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THE MATHEMATICS USED IN MATHEMATICAL PSYCHOLOGY
R. DUNCAN LUCE, University of Pennsylvania

Introduction. The main issue in applying mathematics to psychological prob-
lems today, and most likely for some time to come, is the formulation of these
problems in mathematical terms. The solution of difficult but well-formulated
mathematical problems and the analysis of complex applied problems in terms
of precise and well-confirmed theories are more secondary efforts. We do not
yet have the basic concepts and variables staked out in a way that makes the
introduction of mathematics the relatively straightforward business that it has
become in much of physical science. We are in a situation somewhat analogous
to sixteenth, or hopefully seventeenth, century physics, but the analogy is far
from complete. We resemble the early physicists in our effort, often fumbling
and always slow, to isolate and purify the fundamental variables from the
myriad, vague, commonsense psychological ideas and concepts. We differ in the
range of techniques available to us. The modern electronics technology, includ-
ing high speed computers, provides us with a control over experimental condi-
tions and a computational capacity for data analysis incomparably more ex-
tensive and subtle than those with which the early physicists had to contend.
In addition, most of the mathematics and statistics we now use was quite un-
known three centuries ago.

Applications to what psychology? The current applications of mathematics to
parts of psychology are precisely that—applications to portions of the total
field. To the great satisfaction of many who do not necessarily view with favor
the increasing mathematical complication of the psychological literature, huge
portions of both academic and applied psychology are essentially free from
mathematical inroads. The main areas that have been affected are those usually
grouped together as “experimental” psychology, which is a misnomer because
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experiments are also performed in the “nonexperimental” areas. By convention,
however, experimental psychology equals basic research into such fundamental
psychological processes as learning, sensation, perception, and motivation. What
is popularly viewed as psychology—abnormal, child, personality, and much of
social psychology—has not been seriously influenced by any mathematical de-
velopments other than classical statistics, especially testing of hypotheses which
is used extensively, if not always well, throughout psychology. (I shall not
comment here about the role of either statistics or computers in psychological
research. Both are extremely influential, and the mathematical community,
whether it likes it or not, is bound to be involved to some extent in the problems
that they create, but it is enough for this paper to deal just with mathematical
applications.)

With our attention confined to mathematical attempts to understand the
data that arise from laboratory experiments that are designed to elucidate
fundamental psychological processes, certain features of these experiments
should be made explicit because they exert a considerable impact upon the
mathematics that we use. Laboratory experiments elicit behavior which differs
in various ways from most ordinary, on-going behavior. Although a number of
exceptions can be cited, by and large time is rendered discrete in the laboratory,
i.e., the temporal pattern of events is structured in some fashion into trials. It is
obvious that ordinary experience is not so neatly packaged. The stimulation to
the subject—not his total environment, but those aspects of it to which we want
him to attend—is usually delivered as discrete, repeatable bursts of some sort or
other. The subject’s possible responses, either those he is instructed to make or
those we choose to observe, are frequently restricted to a discrete set (more
often than not, a small finite one). Again, this is sometimes the case in nature,
but certainly not the rule. Many ordinary situations possess a certain open-
endedness or freedom of response which makes them difficult to study; life’s
richness is sufficiently impoverished in the laboratory that we can bring to bear
our conceptual and calculating tools. Finally, the information feedback and the
rewarding or punishing outcomes of an experiment are ordinarily discrete and
delivered to the subject immediately after he responds. This is certainly not
typical of modern life, in which people continually face long delayed and, more
often than not, diffuse feedback and rewards. For a more exact characterization
of this class of experiments, (see [4]).

Thus, there is little doubt that significant differences exist between the lab-
oratory experiments we are trying to model in mathematical terms and everyday
behavior. Most psychologists hope that one day we may gain some insight into
socially significant behavior through the phenomena and laws discovered by
means of our restricted and often artificial experimental designs, but the con-
siderable difference between the two types of behavior is a raw fact that cannot
be denied, and the bridges linking them do not seem to be easy to construct.

