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In the work described here, the backpropagation neural network learning procedure is applied 
to the analysis and recognition of speech. This procedure takes a set of input/output pattern 
pairs and attempts to learn their functional relationship; it develops the necessary 
representational features during the course of learning. A series of computer simulation studies 
was carded out to assess the ability of these networks to accurately label sounds, to learn to 
recognize sounds without labels, and to learn feature representations of continuous speech. 
These studies demonstrated that the networks can learn to label presegmented test tokens with 
accuracies of up to 95%. Networks trained on segmented sounds using a strategy that requires 
no external labels were able to recognize and delineate sounds in continuous speech. These 
networks developed rich internal representations that included units which corresponded to 
such traditional distinctions as vowels and consonants, as well as units that were sensitive to 
novel and nonstandard features. Networks trained on a large corpus of unsegmented, 
continuous speech without labels also developed interesting feature representations, which may 
be useful in both segmentation and label learning. The results of these studies, while 
preliminary, demonstrate that backpropagation learning can be used with complex, natural 
data to identify a feature structure that can serve as the basis for both analysis and nontrivial 
pattern recognition. 

PACS numbers: 43.72.Ne, 43.72.Ar 

INTRODUCTION 

The recognition of speech is one of the many things that 
is carried out by humans with apparent ease, but that has 
been done by computers only at great cost, with high error, 
and in highly constrained situations. Whether or not one is 
interested in machine-based speech recognition per se, the 
difficulties encountered by such systems may be diagnostic 
of flaws in the theoretical frameworks that motivate them. 

We believe that part of the difficulty in such systems lies in 
the use of inappropriate features as units for recognizing and 
representing speech. But what are the appropriate units and 
how are they to be found? In this article, we describe studies 
designed to determine whether these units can be learned. 
We use a newly developed learning procedure for artificial 
neural networks. 

The question "What are the units of speech percep- 
tion?" has been long standing and controversial. The prob- 
lem is that, when one looks at the acoustic waveform, there 
are rarely obvious clues as to the boundaries between seg- 
ments, let alone an indication of what those segments are. 
The speech sound wave varies continuously and smoothly 
over time. There is nothing mysterious or unexpected in this; 
it is the acoustic consequence of the fact that the production 
of speech involves a high degree of coarticulation (i.e., the 
mutual influence of neighboring sounds) with smooth tran- 
sitions from one sound to another. 

While one has the impression that speech is made up of 
concatenated "sounds," just what those sounds are is debat- 
able. At least eight different levels of representation have 

been proposed to intervene between the speech wave and the 
representation "word": spectral templates (Lowerre, 1976), 
features (Cole et al., 1986), diphones (Dixon and Silver- 
man, 1976; Klatt, 1980), context-sensitive allophones 
(Wickelgren, 1969), phonemes (Pisoni, 1981 ), demisylla- 
bles (Fujimura and Lovins, 1978), syllables (Mehler, 
1981 ), and morphemes (Aronoff, 1976; Klatt, 1980). While 
these are all reasonable candidates for representing speech, 
the problem is that they have not been derived, in a canonical 
way, from the speech data itself. Learning provides a system- 
atic way to find recognition features in data. 

Whether or not the representations used in the percep- 
tion of speech are innate or learned remains open, and we do 
not wish to take a strong position on this issue. However, 
much of the motivation for supposing that internal represen- 
tations in perception are innate has come from the apparent 
poverty of data and the weakness of learning algorithms. 
Recent developments in parallel distributed processing 
(PDP) learning algorithms have demonstrated that a sur- 
prisingly small amount of data may contain sufficient cues to 
its intrinsic structure, so that this structure can be inferred 
using only rather simple learning rules. In the current arti- 
cle, we attempt to demonstrate the consequences of requir- 
ing that representations be learnable. To do this, we have 
taught trainable networks a series of speech recognition 
tasks and then examined the internal representations that 
are generated. The networks are adept at solving the recogni- 
tion tasks. They spontaneously develop their own represen- 
tations, which sometimes, but not always, correspond to our 
previous categories of representational units. 
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I. BACKPROPAGATION OF ERROR 

In these studies, we use a form of the "generalized delta 
rule" known as "backpropagation of error" (Rumelhart et 
al., 1986; Le Cun, 1985; Parker, 1985). This algorithm pro- 
vides a technique for training a multilayer network to 
associate many pairs of patterns. One member of the pair is 
the input and the other is the output. Generally, the input 
and output are related in some interesting manner (although 
the exact nature of the relationship may be unknown). The 
task of the network is to learn this relationship. More pre- 
cisely, the complete set of pattern pairs to be learned can be 
thought of as the extensional definition of a vector-valued 
function whose domain is the set of input patterns and whose 
range is the set of outputs. 

The set of functions that can be learned in such networks 

depends on several things, including their architecture and 
the learning algorithms employed. For example, the percep- 
tron convergence procedure (Rosenblatt, 1962) can pro- 
gram networks to compute linear Boolean functions such as 
AND and OR, but not nonlinear ones such as XOR. The 
early generalizations of the perceptron rule that extended 
the learning set to patterns with continuous rather than Boo- 
lean values are also limited to learning linear functions. 
Backpropagation, on the other hand, can be used to teach 
multilayer networks to compute all the Boolean functions. 
Backpropagation is applicable to patterns with continuous 
component values, and thus can also deal with a much wider 
range of functions. 

Much of the •ignificance of backpropagation learning 
stems from the fact that it is defined on a neurallike network. 

