FHE ELITLRE

Very Large Scale Integration Il - VLSI Il
RF & Datapath & Single Cycle Control

ITU ULSI LABS

Berna Ors Yalcin

ITU VLSI Laboratories

Istanbul Technical University

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

THE FLTLRE

Topics for today

/

e Register File

e Generic Datapath

ITU ULSI LABS

e Single Cycle Control and Issues

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

THE FLITLIRE

Basic Processor Structure

e The specification for a computer consists of a description of its
appearance to a programmer at the lowest level, its instruction set
architecture (ISA)

e From the ISA, a high-level description of the hardware to implement
the computer, called the computer architecture, is formulated.

e This architecture, for a simple computer, is typically divided into two
parts;

ITU ULSI LABS

» Datapath
> Control Unit

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

E FLITLIFE

n Basic Processor Structure
[C — I
=
— : 901060000001
ﬂ Registers 00100000010
v/ data. address 00010000100
: ALU ’ ’ P
- \—/ control
€ >
- Data
CPU 1901000160000 Memory
»[1901100660011
00100010101
Program
Memory

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

1E ELITLRE

IR

1]
dl
[C
-
EI >
inl »
= >
=

Basic Processor Structure

e —

e The datapath is defind by a few basic compohents:

a set of registers (register file)

the microoperations performed on data stored in the registers (ALU)
the control interface

buses, multiplexers, decoders

e The control unit

provides signals that control the microoperations performed in the
datapath and in other components of the system, such as memories.

controls its own operation, determining the sequence of events that
occur. This sequence may depend upon the results of current and past
microoperations executed.

directs the information flow through the buses, the ALU, the shifter, and
the registers by applying signals to the select inputs.

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

Datapath Example

Load enable A select B select
Four paral |e|-|0ad Ddat\;v”te . * A address B addresy
registers 1) bl Ro 2 2
n | n
Two mux-based !
. —I_\ Load R1
register selectors L o c1>
- - - MUX
Register destination £ N :
decoder e L[Mux 7] |A
(3
Mux B for external > L
- Load
constant input L e " n
L Register filg

Decoder

Buses A and B with external Josdes poe|
address and data outputs Osiratinsoet g [
ALU and Shifter with I —
Mux F for output select Cpimimaen 4= gab
Mux D for external data input SR vt I R
\L/og ic |\|forz generating status bits gxg : F'

)~y 1N, o On [<—Data In

MUX D

1 =t Chapter 10 Part1 6

Datapath Example: Performing a

Microoperation

Load enable A select B select
Microoperation: R0 < R1 + R2 o : hraddre e
Apply 01 to A select to place Load - , ,
contents of R1 onto Bus A — ey D
Apply 10 to B select to place) Load o
contents of R2 onto B data and ; |
apply 0 to MB select to place - L g ;Myh\
B data on Bus B e L[“Ti0X
Apply 0010 to G select to perform L.’ - (
addition G =BusA+ BusB T)t . g
Apply 0 to MF select and 0 to MD K [0 | i Registerﬁ?j
select to place the value of G onto oo |
BU S D Destination select S X (of
Apply 00 to Destination select to T . i
enable the Load input to RO & celect. § SV ou’
Apply 1 to Load Enable to force the Vﬁ%ﬁeﬁ : T e 1o
Load input to RO to 1 so that RO is e H
loaded on the clock pulse (not shown) i T - g F ' o
The overall microoperation requires F EF " Daain
AR TE L . MDS&IeCBt Chapter 10 Part1 7