The reasons for these experimental abstractions are not primarily mathe-
matical, although to a minor extent the general dispersion among scientists of
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elementary mathematics may have had its impact upon experimental designs.
By and large, however, these restrictions to discrete time, stimuli, responses, and
outcomes have been imposed by experimentalists so that 1) experiments can be
completed in reasonable periods of time, and 2) the resulting data records will be
reliable and amenable to certain types of analysis. As disturbing as it may seem,
much of what we do in a psychological laboratory is forced upon us by data re-
cording and analysis problems.

From a mathematician’s point of view, the effect of these procedures is to
limit somewhat the kinds of mathematics he can effectively employ: the con-
tinuous mathematics of classical analysis is not particularly well suited to the
discreteness of most psychological experiments. For example, psychological
problems are rarely formulated as differential equations, although such equa-
tions do arise sometimes in an incidental way in the solution of a problem cast
in other terms. But as far as actual formulation is concerned, the standard
methods of classical physics are little used and when they are the results are
not usually very interesting.

Enter numbers. In a way, I have gotten ahead of my story, for to talk about
formulating a problem in terms of classical analysis presupposes that the vari-
ables can be represented by numbers or vectors. This we take for granted in
much of physics, but for psychology and the other social and behavioral sciences
one of the most perplexing problems is how to introduce numbers in a meaning-
ful way. Perhaps we are too wedded to the familiar and should not try to bring
in numbers at all, and ultimately we may be forced by our subject matter to
other mathematical representations, but at present we seem to be relatively
helpless until we have a scalar or vector representation. There are reasons to
believe that the attempt to represent some psychological notions by numbers is
not a totally foolish goal. To be sure, the vector or scalar nature of our variables
is far less certain than it is for variables such as mass, velocity, etc. Nevertheless,
concepts such as the utility of a commodity, the loudness of a tone, or the bright-
ness of a light—subjective notions that to some extent parallel objective at-
tributes, in these cases, monetary worth, acoustic energy, and light energy—
all seem to have an intensive nature reminiscent of numerical scales in physics.
Mathematical psychologists and others in related areas are devoting some effort
to discovering whether or not this is a poor analogy or, to put it positively, to
finding out when we can justify the assignment of numbers to stimuli and out-
comes so as to create useful scales of utility, sensation, and the like. I use the
phrase “justify the assignment of numbers” intentionally. It is worse than use-
less for psychologists to parallel superficially textbook problems of physics by
saying: let H; denote the amount of hostility possessed by person ¢, let 4;; denote
the amount of aggression expressed by ¢ towards j, etc. There are no reasons
that I know of to suppose that either of these notions, hostility or aggression,
and many others like them, are scalar quantities. To begin a problem in this way
is tantamount to throwing most of it away. At our present state of knowledge,
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to “suppose” a measurement problem out of existence is little more than a
feeble joke.

So one of our main tasks is to see whether we can sensibly represent some
psychological concepts numerically. There are two major techniques: one in-
volves probability concepts and leads to the main body of mathematical psy-
chology; the other, which has been much more incidental, attempts a more
fundamental approach. This I discuss first.

Fundamental measurement. If we examine theories of physical measure-
ment, as represented for example by the work of N. R. Campbell [6], we find
an important distinction between fundamental and derived measurement. The
essential feature of fundamental measurement is that only assumptions about
qualitative observations are made: no numbers enter into the axioms of the
theory. From these assumptions a numerical representation of the observations
is shown to exist. The axioms characterize observables such as the deflection
of a beam balance when objects are placed upon the two pans. The best known
system, that called extensive measurement, was devised to account for the
measurement of mass, length, etc. It involves a set Q of objects that are to be
measured, a binary operation o of “combination” or “concatenation” of any two
objects in £ to form a third, and a qualitative ordering = of “not less than” over
Q such as that determined by the deflection of a balance. Typical axioms are:
if @ and b are in @, then @ o b is also in @; the relation = is a weak ordering of Q;
if a=b, then a o c=b o ¢ for all ¢in ©; and so on. Ultimately, one states a set of
axioms that is sufficient to prove a representation and uniqueness theorem of
the following form. There exists a function ¢:Q— real numbers such that

i. a=b (qualitatively) if and only if ¢(a) Zp(b) (numerically);

ii. for all a, b in Q, ¢(a 0 b) =¢(a)+¢(b);

iii. if ¢ and ¢* are two functions that both satisfy (i) and (ii), then there exists a
positive constant o such that ¢ =oa¢*. That is, the representation is unique up to a
similarity transformation or, in the language of modern measurement theory, the
variable in question can be represented as a ratio scale.