An example of such a network is shown in Fig. 1. In the 
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FIG. 1. Strictly layered backpropagation networks of the kind depicted in 
this figure were used for all the work described in this article. See text for 
details of the learning algorithm used to train the networks. 

networks used in the present study, there was a set of units 
designed as input units, which receive external input; a set of 
units called output units, which transmit output; and inter- 
nal units called hidden units, which receive from and trans- 
mit to other units in the network. These three types of units 
were organized into three distinct layers (input, hidden, out- 
put), with full feed-forward connections between adjacent 
layers. The learning algorithm works as follows. 

Before training begins, all the weights and biases ] are set 
to random values between -- 1.0 and 1.0. Training proceeds 
in cycles. At the beginning of each learning cycle, i.e., at time 
t - 0 for that cycle, an input pattern (x]x2'"xk) and a tar- 
get pattern (y•v2'' 'yk ) are selected at random from the set 
of input/output pattern pairs to be learned. At time t- 1, 
the activations of the input units are set equal to the input 

. pattern; that is, I] = x], 12 - x•,...,I• = x•. The output acti- 
vations of the hidden units are set at time t = 2 to 

Hi (t + 1 ) = squash bias./+ W. i/• (t) i • 
j=l 

where 

squash (x) = ( 1 + e - x) - 1 . 

Similarly, the activations of the output units are set at t -- 3 
to 

( Jz' ) 0 i (t + 1 ) = squash biasoi + Woi•H • (t) . 
j=l 

The resulting pattern of activation over the output units 
constitutes the network's output for this input pattern. This 
output pattern vector is then subtracted from the correct 
output pattern [i.e., the target pattern (Y•V2'"Yk) ] to pro- 
duce an error pattern. This error, in turn, is used at t = 4 to 
adjust the weights of connections feeding into the output 
layer, using the rule 

A Wo,• = •16o tt•, Abiaso = •16oi, i i 

60 i = (Yi -- Oi ) Oi ( 1 -- Oi ) , 
•/= learning rate constant. 

Error is then propagated back to hidden units at t = 5 
according to the rule 

A W,i j = •/6,i/•, Abias,, = 
k=m 

= 1 - . 
k=l 

These five sequential events together make up one learning 
cycle. 

When computations are programmed inductively in this 
manner, values from the range of the function (correspond- 
ing to the desired outputs of the network) must be available. 
Frequently, these values are supplied by an external source 
or "teacher," which assumes that such a teaching input is 
available; however, in certain situations, this assumption 
may be an unrealistic one. This raises the question of how to 
configure a system so it can learn, either without an external 
teacher or with the kind of information more realistically 
available. 

Several solutions have been proposed. One of the sim- 
plest and most elegant of these is to use teaching patterns 
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that are the same as the input or some fixed transformation 
of the input. While this would seem to limit us to learning the 
identity function (or some fixed transformation of it), it has 
been shown that with this procedure the hidden units learn 
to represent the input patterns in terms of salient features. 
When the number of hidden units is less than the number of 

input units, the information in the input is represented at a 
lower dimensionality. In many perceptual problems, this 
lower dimensional feature representation is just what is 
needed as a basis for further processing. We use this ap- 
proach in some of the speech recognition studies reported 
here. 

II. PRELIMINARY CONSIDERATIONS 

Before backpropagation could be used to recognize 
speech, it was necessary to find a way to present the sound to 
the network. The speech signal itself changes with time, but 
the networks require fixed input and target samples. The 
approach we used here was to present the learning network 
with fixed input patterns, each of which consists of a set of 
sequential samples. In some cases, the individual samples in 
the input pattern were Fourier amplitude spectra; in other 
cases, the actual digitized sound samples were used. Prelimi- 
nary studies were carried out to find the workable ranges for 
the number of frequencies and the amount of time that had 
to be represented in the input samples. ' 

Another consideration was the way to normalize this 
data. The dynamic range of the Fourier spectra is large, and 
the vast majority of the points have very low values. We 
found that certain versions of the learning procedures had 
difficulty with this type of input, consisting of a vast sea of 
near-zero values with a few high peaks. The situation was 
further complicated by large amplitude differences between 
examples of the same sound. 

W6 used two different strategies in preprocessing the 
input data. One strategy involved finding ad hoc methods to 
deal with the problems raised by the amplitude and dynamic 
range. The other strategy was to train a network to do the 
preprocessing itself. Details of these strategies will be given 
later. 

III. DIRECT LEARNING OF PHONETIC LABELS 

In our first series of studies, we asked how a backpropa- 
gation network might solve the problem of learning to label a 
set of highly confusable syllables. The basic idea was to use a 
spectrogram of a sound as the input pattern and a target bit 
pattern with one bit position for each of the types of sound. 
The task of the network was to learn to set the output unit 
corresponding to the sound type of the input to 1.0, while 
setting all the other output units to 0.0. We chose the sylla- 
bles [ba], [bi], [bu], [da], [di], [du], [ga], [gi], and [gu] 
because this set of three voiced stops, paired with each of 
three vowels, is known to exhibit a high degree of variability 
due to coarticulation. Although listeners readily report all 
versions of (for example) the [ d ] as sounding the same, the 
acoustic patterns corresponding to the consonant differ 
greatly across the three vowel contexts. Indeed, this repre- 
sents the paradigm case of perceptual invariance coupled 
with acoustic variability. 

