Advanced Digital Circuit Design - Test Benches for Combinational Circuits Prof. Dr. Berna Örs Yalçın

Istanbul Technical University Faculty of Electrical and Electronics Engineering Department of Electronics and Communication Engineering siddika.ors@itu.edu.tr

Test Benches

- A test bench is an HDL program for applying stimulus to an HDL model and observe its response.
- A good test bench should be written to exercise as many functional features of a circuit as possible.
- process begin ... end process; phrase is used to provide stimulus to a circuit to be tested.
- An process begin ... end process; phrase is executed only once, starting at time 0.
- An process begin ... end process; block includes operations that are delayed by a given number of time units.

The process Block

process begin A = 0; B=0;wait for 10 ns; A=1;wait for 20 ns; A=0; B=1;end process;

Stimulus for Generation for Combinational Circuits

process begin D = ''000'';for i in 1 to 7 loop wait for 10 ns; D = D + ''001'';end loop; end process;

The above code can be used to generate stimulus for a 3 input combinational circuit and obtain its truth table.

Writing a Test Bench for an Entity under Test

LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.numeric_std.ALL; use ieee.std_logic_arith.all;

•••

ENTITY entity_name_tb IS END entity_name_tb; ARCHITECTURE behavioral OF entity_name_tb IS // Declare the design entity under test. COMPONENT entity_name PORT(...); END COMPONENT;

// Declare local **signals** SIGNAL input ports SIGNAL output ports CONSTANT period : time := 10 ns;

BEGIN

// Instantiate the design module under test. UUT: entity_name PORT MAP(...); // Generate stimulus stim_proc: process BEGIN input signal <= value; WAIT FOR period;

WAIT; end process; END;

- A test bench entity is written as any other VHDL entity but it has no inputs or outputs.
- The signals that are applied as inputs to the entity under test are declared as **signal** data type.
- The outputs of the entity under test are declared in the test module as **signal** data type.

Interaction Between Stimulus and Design Entities

library IEEE; use IEEE.STD_LOGIC_1164.ALL;	library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL;					
<pre>entity ripple_carry_adder is generic (n : integer := 8); Port (A : in std_logic_vector (n-1 downto 0); B : in std_logic_vector (n-1 downto 0); C0 : in std_logic; S : out std_logic_vector (n downto 0)); end ripple_carry_adder;</pre>	<pre>entity ripple_carry_adder_tb is generic (n : integer := 8); end ripple_carry_adder_tb; architecture Behavioral of ripple_carry_adder_tb is component ripple_carry_adder is generic (n : integer := 8); Port (A : in std_logic_vector (n-1 downto 0); B : in std_logic_vector (n-1 downto 0); C0 : in std_logic:</pre>					
<pre>architecture Gate_Level of ripple_carry_adder is component full_adder is Port (x : in std_logic; y : in std_logic; z : in std_logic; S : out std_logic; C : out std_logic); end component; signal C : std_logic_vector (n downto 0); begin C(0) <= C0; GEN_FA: for i in 0 to n-1 generate FA: full_adder Port map(A(i),B(i),C(i),S(i),C(i+1)); end generate GEN_FA; S(n) <= C(n);</pre>	S : out std_logic_vector (n downto 0)); end component; signal A_t,B_t : std_logic_vector (n-1 downto 0); signal C0_t : std_logic; signal S_t : std_logic_vector (n downto 0); constant one : std_logic_vector (n-1 downto 0) := "00000001 begin DUT: ripple_carry_adder generic map(n) Port map (A_t,B_t,C0_t,S_t); process begin A_t <= "00000000"; B_t <= "00000000"; C0_t <= '0'; for i in 0 to n-1 loop wait for 4 ns; A_t <= A_t + one; for j in 0 to n-1 loop wait for 4 ns; B_t <= B_t + one; end loop; end loop;					
end Gate_Level;	end process; end Behavioral;					

н.

Simulation Results for the 4-bit Adder Entity

							35.000	ns													
Name	Value	10 ns) ns	. Í	30 ns		40 ns	: 	I ^s	50 ns		60 ns		, ⁷⁰	ns		80 ns		90	ns
> 😼 A_t[7:0]	01			01								02					χ				03
> 😻 B_t[7:0]	07	01 / 02 /	03	04 05	χοέ	07	χo	8	X 09	(⁰ a	(ОБ	0c	Od	0e)	Of	X	10	11	12	13	14
1 ⊌ C0_t	0																				
> 😽 S_t[8:0]	008	002 003	004 0	005 006	Xoo	7 008	X 009	00a	Хоор	X 000	= X 00d	00e	00f	010	otr	012	013	014	015	016	017
14 n	8																		8		
> 😻 one[7:0]	01																		01		

Check results with "assertions"

process		
begin		
Ā_t <= "00000000";	B_t <= "00000000";	C0_t <= '0';
for i in 0 to n-1 loop		
wait for 4 ns;	A_t <= A_t + one;	
for j in 0 to n-1 loop)	
wait for 4 ns;	B_t <= B_t + one;	
assert (S_t = A_	t + B_t) report "Error mes	sage" severity NOTE;
end loop;		
end loop;		
end process;		

- Match data types for S_t, A_t, B_t
- Print "Error message" if assert condition FALSE
 - (condition is not what we expected)
- Specify one of four severity levels:
 - NOTE, WARNING, ERROR, FAILURE
- Simulator allows selection of severity level to halt simulation
 - ERROR generally should stop simulation
 - NOTE generally should not stop simulation

Test Bench with Text-IO

- Stimulus for DUT is read from an input file and modified in the source component
- The response modified is in the sink and written to the output file

Libraries, remember to declare the textio-library! library IEEE; use IEEE.std_logic_1164.all; use std.textio.all; use IEEE.std_logic_textio.all;

Test Bench with Text-IO

<u>, 11111</u>									
	Create process and output files (VHDL'8 FILE file_in : TEX FILE file_out : TEX • File paths are	declare the input and 37) T IS IN <i>"datain.txt"</i> ; XT IS OUT <i>"dataout.txt"</i> ; relative to <i>simulation</i>	process FILE file_in : TEXT IS IN "datain.txt"; FILE file_out : TEXT IS OUT "dataout.txt"; VARIABLE line_in : LINE; VARIABLE line_out : LINE;						
	directory		VARIABLE input_tmp : std_logic_vector(7 downto 0);						
Variables for one line of the input and output			VARIABLE output_tmp : std_logic_vector(8 downto 0);						
	UADIADIE lina ir	·· I INE·	while not endfile(file, in) loop						
	VARIABLE line_II	1. LINE, ut · I INE.	readling(file_in_ling_in);						
	VARIABLE IIIIe_0	ul. LINE, bla is undeted	read(line_in_input_tmp);						
		Janaa tha naw valua ia	Teau(IIIIe_III, IIIput_IIIIp),						
visible on the same execution of the process (already on the next line)			$A_i <= input_input_tmp)$						
			B_t<= input_tmp;						
								•	variables for the val
	VARIABLE input_	tmp : INTEGER;	write(line_out, S_t);						
	VARIABLE output	_tmp : INTEGER;	writeline(file_out,line_out);						
			writeline(OUTPUT,line_out);						
	allana ta nan		end loop;						
	datain.txt	dataout.txt	wait;						
00	000000 0000000	00000000	end process;						
00	000000 00000001	00000001	end Behavioral;						
		00000010							
00	000000 00000100	00000100							