It would be most convenient for psychology to have an analogous theory in
which the axioms turned out to be empirically verifiable statements about the
behavior of human or animal subjects. Unfortunately, one apparently cannot
reinterpret simply the axioms of extensive measurement in psychological terms.
It is easy to give sensible psychological interpretations of @ and =, but it is
less easy to assign natural meanings to the concatenation operation. Our failure
to devise empirically acceptable interpretations of extensive measurement when,
nonetheless, we feel strongly that fundamental measurement ought to be pos-
sible has forced us to reconsider some of Campbell’s ideas [28]. He seemed to
feel that fundamental measurement is synonymous with extensive measure-
ment, that is, with a system leading to the three assertions above. In this, it is
generally agreed today, he was incorrect. As I have suggested, fundamental
measurement involves a system of axioms that is stated without any reference to
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the real numbers, that has an empirical interpretation which permits the axioms
to be checked directly, and from which it is possible to establish a numerical
representation of the undefined objects and relations of this system so that
condition (i) above is satisfied, (ii) is replaced by some appropriate condition, and
(iii) may be weakened somewhat to another fairly restrictive group of trans-
formations such as the positive linear transformations. Extensive measurement
is one example of fundamental measurement, but there are others.

Most of these examples of fundamental, nonextensive measurement have
arisen from the study of preference, a topic of concern in economics and sta-
tistics as well as psychology. One development was triggered by von Neumann
and Morgenstern’s [33] work on the expected utility hypothesis. Although their
theory is not an example of fundamental measurement (because probabilities
occur in the statement of the axioms), Savage’s generalization [26] is—in fact,
it provides for the simultaneous fundamental measurement of both utility and
subjective probability. Suppes and his collaborators [9], following up an idea
of the philosopher Ramsey [24], have devised a system for the fundamental
measurement of utility that differs from Savage’s in having only one chance
event. Pfanzagl [23] has presented a rather different axiomatization that in-
volves, essentially, the notion of bisection of two stimuli; it is closely similar to
an axiomatization of means given by Aczél [1]. Recently, Tukey and I [20]
have developed a system of fundamental measurement in which the basic in-
gredients are a weak ordering of objects having at least two independent com-
ponents. A physical realization that would satisfy our axioms, according to
classical physics, is the ordering of objects by momentum as measured by, say,
a ballistic pendulum; the two components of the objects are, in ordinary terms,
mass and velocity. Potential psychological examples—none of which has yet
been explored empirically—involve subject-determined orderings of stimuli that
have at least two independent coordinates. Preference of rats between pairs of
outcomes consisting of different amounts of food paired with different levels of
shock might be an example. We have shown that if the ordering satisfies certain
“reasonable” axioms, then a numerical representation exists that is additive
over the components and it is unique up to positive linear transformations; the
theory of extensive measurement can be extracted as a special case when the
two components are the same and one further axiom (involving the existence of
a null object) is added.

Work of this type, which I believe promises ultimately to help isolate funda-
mental psychological variables, constitutes only a tiny portion of current re-
search in mathematical psychology. For the most part, numbers enter in a
different way, somewhat analogous to what Campbell called derived measure-
ment. Typical physical examples of derived measurement are the usual defini-
tions of density and momentum in which the measure in question is expressed in
terms of two or more quantities that have been fundamentally measured al-
ready. His concept of derived measurement has to be stretched somewhat to
encompass most of our work, and so I shall not press this point in what follows.
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Probabilistic models. The main sources of numbers in most of mathematical
psychology are the relative frequencies of responses and the times that it takes
for responses to occur. Relative frequencies, which are much the more common
measure, are interpreted as estimates of conditional response probabilities. This
immediately leads one to consider probabilistic theories of behavior. Such
theories are conceptually distinct, and in general quite different, from those
postulated in statistics as models for hypothesis testing, analysis of variance,
and the like.