The stimuli for the experiment were prepared as follows. 
A single male speaker recorded a set of 505 tokens of the set 
of nine syllables (about 56 tokens of each syllable). Tokens 
were recorded in a moderately quiet environment, but with 
no particular effort at eliminating background noise; nor 
was an attempt made to ensure a constant rate of speech or 
uniformity of pronunciation. Recording was carried out 
through analog-to-digital conversion at a 10-kHz sampling 
rate and low-pass filtered at 3.5 kHz. 

• ba 

FIG. 2. Graphs of examples of the nine 
sounds [ba], [bi], [bu], [da], [di], [du], 
[ga], [gi], and [gu]. To generate these 
data, the release of each stop was located un- 
der computer control, and syllables were 
edited to include 5 ms before the release and 

sufficient time following release to allow 64 
ms of FFT. A 64-point FFT was carried out 
over Hamming-windowed frames, advanc- 
ing 32 points per frame. Each token consist- 
ed of an array of twenty 3.2-ms frames; with- 
in each frame, the FFT output was 
reformatted to give spectral magnitudes 
over 16 evenly spaced frequency ranges, 
then normalized to the average for the to- 
ken. These values were then transformed us- 

ingthe logistic functiony - 1/( 1 q- e-mag). 
This procedure maps all values to the range 
0 to 1, and the average to about 0.46. Since 
the median for the amplitude spectra is gen- 
erally just a bit greater than the average, this 
procedure guarantees that about half of all 
values are mapped to each side of 0.5, which 
is beneficial for backpropagation learning. 
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The beginning of each consonant was located and an 
FFT analysis was carried out over 6.4-ms frames, advancing 
3.2 ms per frame for 20 frames. The output of the FFT was 
reformatted to give spectral magnitudes over 16 frequency 
ranges. As a result, each token was represented as a 16 X 20 
array of positive values. Finally, these FFT magnitudes were 
normalized to the token average and "squashed" using the 
logistic function squash (x) = ( 1 + e - mag) -- 1. This con- 
fines the magnitude values to the range 0.0 to 1.0. Examples 
of the resulting values for several tokens are graphed in Fig. 
2. 

The network used consisted of 320 input units, between 
two and six hidden units (in different conditions), and as 
many output units as there were types to be labeled. The 
network used here and throughout this work was strictly 
layered; i.e., every unit of the input and hidden layer was 
connected to every unit on the layer above. 

The data set of sounds was divided into two equal parts. 
One was used for training and the other was kept for testing 
performance on untrained examples. On each cycle of the 
teaching phase, the following occured: (a) One of the sylla- 
bles from the training set was selected at random and applied 
to the input layer; (b) activation was propagated up from the 
input layer to the hidden layer, and from the hidden layer to 
the output layer; (c) the error for each output unit was cal- 
culated and backpropagated through the network, and the 
weights were adjusted according to the learning rule. 

The trained network was tested by scanning through all 
members of the training and test data sets. The result for a 
token was scored as correct only if the value of the output 
unit that should be 1 was greater than 0.5, and the values of 
all the other output units were less than 0.5. 

Three versions of simple phonetic labeling were run. • In 
one, nine labels were used, corresponding to the nine sound 
types. In the other two, three labels were used, correspond- 
ing either to the three vowels (ignoring the consonant in the 
same syllable) or else to the three consonants (ignoring the 
vowels). In all cases, more than 100 000 training cycles were 
run. This extensive training was used because we were inter- 
ested in ultimate performance. Recently, we have found that 
higher learning rates give the same performance levels in 
about 10 000 training cycles. 

In all three versions, the networks were always able to 
learn to label the training set perfectly; that is, there were no 
errors in the classification of either sound type (the syllable, 
the vowel, or the consonant). When presented with the data 
from the test set, the network trained to label whole syllables 
made an average of 16% errors. The networks trained to 
label vowels and consonants made an average of 1.5% and 
7.9% errors, respectively. The results for the vowels and 
consonants were about the same whether two or three hid- 

den units were used. 

We found that the performance could be improved by 
introducing certain kinds of noise into the samples. Simply 
adding random noise to the inputs degraded performance. 
However, if the samples were distorted by adding noise pro- 
portional to each value, performance was significantly im- 
proved. This random distortion was accomplished by replac- 
ing each input value x by (x q- xr), where r is randomly 

chosen from the range --0.5-0.5. When tested without 
noise, the training sets still learned perfectly. On test data, 
the performance for syllables, vowels, and consonants was 
10%, 0.3%, and 5.0% errors, respectively. This means that a 
recognizer based on vowels and consonants would have an 
accuracy of about 95%. 

There are several reasons why training in noise should 
increase the model's ability to generalize. First, the noise 
effectively expands the data set; each syllable is represented 
by a larger number of exemplars. Second, and probably more 
important, the introduction of noise helps to blur stimulus 
idiosyncrasies that might be learned in place of the phoneti- 
cally valid features. This results in greater error during the 
teaching phase, but better generalization. 

Now let us turn to the hidden units. They restructure the 
input patterns in such a way as to provide input for the final 
(output) layer. In the process of carrying out this mapping, 
they encode the input patterns as feature types. One can ask 
what sorts of features become represented in the hidden 
units as a result of the teaching phase. These internal repre- 
sentations may provide a clue as to how the phonetic catego- 
rization is accomplished. 