Datapath Example: Key Control Actions
for Microoperation Alternatives

. . . Load enable A select B select
Perform a shift microoperation — n Aaddresy B addres
¥
apply 1 to MF s_elect | D N 2 2
Use a constant in a micro- L
operation using Bus B —apply 1) od m| :
to MB select 4 | o |
- 0 L 3
Provide an address and data for a - = SMUX —
. F———> R2
memory or output write P il
microoperation — apply 0 to Load T [
enable to prevent register loading |[°® 23 Lo | R
Provide an address and obtain) t%f T "
data for a memory or output read e e T e
- - Bus B Out
microoperation — apply 1 to MD A g 0{” Data
select NN) N
\é% Arljmr(?ﬁt\ll(_:{_ljgglc 0—lr Shifter I.f<—0
For some of the above, other e 1M¢ d
1] ero Detec L 2
control signals become don't z<AzeroDeteey7 ¢ o
MF selectHIVM_UX F Function unit
CareS : n n——Dataln
MD select I\(}IUXI%)

E =t Chapter 10 Part1 8

"HE FLITLIRE

Register

A -

File

e Reqister File is
a block of processor registers.

— defined in ISA. It is the first block used to store data
hierarchically.

- a special type of fast memory that permits one or more words to
be read and one or more words to be written, all simultaneously.

— Vvisible to the programmers.

e The size of the register file is 2Mxn, where m is the number of
register address bits and n is the number of bits per register.

ITU ULSI LABS
I

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

HE FLITLRE

Register File

s =—=

e |ISA defines bot spéc:ial purpose régisters and general
purpose registers.

e Compiler makes arrangements according to the Register
File which is defined in ISA.

» Zero register

» Stack pointer register

» Return address register
> etc

ITU ULSI LABS

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

.:::,,l-_
.lv .“‘,.? .

o

N . Bt S

ENGINEERING THE FLTLRE

I Register File Structure
T — —
-
LN
5] Address 1
. Address 2 | DataOut]
= Data Address Register File|
Data In
Data Qut 2
ReadVrte
Enable N

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

THE FLITLIRE

Register File for RISC-V ISA

S =

Ui
il
[
= e WE: Write Enable
T e \W: Data input for write operation
- e RW: Write register address
= e RA-RB: Read register address
E e A-B: Data outputs from the readed registers
32| W X0 Al
x1
Brss
x31

WE Ry R, Ry
14

fo 15 fs

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

'HE FLITLRE

n Register File for RISC-V ISA
5 e 32-bit fixed 32 reglsters numbered from O to 31
Ml e Referred by numbers x0, x1, x2 ... x31
5] » All have conventional names:
- » Example: x10 — x17 =>a0 — a7, x28 —x31 =>t3-t6
=
W X0 A o
x1
Brss
x31
Ry Ry Rg

WE
frofs ds s

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

= FLITLRE

R

Reqgi File for RISC-V ISA

L egister rFile tor

[— —

- Register ABI Name Description Saver

El x0 Zero hardwired zero

- X1 ra return address Caller

= X2 sp stack pointer Callee

E X3 gp global pointer

e X4 tp thread pointer
X5-7 10-2 temporary registers Caller
X8 s0/ fp saved register / frame pointer Callee
X9 s1 saved register Callee
x10-11 | a0-1 function arguments / return values | Caller
x12-17 | a2-7 function arguments Caller
x18-27 | s2-11 saved registers Callee
Xx28-31 | 13-6 temporary registers Caller

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

Datapath Representation

= The registers, and the multiplexer,
decoder, and enable hardware for
accessing them become a register file

= The ALU, shifter, MUX F and status
hardware become a function unit

= In the register file:

« Multiplexer select inputs
become A address and B address

 Decoder input becomes D
address

- Multiplexer outputs become A
data and B data

 Input data to the registers
becomes D data

- Load enable becomes write

= The G select, H select and MF select
become FS

n
\

Write

D data

D address

2"_1x n
Register file

m
—>|A address B address <—
A data B data
Constant in . n
9% Y \L
1 0
MB select > MUX B
BusA BUS Bn > Address out
1L > Data out
\ \
A B
FSﬁ‘l‘>
AV —
C~— Function
unit
N=<—
2]
y7 : Data in

