our
model, the frequency ranges of the gating modes are compatible
with this functional segregation of the frequency bands. Indeed,
the frequency ranges of the selective-gating and gate-in modes
(memory maintained) span in the theta, beta, and gamma bands.
In contrast, the frequency range of the gate-out mode (memory
not maintained) spans the alpha band. It is notable that the os-
cillation-induced gating is robust to parameter variations. The
specific frequency tuning for the different gating modes is most
sensitive to the intrinsic membrane time constant of the neurons.
Throughout the paper we used values reported for cortical pyra-
midal neurons in the experimental literature (31) and notably from
primate prefrontal cortex (PFC) (32).

This work predicts that the probability to block a distractor or
erase a memory during WM would be differentially modulated by
induced theta vs. alpha oscillations. Such oscillations could be
induced by rTMSs as in ref. 8 or by presenting visual stimuli on
low-contrast grating background oscillating in time at the required
frequency. Furthermore, our computational analysis predicts that
the theta phase strongly modulates the ability to ignore the dis-
tractors. Alpha-phase dependence has been noted recently also for
sensory performance, providing a phase-dependent sampling or
clocking for perception (40). It is interesting to note that we find
that alpha phase modulates stimulus-evoked transients by about
same amount as reported for sensory responses (S! Text, Fig. S5B).
However, the distinction between the theta and alpha effects may
in fact reflect the difference between the perception and the
memory systems.

A central characteristic of WM is its tight capacity limitation
that could stem from items either competing for discrete slots (19)
or a common resource (41). What might our oscillation-induced
gating imply for such a limitation? By design our model falls into
the discrete slot category: we have two populations for two items.
However, extended to beyond two items it would show common
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resource behavior: the probability of task performance decreases
with item number (see Fig. S7 for details and ref. 42 for opposite
behavior). By controlling the oscillatory frequency content as well
as timing, one can control the performance of the constituent
operations, and thereby define the performance for multiple
items. Precisely how the oscillation-based gating could define
the model capacity is a subject for future work.

In our model the frequency shifts are externally controlled.
This is compatible with the central executive imposing correct
dynamics on the WM store (43) and is supported by the theory
that the PFC is a flexible modulator of the WM store (44). We de
facto propose that the PFC governs the oscillatory frequency
thereby controlling the WM gating modes. The lateral prefrontal
cortex and its ventro-lateral portions (VLPFC) have been linked
to task contingency monitoring and cognitive control (45, 46)
making them a likely cortical substrate. The mechanisms for the
cortical oscillatory bands are a subject of intense investigation
(47). Quite likely the alpha-band activity is generated by an in-
terplay of the thalamus and the cortex, and potentially regulated
by frontocorticothalamic loops, involving the pulvinar nucleus
and the reticular formation (48, 49) for flexible task-dependent
alpha routing (note that the vLPFC is connected to these struc-
tures, ref. 45). Cholinergic modulation of alpha may in turn pro-
vide a task-dependent mechanism to adjust the coherence of
afferent alpha in WM store (50). The theta oscillations may be
generated in the PFC intrinsically and through an interplay with
hippocampal oscillations (51). Corticohippocampal theta cou-
pling increases at critical epochs of WM tasks (52) in a dopamine
(DA) dependent manner. Also WM performance correlates with
PFC theta coupling to the ventral tegmental area, a major source
of DA (53). Put together these may suggest that flexible fre-
quency control can be achieved by the PFC modulation of ace-
tylcholine effects for alpha and DA effects for theta, each acting
through distinct subcorticocortical loops (PFC-mesolimbic for
theta and PFC-thalamic for alpha).

In conclusion, the present model is able to perform successfully
a WM task with a unified gating mechanism as opposed to pre-
vious models based on unrelated mechanisms regrouped together.
In addition, the model assigns a functional role to a large span
of frequencies encompassing the theta, alpha, beta, and gamma
bands. We finally stress that, in this paradigm, oscillations have
a pure dynamical role, as opposed to other paradigms where
oscillations are carrier of a population code. Because these two
levels of descriptions are not mutually exclusive it would be in-
teresting to combine them to further progress in understanding
the role of brain oscillations.

Materials and Methods

We study recurrently coupled networks of spiking neurons in an excitable
regime. Neurons receive excitatory inputs from three sources: recurrent
inputs from neurons in the network, inputs from external sensory stimuli, and
inputs from nonspecific background inputs. The background inputs are
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modulated by oscillations where we controlled, depending on the phase of
the task, the frequency vs. Full information on neuron and oscillation
equations can be found in the S/ text.

We consider several related networks. The first model is a single-population
unit network of recurrently coupled excitatory pyramidal neurons. The second
model is made up of two independent recurrent excitatory populations that
receive background activity modulated by a common oscillation (Fig. 1C). This
network represents a “local” two-item discrete WM network. The third
model is equal to the second model except in that each population receives
a background input that is modulated by an independent oscillation (Fig. 1D).
This network represents a “bihemispheric” two-item discrete WM network.
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