In order to visualize the relationship between hidden 
unit activity and input sound type, we used a technique that 
displays the average activity of each hidden unit at a differ- 
ent spatial position for each sound type. Examples of the 
hidden unit activity patterns obtained in this way are shown 
in Fig. 3. Every hidden unit has become absolutely associat- 
ed with asubset of sound types. Hiddenunits have outputs of 
1 for some sound types in this set and 0 for others. In addi- 
tion, some hidden units produce a wide range of output val- 
ues for tokens that they are not associated with. The associ- 
ation subsets can be vowellike or consonantlike, in that a unit 
is completely on or completely off for some consonant or 
vowel. In the example illustrated for the nine label case, for 
example, two of the hidden units are vowellike and two are 
consonantlike. Not infrequently a unit cleanly represents a 
single vowel or consonant in its on activity. It is interesting 
that each time the learning procedure is rerun, using differ- 
ent random initial weights, a different pattern of hidden unit 
correlations is observed. However, while several unit pat- 
terns occur often, some never appear at all. For example, no 
hidden unit has ever been found that represents the [u] 
sound alone by an on unit. This contrasts with [ a] and [i ], 
which can be so represented. 

Another version of label learning was carried out in 
which a larger number of phonetic labels were employed, 
reflecting a finer-grain phonetic analysis. Each of the nine 
syllables was divided into a consonantal portion and a oocalic 
portion. The consonantal stimulus corresponded to the first 
32 ms of the syllable (starting 5 ms before release of closure), 
and the oocalic stimulus corresponded to the 32 ms of the 
syllable that occur.s 150 ms after the release of closure. This 
yielded 18 new stimuli. Each of the 18 stimuli types was 
given its own digital label, with labels randomly assigned to 
9-bit codes. A network consisting of 320 input units; six hid- 
den units, and nine output units was trained on 1 000 000 
learning cycles of these 1010 ( 505 X 2) stimuli. 

The correlations between hidden unit activity and 
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FIG. 3. Panels A-E display hidden unit response patterns for different ver- 
sions of the backpropagation phonetic labeling networks. Each column 
shows the behavior of a single hidden unit for all nine sounds. The activity of 
the units is coded in the degree of darkening of the rectangle associated with 
each sound. A completely black rectangle indicates a unit with average ac- 
tivity of about 1.0 for that sound. Likewise, a white rectangle (not delineat- 
ed against the background) indicates an average activity near 0.0. The 
shaded rectangles indicate intermediate average activities. Panel A is from a 
four hidden unit network trained with nine labels signifying syllables. Pan- 
els B and D are from networks trained with three vowel labels, while C and 
E were trained to recognize three consonants. 

sound type are displayed in Fig. 4. There are six columns, 
corresponding to the six hidden units, and 18 rows, corre- 
sponding to the 18 stimulus types. The phonetic segment is 
indicated by an upper-case letter, and its context by a lower- 
case letter. Thus "Ba" refers to tokens of a voiced bilabial 

stop, extracted from the syllable [ba], whereas "dI" refers to 
tokens of a high front vowel, extracted from the syllable 
[di]. 

Figure 4 allows us to look at the internal representation 
that has been developed in order to encode the 1010 tokens 
as 18 phonetic types. The representation is interesting in sev- 
eral respects. First, we see that one hidden unit (unit 4) is 
always on for the first nine types, and off for the last nine 
types. It thus serv as a consonant/vowel detector Note . 
that the learning task has not explicitly required that this 
distinction be drawn. The network has simply been asked to 
learn 18 phonetic labels. It happens that the consonant/vow- 
el is a useful dimension along which to classify types, and this 
dimension is implicit in the stimuli. In other cases, we see 
that it is not as easy to interpret single hidden units by them- 

•000000 CV/HU 

bI 

bU 

dA 

dI 

dU 

gU 

FIG. 4. A graph of the hidden unit activity associated with each of the 18 
speech inputs. Each column shows the behavior of a single hidden unit for 
all 18 speech sounds. Upper-case letters indicate which portion of a CV 
syllable was presented (consonant or vowel ); lower-case letters indicate the 
context. 

selves. When both units 2 and 4 are on, a velar stop (Ga, Gi, 
Gu) is signaled; otherwise, the vowel [i] is indicated. 

One very striking result is the response pattern for unit 
1. This unit is always on (and only on) for the alveolar stops 
(Da, Di, Du). What makes this so surprising is that the 
alveolar stops exhibit a great deal of acoustic variability 
across different vowel contexts. The task simply required 
that the network learn labels for the three different alveolar 

allophones; it was not required to group these together in any 
way (indeed, there was no feedback that informed the 
network that any relationship existed between these three 
types). Nonetheless, the network has spontaneously deter- 
mined a representation in which these allophones are 
grouped together. 

The weights connecting the input to the hidden units are 
a kind of filter through which the sound stimuli pass to deter- 
mine hidden unit activity. The shape of this filter is indica- 
tive of the sound features recognized by the hidden units. 
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i d 
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FIG. 5. These are graphs of the 
weights connecting the input sound 
array to the hidden units. Each 
graph represents a single hidden 
unit. The weights are plotted at posi- 
tions that correspond to the frequen- 
cy and time of their attached input. 
The format of time and frequency in 
these graphs is the same as in Fig. 2. 
The hidden units are all from net- 

works trained to recognize either 
vowels or consonants. The hidden 

units are on only for the sounds indi- 
cated in the lower fight-hand corner 
of each graph. The left-hand column 
has complete graphs. The other two 
columns have flood graphs, repre- 
senting only that portion of the 
graph above a high tide of 0.7, and 
the whole range of weight values. All 
values below the high-tide value are 
set to the high-tide value. The center 
column is based on the same data as 

the one to the left. The complete 
graphs for the right-hand column 
are not shown. 