\
MD select —>||V|OUX1D

Chapter 10 Part1 15

Definition of Function Unit Select (FS) Codes

MF
FS(3:0) Select Select(3:0) Select(3:0) Microoperation
0000 0 0000 XX F <« A
0001 0 0001 XX F«—A+1
0010 0 0010 XX F<A+B
0011 0 0011 XX F<A +B+1
0100 0 0100 XX F<A+B
0101 0 0101 XX F«A+B+1
0110 0 0110 XX F<A-1
0111 0 0111 XX F <A
1000 0 1 X00 XX F<AAB
1001 0 1 X01 XX F<AVB
1010 0 1X10 XX F<A®B
1011 0 1X11 XX F <A
1100 1 XXXX 00 F < B
1101 1 XXXX 01 F<«<srB
1110 1 XXXX 10 F «<slB

Boolean
Equations:
MFS = F; F,
GS; = F;

HS, = F,

Chapter 10 Part1 16

HE FLITLRE

Control Word

R

e The datapath has many control inputs

e The signals driving these inputs can be defined and
organized into a control word

ITU ULSI LABS

e To execute a microinstruction, we apply control word
values for a clock cycle. For most microoperations, the
positive edge of the clock cycle is needed to perform the
register load

e The datapath control word format and the field definitions
are shown on the next slide

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

HE FLITLRE

n Control Word
L S —
- 151413121110 98 7 6 5 4 3 2 1 0
n M M|R
- DA AA BA FS
- B D|W
E Control word
- > DA — D Address

> AA—AAddress

> BA — B Address

> MB — Mux B

» FS — Function Select

> MD — Mux D

> RW — Register Write

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

Control Word Block Diagram

>»DA - D Address
>»AA — A Address
>BA — B Address

>MB — Mux B
»FS — Function Select
>MD — Mux D

»RW — Register Write

!

RW E > Write D data

1 >
DA (1 > D address

1 > 8x n

Register file

1 >~ < 9
AA |1 —>{ A address B address | 8 |[BA

1 > - 7

A data B data
n n

Constant in —
1 \

1 0
MmB|6] MUX B
Bus A e » Address out
> Data out
y Y
A B
V <— « |5
C<— Func'gion 4_i s
N<—] unit < |3
Z <—] <« |2
0 Data in

0 1
MD[1]—~ muxD

Bule

Chapter 10 Part1 19

Control Word Encoding

DA, AA, BA MB FS MD RW
Function Code Function Code Function Code Function Code Function Code
RO 000 Register 0 F <A 0000 Function O No write 0
R1 001 Constant 1 F<A+1 0001 Dataln 1 Write 1
R?2 010 F<A+B 0010
R3 011 F<A+B+1 0011
R4 100 F<~A+B 0100
R5 101 F«A+B+1 0101
R6 110 F«—A-1 0110
R7 111 F<«A 0111

F<AAB 1000
F<AVB 1001
F<ADB 1010
F«A 1011
F<B 1100
F<«<srB 1101
F<«<slB 1110

Chapter 10 Part1 20

Microoperations for the Datapath -
Symbolic Representation

Micro-

operation DA AA BA MB FS MD RW
R1<R2-R3 R1 R2 R3 Register F=A+B+1 Function Write

R4 <sl R6 R4 — R6 Register F=sIB Function Write
R7<R7+1 R7 R7 — Register F=A+1 Function Write
R1<R0+2 Rl RO — Constant F=A+B Function Write
Data out <R3 - - R3 Register — — No Wr ite
R4<-Data in R4 —— — — Data in Write
R5«0 R5 RO RO Register F=A®B Function Write