Some debate, much of it unpublished, concerns the appropriateness of prob-
ability models in psychology. The current trend is viewed with alarm by some,
who point out how ready such theories are to incorporate our confusion, ig-
norance, and experimental errors into what purports to be a description of the
subject’s behavior. But, as it is very difficult to characterize clearly the condi-
tions under which it is appropriate to view an organism as a probability mecha-
nism, many of us are uncertain just what to do about these criticisms. In one way
or another we must cope with the fact that even under carefully controlled
laboratory conditions individual subjects do not respond consistently to re-
peated presentations of exactly the same stimuli and outcomes. In general, the
technique in classical physics of adding a dash of normal probability theory to
an underlying deterministic theory has not proven very effective. Human and
animal behavior appears to exhibit a more complex probabilistic structure than
can be encompassed by deterministic theories flavored with a moderately uni-
form overlay of randomness, and so many of us have been driven to study
probability models. I use the word “driven” advisedly because I, at least, was
originally unsympathetic to such models. A few examples of these models will
serve to illustrate the kinds of mathematics employed.

Learning models. Consider, first, “simple learning.” This term should be
taken with a goodly dose of salt, for most learning experiments have little im-
mediate bearing upon what we ordinarily call learning—acquisition of concepts,
insights, and understanding. Typically, we place the subject in a repetitive
choice situation in which his responses are differentially rewarded, and we study
the slowly evolving change of performance as the reward schedule unfolds itself
to him. If the change evolves too rapidly, then we revamp the experiment to
slow it down to the point where we can observe the transient behavior develop.
Our problem, then, is to explain the laws whereby the response probabilities
change over trials as a function of the subject’s past experience in the experiment.

A variety of theories have been proposed and are under active study. I shall
mention three of them. The first, known as stimulus sampling theory, is due
largely to W. K. Estes ([10]; for a survey see [3]). These models postulate a
mechanism whereby the subject “samples” environmental cues which are each
“conditioned” or “attached” to particular responses. A decision rule describes
how a response is selected on the basis of the cues sampled. Then, depending
upon which outcome occurs, the conditioning of cues to responses is changed
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in a systematic fashion. Such mechanisms lead to Markov chains to describe
the transitions of the response probabilities, and so all of that well-developed
theory can be brought to bear upon it. Much attention has been paid to the
detailed sequential properties of the responses, which are very complex indeed;
it is amazing how well some of the models account for these subtleties in the
data.

A second class of learning models begins directly with assumptions about the
trial-to-trial changes in the response probabilities. For example, Bush and
Mosteller [5] studied stochastic processes generated by path-independent linear
operators, and numerous other authors in later publications have extended our
knowledge of these processes considerably (see [27]). Let .(r) denote the prob-
ability of response 7 on trial #; then they supposed that

Pn+1(f) =1- G)Pn(r) + 67,

where 6 and \ are constants that depend upon the particular response and out-
come that occurred on trial #. The linearity of the model is obvious; by path-
independence is meant the assumption that the relevant past history of the
process is completely summarized by the response probability p.(r) and the
events that occurred on trial #. Such nonstationary stochastic processes are rela-
tively complicated, and only a few simple cases are well understood. For ex-
ample, although the asymptotic mean is known to exist [14], we do not have
an explicit expression for it in the most general two response situation.

Another class of path-independent response models are the commutative
ones that I have looked into [16], [19]. These learning operators are most
simply stated in the form

f(?n+1) = .Bf(Pn)’

where f is a real-valued, strictly monotonic transformation of the unit interval
and B is a positive constant that depends upon the response and outcome on
trial #. By the form of the operator, this class of models is clearly both path-
independent and commutative. Some fairly general results about these opera-
tors have been deduced using functional equation techniques, some of which
are treated in Aczél’s recent book on functional equations [2].

Once a stochastic learning model is formulated, the main task is to deter-
mine explicit (computable) expressions for various of its properties, which can
then be used to estimate parameters from data and to evaluate the adequacy
of the model. Typical properties are asymptotic means and variances, expected
number of choices of a particular response, expected number of runs of re-
sponses of a given length, etc. In the linear model, it is common to set up the
obvious expression for the desired random variable and then to calculate its
expectation over the branching process described by the model. When this
works, it does so mainly because the operators are linear; it rarely, if ever,
works with the nonlinear models. For the commutative models it is possible to
formulate and solve functional equations for some properties of interest (see
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[13] and [29]). Certain asymptotic results have been obtained by using a
technique based upon chains of infinite order [15].