Examining these weight profiles can give us some under- 
standing of these features. Figure 5 shows graphs of the input 
weights for hidden units with outputs at 1 for only a single 
sound or a pair of sounds. In the column on the left,-the 
weights for several vowel-recognizing units are depicted. 
The patterns are very complex and little can be gleaned from 
them. In the next column, a more interpretable "flood" plot 
of the same data is shown; the flood plot shows only those 
peaks above some "high-tide" level. The important differ- 
ences between the weight arrays become apparent, showing 
some of the basis for distinguishing between the various 
sounds. The last column on the fight is a flood plot of some 
consonant-recognizing units. The flood plots of the vowel- 
recognizing units and the consonant-recognizing units re- 
veal only part of the story. The negative peaks are also im- 
portant in the recognition process. And the importance of 
the finer scale structure of the weight matrix is not yet 
known. 

Results from these studies of phonetic label learning in- 
dicate that this approach has considerable power and can be 
successful even given a highly confusable set of stimuli. Fur- 
thermore, the backpropagation technique results in internal 
representations whose interpretations are, in some cases, ob- 
vious; in other cases, the representations are novel and may 
suggest alternative ways of categorizing speech. 

One important difficulty with this approach is the origin 
of the phonetic labels. The direct teaching technique re- 
quires that, for each speech stimulus, the correct label be 
known. It would seem desirable not to have to make this 

assumption. For example, from the viewpoint of child lan- 
guage acquisition, this requires the circular assumption that 
children know the labels of the sounds they are learning 
(that is, know which labels go with which sounds), before 
they learn them. This consideration led us to investigate 
identity mapping as a way to learn phonetic features. 

IV. IDENTITY MAPPING OF SPECTROGRAMS 

In the previous study, the input and output patterns 
were different; the input was a known speech stimulus, and 
the output was its abstract phonetic label. This interpreta- 
tion of input and output is neither available nor necessary to 
the operation of the learning algorithm. It is simply learning 
a function that relates two patterns. One can apply the learn- 
ing algorithm in a different mode in which the input and 
output pattern are the same. This mode, which we call iden- 
tity mapping [it is also known as auto-association ( Ackley et 
al., 1985)], does not require an external teacher. Identity 
mapping a large pattern via a layer of a few hidden units has 
been shown to yield useful internal representations that give 
explicit information about the structure of the input patterns 
(Cottrell et al., in press; Zipser, in press). We have used 
identity mapping with the same sounds described above to 
see if useful internal representations can be learned in the 
absence of a priori knowledge about the "meaning" or 
"names" of patterns. We find that the hidden units in identi- 
ty mapping come to represent both previously identified 
speech features and new, not easily described, features. 

The stimuli for this experiment were identical to those 
used previously. They consisted of 505 tokens of the nine 
consonant-vowel (CV) syllables, represented by normal- 
ized and squashed power spectra. The network had 320 in- 
put units, between 2 and 10 hidden units, and 320 output 
units. The training phase was similar to the labeling studies, 
except that the target output pattern wa• always identical to 
the input pattern. 

In Fig. 6 (a), we see an example of the hidden unit acti- 
vations that developed after about 150 000 learning cycles. 
Unit 3 is a vowel unit since it is strongly on for all [a] and off 
for the other vowels. Units 2 and 4 are consonantlike units 

since they are on quite strongly for two consonants and off 
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(a) 

bi 

bu 

di 

du 

9i 

gu 

c.,_ 

2 4 5 6 

(b) 

FIG. 6. (a) Hidden unit response patterns from a network that had been 
trained to identity map the nine syllables listed on the left-hand side. The 
average activity values are encoded in the same way as in Fig. 3. (b) Strip 
chartlike plots of the total error from an identity mapping network as sound 
tokens are continuously shifted through the input space as described in the 
text. The network is the same one whose hidden unit activities are shown in 

(a) above. The "<" marks indicate times when syllables are in register in 
the input space. The lower panel is a continuation of the right end of the 
upper one. 

for a third. Unit 3 is vowellike but encodes some consonant 

information also. Units 5 and 6 cannot be characterized in 

terms of vowels and consonants; they represent some feature 
that is not easily described. 

Different hidden unit activation patterns are obtained 
on each independent run of the same learning problem, but 
the same general kinds of hidden units are found. Sometimes 
hidden units represent a single vowel or consonant. More 
often they represent a strongly correlated encoding of mixed 
sound types, as is the case with unit 1. Units like 5 and 6, 
which recognize some enigmatic feature, are also quite com- 
mon. In general, the fewer the number of hidden units, the 
more strongly correlated with sound types they become. 

While the identity mapping network we have described 
was trained on speech that was not phonetically labeled, the 
speech tokens had been laboriously presegmented into sylla- 
bles. It occurred to us that the identity mapping network 
might be able to segment continuous speech. The reason this 

might be possible is that error would be expected to be at a 
minimum when the sounds used for training were in register 
on the input units. These error minima would then signal the 
boundaries between syllables. 3 

To test this possibility, we synthesized a pseudocontin- 
uous speech by stringing together examples of the nine 
sound types in random order and shifting this sequence 
through the input one time step per cycle. This resulted in a 
stimulus that had a complete sound token correctly in regis- 
ter with the inputs only once every 20 cycles. On all the rest 
of the cycles, the input consisted of part of the end of one 
token and part of the beginning of another. Networks that 
had been fully trained to identity map presegmented sounds 
were used for this study, but their learning mechansims was 
turned off. On each shift cycle the total error was computed. 
(This error is just the sum-squared difference between the 
input and output patterns.) The results are shown in Fig. 
6(b). 