Chapter 10 Part1 21

Microoperations for the Datapath -
Binary Representation

Micro-
operation DA AA BA MB FS MD RW
R1<~R2-R3 001 010 011 O 0101 0 1
R4<«sl R6 100 XXX 110 O 1110 0 1
R7<R7+1 111 111 XXX O 0001 0 1
R1<~R0+2 001 000 XXX 1 0010 0 1
Dataout <~R3 XXX XXX 011 O XXXX X 0
R4« Datain 100 XXX XXX X XXXX 1 1
R5«0 101 000 000 O 1010 0 1

Chapter 10 Part1 22

ENGINEERING THE FLTLRE

ST

The Entire Datapath

e Putting it all togéfher (datap'at-h):

» Arithmetic Logic Unit (ALU)
» Register File

> Memory
> SRAM
> DRAM

ITU ULSI LABS

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

Instruction Set Architecture (ISA) for
Simple Computer (SC)

= A programmable system uses a sequence of instructions
to control its operation

= An typical instruction specifies:
» Operation to be performed
» Operands to use, and
« Where to place the result, or
» Which instruction to execute next

= Instructions are stored in RAM or ROM as a program

= The addresses for instructions in a computer are
provided by a program counter (PC) that can

« Count up

« Load a new address based on an instruction and, optionally,
status information

Chapter 10 Part2 24

Instruction Set Architecture (ISA) (continued)

= The PC and associated control logic are part of
the Control Unit

= Executing an instruction - activating the
necessary sequence of operations specified by
the instruction

= Execution Is controlled by the control unit and
performed:
* In the datapath
* In the control unit

* In external hardware such as memory or
Input/output

Chapter 10 Part2 25

ISA: Storage Resources

The storage resources are "visible' to the programmer at the
lowest software level (typically, machine or assembly language)

Storage resources
for the SC =>

Separate instruction and
data memories imply
""Harvard architecture"

Done to permit use of
single clock cycle per
Instruction implementation

Due to use of ""'cache in
modern computer
architectures, is a fairly
realistic model

Instruction
memory

215 16

Program counter
(PC)

Data
memory

21516

Register file
8 X16

Chapter 10 Part2 26

E FLITLIFE

Ep Single Cycle Processor
- Big Picture: Building a Processor
ﬂ
-
E memory pnSt _ 1 > }
P@—%& L - <l—:l;|_) ' aldr J_)*
,31 L el e
\ ei:end

A single cycle processor
INNOVATION* QUALITY*RELIABILITY

WWW_VlSi_itu_edu_tl" Weatherspoon, Bala, Bracy, and Sirer, CS3410, Compter Science, Cornell University 3032021

i | R(8:6) || IR(2:P)
C—>{Branc
N —>{Contra L
Z—>
\) 1 —
PJIB Address
LBC |instructio
memory RW— D
Instructio DA— Refgllster
AA—{ A€ [<—BA
\ IR(2:0) Zero fil Constant
Instruction decoder o 10
Mux g MB
Address out
Bus A Bus B
\ \ \ \ \ Y Y Y Y A Datao tl\/lW
DBAMFMRMP JB w \ v
AAABSDWWLBZC Fs—s] A B Data in Addres
CONTROL
V<1) Data
C~— Fuunrfitt'on memory
N<—7 i
7« Data out
E
Data in
01
MD =
Bus D Ml|1X'D'
DATAPATH

Chapter 10 Part2 28

The Control Unit

= The Data Memory has been attached to the Address
Out and Data Out and Data In lines of the Datapath.

= The MW input to the Data Memory is the Memory
Write signal from the Control Unit.

= For convenience, the Instruction Memory, which is not
usually a part of the Control Unit is shown within it.

= The Instruction Memory address input is provided by
the PC and its instruction output feeds the Instruction
Decoder.

= Zero-filled IR(2:0) becomes Constant In

= Extended IR(8:6) || IR(2:0) and Bus A are address
Inputs to the PC.