Although parameter estimation and the testing of goodness-of-fit are prob-
lems whenever a theory is evaluated by data, these issues have grown especially
significant and troublesome for the stochastic processes used in learning. Com-
plicated mathematical problems often develop when we try to work out optimal
estimators, and yet simpler procedures have been shown to lead to confusion
and misinterpretation of data [27]. This last point blends into the question
of measuring the goodness-of-fit of a model to a set of data, which question is
not at all well formulated at present. Mostly ad hoc and intuitive evaluations
are made and, while everyone agrees that they are not really satisfactory, little
in the statistical literature seems helpful. Much interesting work could be done
by someone with a strong statistical bent and a taste for unformulated, complex
problems.

Preference models. The experimental study of preference is curious for this
reason: the outcomes and stimuli of the experiment are either the same or very
closely related. On each trial the subject is presented with a set of potential
outcomes among which he is to choose. He receives either the one chosen or, in
the case of what are known as “risky alternatives,” a chance mechanism inter-
venes to determine which outcome is finally delivered.

Statisticians and economists have studied a variety of algebraic models for
preference behavior, among them von Neumann and Morgenstern’s expected
utility model and Savage’s generalization of it which were mentioned earlier.
Psychologists who have become interested in preference problems have turned
mostly to probabilistic models, primarily because the experimental data ex-
hibit patterns of inconsistencies which are difficult to cope with in a deterministic
framework. Broadly speaking, two approaches have been taken. One is to state,
in terms of observable choice probabilities, properties that might reasonably be
expected to be observed. These do not constitute a complete theory of be-
havior; rather, they are testable propositions that might become theorems in
a more complete theory of behavior. A simple example is strong stochastic
transitivity, which is one of several possible generalizations of ordinary transi-
tivity. It asserts that if the probability of choosing a over b, p(a, b), 21/2 and
if p(b, ¢)21/2, then p(a, ¢) Zmax [p(a, b), p(b, ¢)]. The other approach is to
formulate more complete theories of behavior. One familiar example is the class
of random utility models in which it is supposed that a person’s preferences are
determined at any instant of time by a numerical utility function which varies
from instant to instant in some random fashion. The outcome having the high-
est momentary utility is the one that is momentarily preferred. Some of us are
trying to deduce testable properties from the different models, to establish the
network of relations among the models and properties and to uncover equivalent
restatements of models. At the same time, experimentalists are attempting to
discover which of the conditions seem to be satisfied by human beings; the
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results to date, however, have tended to be ambiguous. I suspect that our ex-
perimental studies of preference are not yet adequate to answer the questions
we want to ask.

Psychophysical models. The oldest branch of psychology and the one that,
over the long haul, has used mathematics more consistently than any other
is psychophysics, the study of the way in which responses depend upon con-
tinuous physical attributes of the stimulation. These experiments always involve
the presentation of one of several possible stimuli on each trial, to which the
subject responds from a set of responses that is systematically coordinated with
the physical properties of the stimuli. Perhaps the simplest example is a detec-
tion experiment in which a faint stimulus or no stimulus is presented on a trial
and the subject reports, in effect, “yes” or “no” depending upon whether or not
he believes the stimulus to have been presented.

As an example of the problems facing the theorist, consider the plot of the
conditional probability of responding “yes” when the stimulus is presented
versus the conditional probability of responding “yes” when it is absent. If we
vary either the outcomes to the subject or the presentation probability of the
stimulus, we find that the resulting data points appear to arise from a con-
tinuous underlying curve that goes from (0, 0) to (1, 1) in the unit square and
lies above the chance line ¥y =x. The various theories proposed for the detection
process do indeed predict the existence of such a curve, and different theories
predict different ones. For example, signal detectability theory (for summaries
see [11] and [18]) says that the curve becomes a straight line when we plot the
probabilities on normal-normal paper, whereas a “low” threshold theory [17],
[18], which postulates a discrete underlying process, says that it consists of two
straight line segments in the ordinary plot. Although these predictions are con-
ceptually quite different, considerable data are needed to select between them.