The error signal has a clear periodic component, de- 
creasing to an identifiable minimum each time a single token 
is in register with the input. The reason for this is that, when 
a CV syllable is in sync, the network "recognizes" one of the 
input patterns on which it has been previously trained. This 
results in low error. On the next testing cycle, the shifted 
input pattern still resembles one of the learned patterns so 
error is relatively low, but, as the shifting stimulus gets in- 
creasingly out of registration, the error increases. The results 
of this simplified study indicate that identity mapping net- 
works might be used for segmenting continuous speech. One 
can also envisage using multiple networks to process speech 
in parallel. A network trained on identity mapping could be 
used to locate syllable boundaries; an error minimum could 
then be used to activate analysis by a second network that 
had been trained to do phonetic labeling. 

We have seen that identity mapping can be used to learn 
salient features without labeling and may also be useful in 
segmenting speech. But we are limited by the need to preseg- 
ment the input for training purposes. This is an undesirable 
limitation because it requires a teaching environment that 
may be richer than that available to the human learner. In 
the next section, we try to remove the requirement for pre- 
segmentation of the sound stimulus. 

V. IDENTITY MAPPING OF CONTINUOUS 
SPECTROGRAMS 

The goal in this study was to see what sort of representa- 
tion might result if a network were trained on continuous 
speech. As in the previous study, the task is to identity map 
the input. In this case, we drop the restriction that the input 
must correspond to a CV syllable. Instead, the speech input 
consisted of a corpus of 15 min of running speech. A text was 
created that contained: (a) the digits from 0 to 9; (b) the 500 
most frequent words from the Kucera-Francis corpus (Ku- 
cera and Francis, 1967); (c) a phonetically balanced word 
list of 100 items; and (d) a prose passage. The corpus was 
read in a conversational manner by a male speaker at a mod- 
erate rate under relatively quiet conditions, filtered at 3.5 
kHz, and digitized at a 10-kHz sampling rate. The speech 
was Hamming windowed and analyzed by a 128-point FFT 

1621 J. Acoust. Soc. Am., Vol. 83, No. 4, April 1988 J.L. Elman and D. Zipser: Learning the hidden structure 1621 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  160.75.27.8 On: Wed, 21 Sep 2016 12:47:05



FFT 

FIG. 7. Hidden unit activity from a 
network that has been trained on a 

large, unsegmented speech corpus. 
The output activity of the eight hid- 
den units is plotted on strip chartlike 
graphs as a sample of the speech cor- 
pus is shifted through the input 
space of the network. The bottom 
segment of the figure shows an FFT 
of the sound to which the hidden 

units are responding. The vertical 
timing lines are 600 ms apart. The 
numbers 1-8 on the left-hand side in- 

dicate the individual hidden units. 

using overlapping windows that advanced 64 points per 
frame. The power spectra were reduced to 32 frequency bins, 
normalized and squashed in a manner similar to that de- 
scribed above. 

The network was made up of three layers; the input lay- 
er contained 640 units, the hidden layer had eight units, and 
the output layer contained 640 units. 

Given the magnitude of the corpus, the computational 
requirements of learning such a database to an acceptable 
level of error are considerable. Pilot studies ran for approxi- 
mately 2 weeks on a VAX11/750 digital computer (with 
FPA). For this reason, we carried out further studies on the 
Cray XMP-4 computer of the San Diego Super Computer 
Center. 

The network was trained on the corpus for 1 000 000 
learning cycles. We experimented with two modes of presen- 
tation. In one mode, the speech was passed through the input 
layer of the network in a continuous fashion; after each 
learning cycle, the input layer of the network was advanced 
by one time interval so that there was considerable overlap 
from one cycle to the next. In the second mode, a section of 
the corpus was selected at random for identity mapping; 
eventually, all possible (overlapping) portions of the utter- 
ance were seen by the network. In pilot work, we found no 
differences between the two modes; the random mode is the 
one we adopted for our studies. 

At the completion of the learning phase, the network 
had been trained on an extensive body of speech. The speech 
corpus contains approximately 140 000 different input pat- 
terns (each pattern consisting of 640 numbers). Our hope 
was that this sample was both repesentative of the variety of 
speech patterns for the speaker, while, at the same time, con- 
taining enough regularity that the network would be able to 
successfully encode the patterns. One graphic view of the 

representation that is built up is shown in Fig. 7. At the 
bottom of the figure we see a spectrogram of a section of the 
training corpus. Shown above are eight lines that graph the 
activations of the hidden units when the speech shown at the 
bottom is passed through the network. These plots can be 
thought of as a kind of feature representation of the speech. 
It is clear that features have steady states that last for rough- 
ly syllable-sized periods of time. It has proved difficult, how- 
ever, to give an interpretation of the content of these fea- 
tures. An important question is how much information has 
been preserved by the encoding contained in the eight hidden 
units. One can test this by seeing whether it is possible to 
teach a network the phonetic labels for speech sounds when 
we use the hidden unit representation of the identity mapped 
speech rather than the speech itself. This involves two steps. 
First, we take the nine CV syllables used before, pass them 
through the network previously trained on the Cray (using 
the 15-min speech corpus), and then save the hidden unit 
activations that result. In the second step, we use the hidden 
unit activations to train a second network to label the activa- 

tion patterns as [ba ], [bi ], [ bu ], etc. This step is analogous 
to the previous labeling studies, with the important differ- 
ence that the input now is not speech but the representation 
of speech derived from the Cray-trained network. The label- 
ing network had 560 input units (to accommodate 70 time 
slices, each time slice lasting 6.4 ms and being represented by 
eight hidden unit values), 8 hidden units, and 9 output units. 
The nine output units were used to encode the nine different 
syllable types. 

