
www.vlsi.itu.edu.tr 3.03.2021

1

Very Large Scale Integration II - VLSI II

RF & Datapath & Single Cycle Control

Berna Örs Yalçın

ITU VLSI Laboratories

Istanbul Technical University

www.vlsi.itu.edu.tr

Topics for today

⚫ Register File

⚫ Generic Datapath

⚫ Single Cycle Control and Issues

3.03.2021

2

www.vlsi.itu.edu.tr

Basic Processor Structure

⚫ The specification for a computer consists of a description of its

appearance to a programmer at the lowest level, its instruction set

architecture (ISA)

⚫ From the ISA, a high-level description of the hardware to implement

the computer, called the computer architecture, is formulated.

⚫ This architecture, for a simple computer, is typically divided into two

parts;

➢ Datapath

➢ Control Unit

3.03.2021

3

www.vlsi.itu.edu.tr

Basic Processor Structure

3.03.2021

4

www.vlsi.itu.edu.tr

Basic Processor Structure

⚫ The datapath is defined by a few basic components:

➢ a set of registers (register file)

➢ the microoperations performed on data stored in the registers (ALU)

➢ the control interface

➢ buses, multiplexers, decoders

⚫ The control unit

– provides signals that control the microoperations performed in the

datapath and in other components of the system, such as memories.

– controls its own operation, determining the sequence of events that

occur. This sequence may depend upon the results of current and past

microoperations executed.

– directs the information flow through the buses, the ALU, the shifter, and

the registers by applying signals to the select inputs.

3.03.2021

5

Chapter 10 Part 1 6

▪ Four parallel-load

registers

▪ Two mux-based

register selectors

▪ Register destination

decoder

▪ Mux B for external

constant input

▪ Buses A and B with external

address and data outputs

▪ ALU and Shifter with

Mux F for output select

▪ Mux D for external data input

▪ Logic for generating status bits

V, C, N, Z
MD select 0 1

MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address
Out
Data
Out

Bus A
Bus B

n

n

Function unit

A B n
G select

4

Zero Detect

MF select

n
n

n
F

MUX F

H select
2

n

A B
S2:0 || Cin

Arithmetic/logic
unit (ALU)

G

B
S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write
D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus Dn

Data In

ILIR0 0

0 1

Datapath Example

Chapter 10 Part 1 7

▪ Microoperation: R0 ← R1 + R2

MD select 0 1
MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address
Out
Data
Out

Bus A
Bus B

n

n

Function unit

A B n
G select

4

Zero Detect

MF select

n
n

n
F

MUX F

H select
2

n

A B
S2:0 || Cin

Arithmetic/logic
unit (ALU)

G

B
S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write
D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus Dn

Data In

ILIR0 0

0 1

Datapath Example: Performing a

Microoperation

▪ Apply 01 to A select to place

contents of R1 onto Bus A

▪ Apply 10 to B select to place

contents of R2 onto B data and

apply 0 to MB select to place

B data on Bus B

▪ Apply 0010 to G select to perform

addition G = Bus A + Bus B

▪ Apply 0 to MF select and 0 to MD

select to place the value of G onto

BUS D

▪ Apply 00 to Destination select to

enable the Load input to R0

▪ Apply 1 to Load Enable to force the

Load input to R0 to 1 so that R0 is

loaded on the clock pulse (not shown)

▪ The overall microoperation requires

1 clock cycle

Chapter 10 Part 1 8

Datapath Example: Key Control Actions

for Microoperation Alternatives

▪ Perform a shift microoperation –

apply 1 to MF select

▪ Use a constant in a micro-

operation using Bus B – apply 1

to MB select

▪ Provide an address and data for a

memory or output write

microoperation – apply 0 to Load

enable to prevent register loading

▪ Provide an address and obtain

data for a memory or output read

microoperation – apply 1 to MD

select

▪ For some of the above, other

control signals become don't

cares
MD select 0 1

MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address
Out
Data
Out

Bus A
Bus B

n

n

Function unit

A B n
G select

4

Zero Detect

MF select

n
n

n
F

MUX F

H select
2

n

A B
S2:0 || Cin

Arithmetic/logic
unit (ALU)

G

B
S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write
D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus Dn

Data In

ILIR0 0

0 1

www.vlsi.itu.edu.tr

Register File

⚫ Register File is

– a block of processor registers.