= The PC is controlled by Branch Control logic
Chapter 10 Part2 29

PC Function

= PC function is based on instruction specifications
Involving jumps and branches

Branchon Zero BRZ if (R[SA] =0) PC«— PC+seAD
Branch on Negative BRN if (R[SA] <0) PC<«—PC+seAD
Jump JMP PC«— R[SA]

= In addition to the above register transfers, the PC must
also implement: PC — PC +1

= The first two transfers above require addition to the PC
of: Address Offset = Extended IR(8:6) || IR(2:0)

= The third transfer requires that the PC be loaded with:
Jump Address = Bus A = R[SA]

= The counting function of the PC requires addition to the
PCof 1

Chapter 10 Part2 30

PC Function (continued)

= Branch Control determines the PC transfers based on five

of its inputs defined as follows:
* N,Z — negative and zero status bits
« PL - load enable for the PC

« JB — Jump/Branch select: If JB = 1, Jump, else Branch
« BC — Branch Condition select: If BC =1, branch for N = 1, else

branch for Z =1.

= The above is summarize by the following table:

PC Operation PL | JB | BC
Count Up 0 X | X
Jump 1 1 X
Branch on Negative (else Count Up) 1 0 1
Branch on Zero (else Count Up) 1 0 0

= Sufficient information is provided here to design the PC

Chapter 10 Part2 31

Instruction Decoder

= The combinational instruction decoder converts the
Instruction into the signals necessary to control all parts of
the computer during the single cycle execution

= The input is the 16-bit Instruction

= The outputs are control signals:
 Register file addresses DA, AA, and BA,
 Function Unit Select FS
- Multiplexer Select Controls MB and MD,
 Register file and Data Memory Write Controls RW and MW, and
« PC Controls PL, JB, and BC

= The register file outputs are simply pass-through signals:
DA =DR,AA=SA, and BA=SB
Determination of the remaining signals is more complex.

Chapter 10 Part2 32

Instruction Decoder (continued)

= The remaining control signals do not depend on the
addresses, so must be a function of IR(13:9)

= Formulation requires examining relationships between
the outputs and the opcodes given before.

= Observe that for other than branches and jumps, FS =
IR(12:9)
= This implies that the other control signals should

depend as much as possible on IR(15:13) (which
actually were assigned with decoding in mind!)

= To make some sense of this, we divide instructions into
types as shown In the table on the next page

Chapter 10 Part2 33

Instruction Decoder (continued)

Truth Table for Instruction Decoder Logic

Instruction Bits

Control Word Bits

Instruction Function Type 15 14 13 9 MB MD RW MW PL JB BC
Function unit operations using 0O 0 0 X o o0 1 0 0 X X
registers

Memory read O 0 1 X o 1 1 0 0 X X
Memory write 0O 1 0 X 0O X 0 1 O X
Function unit operations using 1 0 0 X 1 0O 1 0 0 X X

register and constant
Conditional branch on zero (Z2) 1 1 0 0

Conditional branchon negative (N) 1 1 0 1

Unconditional Jump 1 1 1 X

Chapter 10 Part2 34

Instruction Decoder (continued)

= The types are based on the blocks controlled and the seven signals to
be generated; types can be divided into two groups:

« Datapath and Memory Control (First 4 types)
« PC Control (Last 3 types)

= |n Datapath and Memory Control blocks controlled are considered:
* Mux B (1st and 4th types)
« Memory and Mux D (2nd and 3rd types)

« By assigning codes with no or only one 1 for these, implementation of
MB, MD, RW and MW are simplified.

= |In Control Unit more of a bit setting approach was used:
- Bit 15 = Bit 14 = 1 were assigned to generate PL
« Bit 13 values were assigned to generate JB.

« Bit 9 was use as BC which contradicts FS = 0000 needed for branches.
To force FS(6) to O for branches, Bit 9 into FS(6) is disabled by PL.

= Also, useful bit correlations between values in the two groups were
exploited in assigning the codes.