After approximately 100 000 learning cycles, the hid- 
den unit activity of the labeling network had a reasonably 
distinct pattern that distinguished the nine different sylla- 
bles. A more rigorous test is to see how many categorization 
errors are made by this network. There is an overall error 
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rate of 13.5% (false reject = 10.4%, false accept = 3.1%), 
but most of it is due to a very high error rate in labeling [ga]. 
If this syllable is removed, the overall error rate drops to 
5.8%. 

This result is quite encouraging. It indicates that a de- 
gree of dimension reduction has been achieved by the cor- 
pus-trained network using only eight hidden units, without 
an enormous loss of information. The encoded representa- 
tion is rich enough that the identity of the original speech can 
still be extracted. Furthermore, we also see that we were able 
to create a feature representation without segmenting the 
data or knowing its phonetic identity. Indeed, features ob- 
tained in this way may eventually be useful for the task of 
segmentation. 

One assumption we made in these studies was that the 
power spectra of the speech provides a good initial represen- 
tation of the speech. This is not an unreasonable assumption, 
and there are, in fact, many additional assumptions one 
might have made (such as the use of critical bands, preem- 
phasis of higher frequencies, etc.). Nonetheless, an impor- 
tant goal of this investigation has been to see how much of 
the structure of speech could be discovered with minimal a 
priori assumptions about what were meaningful transforma- 
tions or representations of the data. 

In this spirit, we wondered what might happen if we 
abandoned the use of the FFT to train the network. Suppose 
we simply presented the network with the unanalyzed digi- 
talized waveforms? This is what we did in the final study. 

VI. IDENTITY MAPPING OF CONTINUOUS RAW 
SPEECH 

In this study, we attempted to see whether a useful input 
representation could be built up from continuous speech us- 
ing the digital waveform itself. 

The first speech corpus we used consisted of the simple 
sentence, This is the voice of the neural network (with a dura- 
tion of approximately 4 s). The speech was kept as a series of 
16-bit samples, each value representing an A/D converter 
voltage, with samples occurring at 100-/rs intervals. The 

network was made of 50 input units, 20 hidden units, an 50 
output units. As in the previous experiment, random sec- 
tions of the corpus were selected and presented as input and 
target for identity mapping. Since each such section con- 
tained 50 samples, the network's input window covered 5 ms 
of speech. 

The use of pulse code modulated (PCM) speech in iden- 
tity mapping makes it very easy to test the network's perfor- 
mance simply by collecting the output and converting it 
back to analog form (since the network output is then simply 
a set of digital values that can be passed through a D/A 
conveter). This requires that the output layer contain linear 
units; so, while the hidden layer remained nonlinear, the out- 
put layer was linear. 

After one million learning cycles, we fixed the weight 
values (so that no further learning could occur) and fed the 
whole training data set through the network as a sequential 
stream of nonoverlapping 50 sample inputs. The output was 
converted to analog form and played over speakers. The 
authors judged the speech to be of high quality; a 0.96 corre- 
lation between input and output was obtained. Spectrograms 
of both the input and output are shown in Fig. 8. 

We were interested in seeing how well the network 
ß •eights would generalize to novel speech. To test this, we 
retrained the network using 4 min of the full speech data base 
that was used in the Cray training study (but in PCM form 
rather than as power spectra). We reasoned that this larger 
and more varied training set would be needed in order. to 
learn features that would have general applicability. Learn- 
ing proceeded for one million cycles, using the same presen- 
tation method as with the simple sentence. It is worth noting 
that, because this data set contained 2.5 million different 50- 
sample patterns, less than half the data was seen, and any 
pattern that was presented was typically seen only once. 

The resultant network was then used as a filter for the 

original neural network sentence. A spectrogram of the out- 
put is shown in Fig. 9; the output is somewhat degraded 
compare with the filter that is trained on the sentence itself, 
but is still quite understandable. 

One natural question to ask is what kind of encoding the 
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FIG. 8. Spectrograms of both the in- 
put and output of a network trained 
to identity map PCM speech.. 
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FIG. 9. A spectrogram of the output 
of the network of Fig. 8 given as in- 
put the "neural network" sentence 
that it had never seen. 

hidden units have discovered. In Fig. 10, we see spectro- 
grams of the outputs of the individual units in response to the 
neural network sentence. It is clear that the responses do not 
resemble single sines or cosines, showing that the units have 
not learned a Fourier decomposition. One thing that is strik- 
ing is the extent to which the hidden units' spectral responses 
are similar. If one compares the spectrogram of the input 
sentence itself (Fig. 8) with those of the hidden units, one 
sees the way in which this is so. Most of the hidden unit 
response frequencies tend to center around the regions of the 
spectrum that are relevant for speech (this is not the case for 

all units; there are some that are distinctly different). The 
units have thus concentrated mainly on those areas of the 
spectrum that are relevant for encoding the speech data. The 
results obtained here with sound are analogous to those 
found for visual images by Cottrell et al. (in press). Since 
these authors were able to demonstrate considerable band- 

width compression using the hidden unit representations, we 
would expect that bandwidth compression has also occurred 
for sound. 