– defined in ISA. It is the first block used to store data

hierarchically.

– a special type of fast memory that permits one or more words to

be read and one or more words to be written, all simultaneously.

– visible to the programmers.

⚫ The size of the register file is 2m n, where m is the number of

register address bits and n is the number of bits per register.

3.03.2021

9

www.vlsi.itu.edu.tr

Register File

⚫ ISA defines both special purpose registers and general

purpose registers.

⚫ Compiler makes arrangements according to the Register

File which is defined in ISA.

➢ Zero register

➢ Stack pointer register

➢ Return address register

➢ etc

3.03.2021

10

www.vlsi.itu.edu.tr

Register File Structure

3.03.2021

11

www.vlsi.itu.edu.tr

Register File for RISC-V ISA

⚫ WE: Write Enable

⚫ W: Data input for write operation

⚫ RW: Write register address

⚫ RA-RB: Read register address

⚫ A-B: Data outputs from the readed registers

3.03.2021

12

www.vlsi.itu.edu.tr

Register File for RISC-V ISA

⚫ 32-bit fixed 32 registers numbered from 0 to 31

⚫ Referred by numbers x0, x1, x2 ... x31

➢ All have conventional names:

➢ Example: x10 – x17 => a0 – a7, x28 – x31 => t3 – t6

3.03.2021

13

www.vlsi.itu.edu.tr

Register File for RISC-V ISA

3.03.2021

14

Chapter 10 Part 1 15

Datapath Representation

▪ The registers, and the multiplexer,

decoder, and enable hardware for

accessing them become a register file

▪ The ALU, shifter, MUX F and status

hardware become a function unit

▪ In the register file:

• Multiplexer select inputs

become A address and B address

• Decoder input becomes D

address

• Multiplexer outputs become A

data and B data

• Input data to the registers

becomes D data

• Load enable becomes write

▪ The G select, H select and MF select

become FS

Address out

Data out

Constant in

MB select

Bus A

Bus B

FS

V

C

N

Z

MD select

n

D data
Write

D address

A address B address

A data B data

2
m

x n
Register file

m

m m

n n
n

n

n

A B

Function
unit

F

4

MUX B
1 0

MUX D
0 1

n n
Data in

Chapter 10 Part 1 16

Boolean

Equations:

MFS = F3 F2

GSi = Fi

HSi = Fi

G Select, H Select, and MF

in T of FS Codes

FS(3:0)
MF
Select

G
Select(3:0)