Quite a variety of models now exist for different psychophysical procedures
and attempts are being made to systematize and unify them. For a period, in-
formation theory seemed to provide a unifying approach, but recent studies
suggest that the unity was more apparent than real.

One nice feature of much of mathematical psychophysics, in contrast to
other areas, is that it uses comparatively elementary mathematics and yet pro-
vides significant psychological insights that probably cannot be achieved other-
wise. Therefore, it seems particularly well suited for inclusion in undergraduate
courses on mathematical psychology and as a source of simple to intermediate
level problems for undergraduate mathematics courses aimed at behavioral sci-
entists.

Latency models. As I pointed out earlier, the elapsed time for a response to
occur—the response latency—is a second obvious supply of numbers for the
psychologist. In the simplest case, one presents a stimulus and requires the sub-
ject to respond to it as rapidly as possible. If the experiment is very carefully
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done and if the subject is in good physical and emotional condition, then highly
regular and reproducible distributions of response latencies are found. The
provisos are important: latency is a much more skitterish measure than re-
sponse frequency, and correspondingly greater care is needed in the collection of
latency data.

The theoretical problem is to devise hypothetical mechanisms to account for
the forms of the observed distributions, thereby permitting us to infer some-
thing about the nature of the underlying processing of sensory information. The
main idea so far is that the resulting latency is built up from a chain of ele-
mentary random events—often exponential ones (see [21]). Theories of this
type tend to parallel and sometimes use results from the theory of queues. All
in all, the main mathematical device is the Laplace transform in one guise
or another. I suspect, however, that new ideas will soon enter, because it has
recently been observed that when subjects are paid differentially depending
upon the latency of the response, the distributions have highly peaked modes
and high tails—of the form #~? rather than ¢~. It is not clear that such distribu-
tions can arise from additive chains of independent random variables. Any ideas
that arise to account for these data can be expected to have an impact upon
our conceptualizations of the choice processes involved in learning, preference,
and psychophysics.

Psychometrics. During the 1930’s and 40’s, the main domain of the mathe-
matically inclined psychologist was psychometrics, which is somewhat like both
psychophysics and statistics. Many of the psychometric models are formally the
same as those used in psychophysics [32]; others, especially those used in the
theory of tests, are basically multivariate statistical models [30], [31]. Through-
out psychometrics, one collects relatively little data from each of a relatively
large number of subjects. Advantage is taken of the internal consistencies and
correlations exhibited within the population of subjects, and the analysis pro-
ceeds upon the assumption that a common structure underlies all of the sub-
jects, who differ from one another only in the values of certain parameters.
This approach is to be contrasted, for example, with that of much of psycho-
physics in which relatively large amounts of data are collected from relatively
few subjects. There, each subject is studied individually in detail. Most of the
psychometric techniques postulate that the subjects can be represented as
points in a Euclidean vector space and, of course, one of the main mathemati-
cal techniques is matrix algebra. Factor analysis and other multi-dimensional
scaling procedures are most readily exposited in the language of matrices, and
some moderately deep results of matrix theory have been used.

Nonnumerical models. In the final class of models that I shall mention,
numbers play no role. This is not an especially coherent or extensive class of
models, and I shall mention only two examples.

In psycholinguistics—which studies the interplay between the speaker, the
hearer, and their language—Chomsky and Miller ([8]; see also [7] and [22])
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among others, have employed techniques of abstract algebra to describe aspects
of the basic grammatical structure of languages. Specifically, they have treated
grammars as concatenation algebras and have used results from the theory of
recursive functions. The mathematics gets quite involved and a number of in-
teresting new results have been proven. A strong interplay exists between
theoretical psycholinguists and those working on the theory of automata. So
far, few predictions that are amenable to experimentation have been derived
from these pretty mathematical structures, and so relatively little experimenta-
tion has yet resulted. But work in this area is active and rapid developments
should take place in the next few years.

A different sort of structural model has received attention in the area known
as sociometrics, which is, loosely, the study of the structure of qualitative rela-
tionships among people. The main tool that Harary [12] and others have used
in constructing this theory is the topological theory of graphs (for a summary
see [25]). The results tend to be mathematically sophisticated, but the theory
is relatively ineffectual in establishing connections between the mathematics
and the empirical world. The main problem, I believe, is the failure to introduce
any behavioral assumptions into the model. The structural assumptions do not
characterize in any way the entities, the human beings, represented by the
points of the graph, and so little in the way of prediction is possible.