Chapter 10 Part2 35

Instruction Decoder (continued)

= The end result by use of the types, careful assignment of
codes, and use of don't cares, yields very simple logic:

= This completes the — T
design of most of the [15141312111 86 | 53 | 20
essential parts of
the single-cycle

simple computer

H)U

1917 | 1644 | 1341 | 10 96 514,32 (1|0

DA | AA BA MB FS |[MDRWMWPL|JB|BC
Controlword Chapter 10 Part2 36

Example Instruction Execution

Six Instructions for the Single-Cycle Comp uter

Operation Symbolic
code name Format Description Function MBMDRWMWPL JB BC

1000010 ADI Immediate Add immediate R[DR] «R[SA]+zfI(2:.0)1 0 1 0 O 0 O
operand

0010000 LD Register Load memory R[DR]<«<MR [SA]] O 1.1 0 0 1 O
content into

register
0100000 ST Register Store register M [R [SA]] « R[SB] 0 1 01 0 0 O
content in
memory
0001110 SL Register Shift left R[DR] « sIR[SB] O 01 0 0 1 O
0001011 NOT Register Comple ment R[DR] <« R[SA] O 01 0 0O O 1
register
1100000 BRZ Jump/Branch IfR[SA] =0, branch If R[SA] =0, 1 0 001 0 O

to PC +se AD PC « PC+se AD,
If R[SA]#0,PC <~ PC+ 1

= Decoding, control inputs and paths shown
for ADI, RD and BRZ on next 6 slides

Chapter 10 Part2 37

Decoding for ADI

Instruction
10 OOpcc):od% 10 DR SA SB
514 13 21&1 86 53 20
Y VY
1917 | 16414 | 1341 | 10 96 5 31210
1{0010/0 0({0(0]|0
DA AA BA |MB FS |MD RWMWPL| JB|BC

Control word

Chapter 10 Part2 38

ExtendiR(8:6) I IR(2{0)

PC
Control Inputs and Paths for ADI
PJB Addres —
LBC Instructign 1
000 memor RW — _
‘ Instructign DA— R?”'eSte
Increment AA — ? 3 <~—BA
PC — H
\ IR(Z:‘O)E"“-"'GMf Constan
Instruction decoder n 0
x g ~MB1
I Address out
\ A \ Y \ Y Y Y Y Y \ MW
RRAVEURUCIE oosomAc T
Data in Address
FS—
150 1c00r0 v + Sata
o Function
(O=— . memory
() N uhit
7 Data out
Data in
OMD =, A
us D

DATAPATH Chapter 10 Part 2

Decoding for LD

Instructio
00 5p&a 0P pr | sa | sB
5141312111 86 53
L
Y VY
1947 1644 | 1311 | 10 9-6 5143|210
ojloooQg1(1(0(0|1]|O0
DA AA BA |MB FS |MD/RWMW PL| JB| BC

Control word

Chapter 10 Part 2

: i
Vil Extend R(8:6) || IR(210)
C—>
N~ = Control Inputs and Paths for LD
EI%(I% Addres
Instructign El ‘
010 | 'memor Rw—| _
| Instructign DA — R?ﬂles'fe'
Increment AA—>_,f 3 [<BA
PC [zero i
\ IR(2:0) Zero fil Constan
Instruction decoder n
10 —MB
MUX B 0
Address out
Bl (25 0—— No Write
\ A \ Y \ Y Y Y Y Y \ Data OUtMW
AAABSDWWLBE 0000 Y
A B Data in Address
021 1c00rdal e
= V= . Data
C~—— Function memory
o N unit
y Dala out
ata in
0
1MD—> L&
\Bus D MLXD