The time scale of the hidden unit features is quite short 
(the features encode events on the order of 5 ms). We are 

FIG. 10. Spectrograms of the outputs of the 10 (of the 20) individual hidden units, from the network of Fig. 9, in response to the "neural network" sentence. 
Time on the abscissa is marked in 10-ms intervals and frequency on the ordinate in 1000-Hz intervals. 
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primarily interested in features, but also in representations 
that encode larger events. Therefore, we constructed a sec- 
ond-level network that took as its input the hidden unit rep- 
resentation derived from the first network and identity 
mapped it to an output layer. This second network had 400 
input units, 10 hidden units, and 400 output units. It was 
able to look at representations corresponding to 100 ms (i.e., 
it saw 20 groups of 20 hidden unit inputs at a time, and each 
group of 20 hidden units came from 5 ms of speech in the first 
network). 

The first network in this two-level system was the one 
trained on the extended speech corpus, and had its weights 
fixed. It was then given a repeated sequence of nonsense syl- 
lables, [ ba ] [ ba ] [ ba ] [ ba ] (in PCM form), as a continuous 
stream of nonoverlapping 5-ms inputs. Every 5 ms, the 20 
hidden unit activations from this first network were passed 
to the input layer of the second network. After 400 such units 
had been collected by the second network, it did 1 cycle of 
learning in an identity mapping mode. On each succeeding 
learning cycle, the input pattern in the second network was 
shifted left by 20 units, and a new 20 units were received 
from the first network. This sequence of events continued 
until approximately 800 000 learning cycles had occurred in 
the second network (remember that the first network had 
already been trained and was not subject to learning; it was 
simply acting as a preprocessor that formated the speech in a 
manner analogous to the FFT used previously). 

After the second network was trained on the hidden unit 

representations, we froze the weights in the second network. 
We then ran the input through both networks in a contin- 
uous stream. As we did this, we examined the pattern of ten 
hidden unit activations in the second network. These hidden 

unit patterns were apparently associated with syllable on- 
sets. 

VII. CONCLUSION 

The series of experiments reported here is clearly pre- 
liminary in nature. There are a large number of questions 
that are raised by this work, and it is easy to think of many 
alternative ways of posing the problems we have presented in 
the networks. Nonetheless, we find this approach to analyz- 
ing and recognizing speech exciting for a number of reasons. 

( 1 ) Power. The domain of speech processing is an ex- 
tremely difficult one. There are a large number of problems 
that remain unsolved of both a practical and theoretical na- 
ture. We believe that the experiments described here demon- 
strate that the PDP framework and the backpropagation 
method for learning are extremely powerful. 

In the first labeling study, we saw that it was possible to 
build a system that could be taught to correctly categorize a 
number of highly confusable phonetic segments; and that, 
having learned this, the network was able to generalize the 
categorization to novel data. We are optimistic that the per- 
formance--which was good--can be improved with refine- 
ments in the technique. We are particularly impressed with 
the fact that an encoding was found in which one hidden unit 
became active whenever an alveolar stop was presented, re- 
gardless of vocalic context, and of another which did the 
same for velar stops. It is well known that both of these 
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consonants exhibit a great deal of contextual variability, and 
the spontaneous discovery of an invariant feature is interest- 
ing. 

(2) Representations. An important goal in this work 
was to study the representations that result from applying 
the backpropagation learning algorithm to speech. In some 
cases, the representations that are discovered are intuitively 
sensible and easy to interpret. In the labeling studies, the 
consonant/vowel distinction was encoded by a single unit. 
In other cases, we saw that the representation itself assumed 
a distributed form, with groups of hidden units participating 
in, for example, the encoding of place of articulation. It is 
interesting that the specific representations may vary when 
learning experiments are replicated. This suggests that mul- 
tiple networks learning the same data may provide a richer 
representation than any single network. Finally, we saw in 
the PCM identity mapping studies that the algorithm finds 
solutions that are highly expedient. The spectral decomposi- 
tion that was carded out was clearly tuned for speech; the 
majority of units had responses that focused on several re- 
gions of the spectrum, and these were precisely those regions 
that are highly relevant for speech. 

(3) Innate versus learned representations. We do not 
believe that the work described here necessarily makes 
strong claims that the perceptual representations by humans 
are learned. On the other hand, we believe that the work does 
argue against making strong claims that such representa- 
tions must be innate. The tendency, in linguistics perhaps 
more than psychology, has been to assume that much of the 
representation apparatus used in processing language must 
be innate. In large part, that is because it has seemed to many 
people that the representations are complex and often arbi- ' 
trary and that the input data available to the language 
learner for those representations are impoverished. 

We feel that this study encourages the belief that more 
information about the structure of speech is extractable from 
the input than has been supposed. The back-propagation 
method of learning may not, in fact, be what is used by hu- 
mans. Still, it at least demonstrates that one relatively simple 
algorithm does exist that is capable of uncovering a great 
deal of structure in a small sample of speech. It is our hope, 
based on these preliminary studies, that it will be possible to 
construct a hierarchy of learning networks that will spontan- 
eously learn to recognize speech using only extensive exam- 
ples of input speech, loosely synchronized with transcribed 
text. We further hope that this task can be accomplished in 
such a way as to shed light on the actual mechanisms used by 
the brain. 
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