Concluding remarks. Up to this point, I have treated the applications of
mathematics to psychology from the psychologist’s vantage point. Now let me
turn about and consider briefly the extent to which different categories of mathe-
matics have been used.

1. FunpAMENTALS, including set theory, functions, relations, orderings,
axiomatics, Boolean algebra, and the like. Fundamental mathematical notions
and results are used throughout mathematical psychology; without a moderate
grounding in them one cannot read much of the literature. Many problems are
formulated initially in terms of sets, relations, and nonnumerical functions.
Axiomatic systems are not uncommon and precise, if sometimes relatively ele-
mentary, reasoning is usual. Such knowledge is mandatory, and it should be
absorbed as early as possible.

2. AnNaLysis. Analysis presents a curious problem because psychological
theories are rarely formulated in its terms. A differential or integral equation is
hardly ever a starting point, although difference equations sometimes are.
Nevertheless, a student must know at least the calculus or suffer an impossible
disadvantage, because no one gives a second thought to using derivatives or
integrals in the solution of problems cast in other terms. Moreover, one cannot
penetrate deeply into probability theory, stochastic processes, or advanced
statistics without a firm grip on classical analysis, especially the theory of real
variables. As I mentioned earlier, transform theory has proved important in
the study of latencies and, along with a little complex variable theory, it is im-
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portant in the analysis of tracking behavior. But this topic is sufficiently special
that few students need study the theory of functions of a complex variable at
present.

It is difficult to know what analysis a student should be advised to take. Al-
though it is handy to have quite a bit, there are as yet few penetrating uses of
it except indirectly via probability theory. Nonetheless, a student really should
know enough to be able to read some quite sophisticated papers on functional
equations, which are beginning to be used in many places, and on stochastic
processes. Moreover, to the extent that we begin to formulate and study con-
tinuous time processes, classical analysis will prove essential. I mention this
because some research of this sort has recently begun to appear.

3. ProBaBILITY THEORY. Elementary probability concepts occur extensively
in psychology; they are employed with neither comment nor apology. Some of
the major theorems—e.g., the central limit theorem—are used frequently. Any
well trained mathematical psychologist should have under his belt a solid course
on probability and mathematical statistics. For many students, if not most,
some additional work on stochastic processes is mandatory. In particular, they
should be well grounded in the theory of Markov chains, especially for a finite
number of states. These chains arise naturally in some theories of the learning
process. In addition, they should be exposed to a number of the nonstationary
stochastic processes that are also used. In general, these processes are not yet
part of the standard textbook fare and, in many cases, they are not yet com-
pletely understood. Psychology offers numerous difficult, well-formulated, but
unsolved problems in the theory of stochastic processes. Some interesting func-
tional equations have arisen in the study of stochastic processes for learning;
perhaps they are destined to serve in psychology the role of differential equa-
tions in physics.

4. ALGEBRA. Elementary algebra is used everywhere and complete facility
is presupposed. Matrices are applied in psychometrics and multivariate anal-
ysis. Concatenation algebras are used in psycholinguistics. But the main body
of abstract algebra—including groups, rings, fields, lattice theory, and more
exotic notions, but excluding Boolean algebra—has been little used. Here and
there a group or a lattice crops up, but by and large abstract algebra has not
proved particularly important except for the sophistication engendered by its
study.

5. ToroLoGY AND GEOMETRY. Neither is much used. The only really serious
attempt that I know of to employ topological notions is the application of graph
theory to sociometrics. A bit of point set topology occurs now and then and
occasionally fixed point theorems have been employed to establish the existence
of something or other. Aside from trivial uses of high school geometry and a
little work with non-Euclidean geometry in vision, geometry has not played
much of a role in mathematical psychology.
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In closing, it should be pointed out that no fundamentally new mathematical
ideas have yet arisen from work on psychological problems. To date, we are
parasites on mathematics. I doubt that this will always be so, but the time span
is likely to be such that our contributions to mathematics will have little or no
impact on anyone doing research in mathematics today. The reason that I
believe an influence is bound to occur ultimately is that psychological problems
exist that, on the one hand, seem to be meaningful, if not yet precisely stated,
and about which we can experiment, if not yet incisively, and on the other
hand, that do not seem to fit comfortably into the existing mathematical lan-
guage. In some cases this may simply reflect a lack of ingenuity, but in others I
suspect that the appropriate mathematics does not yet exist. The history of
physics favors such a belief, which of course has the dubious virtue of being
capable of neither proof nor disproof. Perhaps a few words about where I see
trouble will make it a little more meaningful.