DATAPATH

Chapter 10 Part 2

Decoding for BRZ

tructio

In
- OOp(():od% 0 d DR SA SB
51413 21&1 86 53

N Y Y

LH 4KHU

1917 | 1614 | 1311 |10, 96 5

1100000
DA | AA | BA [MB FS |MD|RWMW PL

Control word

o

‘@ X

=N
<
wOH
o
OCJo

Chapter 10 Part 2

y Jj@msﬁ) | IR(2{0)
C—>IBran :
N-—{Contro] ——FC Control Inputs and Paths for BRZ
) No Write
PJB Addres //
LBC Instructign 0
100 RW— D
‘ DA— Register
Branch on AA — IAf"eg < BA
Z .
IR(2:0) Zero fil Constan
Instruction decoder n
10 lemB1
MUX B
Address out
Bus Bus B Data out O—r— No Write
\ Y Y Y Y Y \ Miw
FMRMPJB / /
SDWWIL B C 000 B Data inAddress
S0 000 e
Vv . Data
o C~—— Function memory
o N nit
. v Data out
Data in
01
OMD—>
Bus D '\HX D

DATAPATH Chapter 10 Part 2

'HE ELITLRE

Slngle Cycle Control

e Imagine that you have deS|gned all datapath.

e Then, you need apply a technique to control the
datapath.

ITU ULSI LABS

e One of the basic methods is called single cycle
control. Basically, the all datapath operations are
done in one clock cycle.

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

HE FLUTURE

Slngle Cycle Control

e The selection varlables for the datapath control the microoperations
executed within the datapath for any given clock pulse.

e The selection variables control the addresses for the data read from
the register file, the function performed by the function unit, and the
data loaded into the register file, as well as the selection of external
data.

ITU ULSI LABS

151413121110 98 7 6 5 4 3 2 1 0
M M| R

DA AA BA FS
:]

Control word

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

HE FLITLRE

Single Cycle Control

e Delay path in a smgle cycle processor = delay of whole datapath

T
PC 0.2 ns

!

Instruction
4 ns
memory

ITU ULSI LABS

¥

Registe fl .
(Rea €0.6 ns

4

| MUXB 0.2 ns

1

4 ns

F
Da t 0Ty

!

| MUXD 0.2ns |
i

Register file 0.6 ns
(Write) ‘v

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

HE FLITLRE

Single Cycle Control

e Although advantageous In terms of resource utilization
and control circuit simplicity, there are some important
Issues with the single cycle control strategy.

ITU ULSI LABS

e One is in the area of performing complex operations.

e For example, suppose that an instruction is desired that
executes unsigned binary multiplication using a
multiplication algorithm that processes one bit of the
multiplier at a time.

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

HE FLITLRE

Single Cycle Control

e With the given datapath this cannot be accomplished
by a microoperation that can be executed in a single
clock cycle.

ITU ULSI LABS

e Thus, a control organization that provides multiple clock
cycles for the execution of instructions is needed.

e Finally, the single-cycle computer has a lower limit on
the clock period based on a long worst-case delay path.

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

HE FLITLRE

Single Cycle Control

e Also, the smgle cycle computer has two distinct N-bit
memories, one for instructions and one for data.

e For a simple computer with instructions and data in the
same N-bit memory, two read accesses of memory are
required to execute an instruction that loads a data word
from memory into a register.

ITU ULSI LABS

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

HE FLITLRE

Slngle Cycle Control

e The first access obtalns the mstructlon and the second
access, if required, reads or writes the data word.

ITU ULSI LABS

e Since two different addresses must be applied to the
memory address inputs, at least two clock cycles, one
for each address, are required for obtaining and
executing the instruction.

e All of these issues can be handled by using multi-cycle
control strategy (subject of next week).

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

References

e Krste Asanovic, CS 152 Computer Architecture and Engineering, University
of California at Berkeley, 2015.

e Logic and Computer Design Fundamentals,M. Morris Mano Charles
Kime,Fourth Edition.

e \Weatherspoon, Bala, Bracy, and Sirer, CS3410, Compter Science, Cornell
University

ITU ULSI LABS

INNOVATION* QUALITY* RELIABILITY

www.VIsi.itu.edu.tr 3.03.2021