The language of sets does not always seem adequate to formulate psycho-
logical problems. Put so baldly, the statement is almost heretical since, in prac-
tice, set theory is the accepted way to formulate mathematical problems . . .
and, hence, applied mathematical problems. Still, we should not forget that set
theory is really quite new—Iless than a century old. It could be an interim
theory. Certainly when I think about certain psychological problems, I wish it
weren’t the way it is. The boundaries of many of my “sets,” and of ones that
my subjects ordinarily deal with, are a good deal fuzzier than those of mathe-
matics. Consider an experiment in which the subject is presented with a set of
possible responses. This is a nice, unambiguous set of the sort that we are all
conditioned to expect. But in a theoretical analysis of the subject’s behavior, it
often seems far more reasonable to consider not this set, but the one he con-
sidered before making his choice. It is quite difficult to pin down just what
elements are and are not members of that set, and I am not sure that it is pos-
sible in principle. Do we merely lack techniques adequate to answer that ques-
tion today, or is it basically impossible to answer it? Even supposing that it is
impossible, I do not believe that this means that attempts to understand be-
havior are ridiculous, although ultimately it may be deemed inappropriate to
try to cast theories of behavior in current mathematical language.

To take another example, we all deal effectively with the uncertainties of
everyday life in terms of extremely imprecise concepts such as “likely,” “fairly
likely,” and so on. As theorists, we often try to cope with this sort of behavior
by phrasing it in the language of probability, but I suspect that most of us do
not really feel that the mathematics meshes especially well with the problem.
The categories of uncertainty are not really well-defined sets and their fuzzi-
ness is not particularly well summarized by probability notions. Perhaps we
can make the existing concepts work, but I doubt that we should count on it.

Even assuming that there are profound troubles, mathematical psychologists
are not about to call a moratorium until the troubles are resolved. Some, indeed
most of us, will skirt around those aspects of behavior for which the difficulties
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are especially pronounced. Others will try to tackle them more directly and to
the extent of their success, they will enrich mathematics as well as psychology.

This paper is based upon an address given at the American Association for the Advancement
of Science meeting in Philadelphia, Pa., December, 1962. Its preparation was supported in part by
National Science Foundation grant NSF G-17637 to the University of Pennsylvania.
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THE SOLUTION OF A SECOND ORDER LINEAR DIFFERENTIAL
EQUATION NEAR A REGULAR SINGULAR POINT

JOHN W. DETTMAN, Case Institute of Technology

The standard undergraduate course in ordinary differential equations suffers
from many ills. In many cases it seems as an anticlimax after an upgraded cal-
culus course. There is usually too much emphasis on specific integration tech-
niques and not enough on existence and uniqueness theorems. It has not kept
up with the computer age and therefore does not sufficiently emphasize numeri-
cal integration techniques. There is not enough attention paid to qualitative
analysis, i.e., the determination of properties of the solution such as bounds,
asymptotic expansions, stability, etc., without explicitly solving the equation.
It is not necessary to postpone such a course in differential equations until
after an advanced calculus course to cure these ills. One possible key is the early
introduction of the Green's function and the subsequent reduction of the differ-
ential equation to an integral equation. Once this is done the existence and
uniqueness theorems usually follow by a simple iteration procedure which uses
nothing more sophisticated than the term-by-term integration of a uniformly
convergent series. The iteration procedure is very basic, conceptually simple,
and sets the tone for a large class of numerical integration techniques. Also,
when the problem is cast in this way, many of the properties of the solution can
be investigated without explicitly solving the equation.

The purpose of this paper is to illustrate these remarks in connection with
the solution of a second order ordinary differential equation near a regular
singular point, a case which is very important in applications but one which is
commonly mishandled. The present approach is not new, but it does not appear
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