H
Select(3:0) Microoperation

0000 0 0000 XX

0001 0 0001 XX

0010 0 0010 XX

0011 0 0011 XX

0100 0 0100 XX

0101 0 0101 XX

0110 0 0110 XX

0111 0 0111 XX

1000 0 1 X00 XX

1001 0 1 X01 XX

1010 0 1 X10 XX

1011 0 1 X11 XX

1100 1 XXXX 00

1101 1 XXXX 01

1110 1 XXXX 10

F A

F A 1
+



F A B

F A B 1

F A B

F A B 1

F A 1-

F A

F A B

F A B

F A B

F A

F B

F sr B

F sl B

+

+ +

+

+ +



Definition of Function Unit Select (FS) Codes

www.vlsi.itu.edu.tr

Control Word

⚫ The datapath has many control inputs

⚫ The signals driving these inputs can be defined and

organized into a control word

⚫ To execute a microinstruction, we apply control word

values for a clock cycle. For most microoperations, the

positive edge of the clock cycle is needed to perform the

register load

⚫ The datapath control word format and the field definitions

are shown on the next slide

3.03.2021

17

www.vlsi.itu.edu.tr

Control Word

➢ DA – D Address

➢ AA – A Address

➢ BA – B Address

➢ MB – Mux B

➢ FS – Function Select

➢ MD – Mux D

➢ RW – Register Write

3.03.2021

18

Control word

DA AA BA M

B
FS M

D

R

W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Chapter 10 Part 1 19

Control Word Block Diagram

10

8

14

0

13

11

Bus D

Constant in
n

n

MUX B

1 0

D dataWrite

D address

A address B address

A data B data

8 x n

Register file

A B

Function

unit

n

n

n

MUX D

0 1

n
n

Data in

Bus A

Bus B

RW

12

AA

15

DA

n

BA

9

Address out

Data out

V

C

N

Z

7

MD 1

MB 6

4 FS

5

3

2

➢DA – D Address

➢AA – A Address

➢BA – B Address

➢MB – Mux B

➢FS – Function Select

➢MD – Mux D

➢RW – Register Write

Chapter 10 Part 1 20

F A

Encoding of Control W

DA, AA, BA MB FS MD RW

Function Code Function Code Function Code Function Code Function Code

R0 000 Register 0 0000 Function 0 No write 0

R1 001 Constant 1 0001 Data In 1 Write 1

R2 010 0010

R3 011 0011

R4 100 0100

R5 101 0101

R6 110 0110

R7 111 0111

1000

1001

1010

1011

1100

1101

1110

F A

F A 1
+



B

F A B 1

F A B

F A B 1

F A 1-

F A

F A B

F A B

F A B

F A
F B

F sr B

F sl B

+

+ +

+

+ +



Control Word Encoding

Chapter 10 Part 1 21

Microoperations for the Datapath -

Symbolic Representation

Micro-
operation DA AA BA MB FS MD RW

R1 R2 R3 Register Function Write

R4 — R6 Register Function Write

R7 R7 — Re gister Function Write

R1 R0 — Con stant Func tion Write

—— R3 Register — — No Wr ite

R4 —— — — Data in Write

R5 R0 R0 Register Function Write

R 1 R 2 R 3– F A B 1+ +=

R 4 sl R6 F sl B=

R7 R 7 1+ F A 1+=

R 1 R 0 2+ F A B+=

Data out R 3

R 4 Data in

R 5 0 F A B=

Chapter 10 Part 1 22

m Microoperations from Ta Binary Co o

Microoperations for the Datapath -

Binary Representation

Micro-
operation DA AA BA MB FS MD RW

001 010 011 0 0101 0 1

100 XXX 110 0 1110 0 1

111 111 XXX 0 0001 0 1

001 000 XXX 1 0010 0 1

XXX XXX 011 0 XXXX X 0

100 XXX XXX X XXXX 1 1

101 000 000 0 1010 0 1

R 1 R 2 R 3–

R 4 sl R6

R 7 R 7 1+

R 1 R 0 2+

Data out R 3

R 4 Data in

R 5 0

www.vlsi.itu.edu.tr

The Entire Datapath

⚫ Putting it all together (datapath):

➢ Arithmetic Logic Unit (ALU)

➢ Register File

➢ Memory

➢ SRAM

➢ DRAM

3.03.2021

23

Chapter 10 Part 2 24

Instruction Set Architecture (ISA) for

Simple Computer (SC)

▪ A programmable system uses a sequence of instructions

to control its operation

▪ An typical instruction specifies:

• Operation to be performed

• Operands to use, and

• Where to place the result, or

• Which instruction to execute next

▪ Instructions are stored in RAM or ROM as a program

▪ The addresses for instructions in a computer are

provided by a program counter (PC) that can

• Count up

• Load a new address based on an instruction and, optionally,

status information

Chapter 10 Part 2 25

Instruction Set Architecture (ISA) (continued)

▪ The PC and associated control logic are part of

the Control Unit

▪ Executing an instruction - activating the

necessary sequence of operations specified by

the instruction

▪ Execution is controlled by the control unit and

performed:

• In the datapath

• In the control unit

• In external hardware such as memory or

input/output

Chapter 10 Part 2 26

ISA: Storage Resources

▪ The storage resources are "visible" to the programmer at the

lowest software level (typically, machine or assembly language)

▪ Storage resources

for the SC =>

▪ Separate instruction and

data memories imply

"Harvard architecture"

▪ Done to permit use of

single clock cycle per

instruction implementation

▪ Due to use of "cache" in

modern computer

architectures, is a fairly

realistic model

Instruction
memory

215x 16

Data
memory

215 x16

Register file
8 x 16

Program counter

(PC)

www.vlsi.itu.edu.tr

Single Cycle Processor

3.03.2021

27

Weatherspoon, Bala, Bracy, and Sirer, CS3410, Compter Science, Cornell University

Chapter 10 Part 2 28

Bus A Bus B

Address out

Data out
MW

Data in

MUX B
1 0

MUX D
0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L
P B

C

Branch
Control

V
C
N
Z

J
BL

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Chapter 10 Part 2 28

Chapter 10 Part 2 29

The Control Unit

▪ The Data Memory has been attached to the Address

Out and Data Out and Data In lines of the Datapath.

▪ The MW input to the Data Memory is the Memory

Write signal from the Control Unit.

▪ For convenience, the Instruction Memory, which is not

usually a part of the Control Unit is shown within it.

▪ The Instruction Memory address input is provided by

the PC and its instruction output feeds the Instruction

Decoder.

▪ Zero-filled IR(2:0) becomes Constant In

▪ Extended IR(8:6) || IR(2:0) and Bus A are address

inputs to the PC.

▪ The PC is controlled by Branch Control logic

Chapter 10 Part 2 30

PC Function

▪ PC function is based on instruction specifications

involving jumps and branches

▪ In addition to the above register transfers, the PC must

also implement: PC ← PC + 1

▪ The first two transfers above require addition to the PC

of: Address Offset = Extended IR(8:6) || IR(2:0)

▪ The third transfer requires that the PC be loaded with:

Jump Address = Bus A = R[SA]

▪ The counting function of the PC requires addition to the

PC of 1

Branchon Zero BRZ if (R[SA] = 0) PC

←
PC+ se AD

Branch on Negative BRN if (R[SA] < 0) PC PC+ seAD
Jump JMP PC R[SA]

←

←

Chapter 10 Part 2 31

PC Function (continued)

▪ Branch Control determines the PC transfers based on five

of its inputs defined as follows:

• N,Z – negative and zero status bits

• PL – load enable for the PC

• JB – Jump/Branch select: If JB = 1, Jump, else Branch

• BC – Branch Condition select: If BC = 1, branch for N = 1, else

branch for Z = 1.

▪ The above is summarize by the following table:

▪ Sufficient information is provided here to design the PC

PC Operation PL JB BC

Count Up 0 X X

Jump 1 1 X

Branch on Negative (else Count Up) 1 0 1

Branch on Zero (else Count Up) 1 0 0

Chapter 10 Part 2 32

Instruction Decoder

▪ The combinational instruction decoder converts the

instruction into the signals necessary to control all parts of

the computer during the single cycle execution

▪ The input is the 16-bit Instruction

▪ The outputs are control signals:

• Register file addresses DA, AA, and BA,

• Function Unit Select FS

• Multiplexer Select Controls MB and MD,

• Register file and Data Memory Write Controls RW and MW, and

• PC Controls PL, JB, and BC

▪ The register file outputs are simply pass-through signals:

DA = DR, AA = SA, and BA = SB

Determination of the remaining signals is more complex.

Chapter 10 Part 2 33

Instruction Decoder (continued)

▪ The remaining control signals do not depend on the

addresses, so must be a function of IR(13:9)

▪ Formulation requires examining relationships between

the outputs and the opcodes given before.

▪ Observe that for other than branches and jumps, FS =

IR(12:9)

▪ This implies that the other control signals should

depend as much as possible on IR(15:13) (which

actually were assigned with decoding in mind!)

▪ To make some sense of this, we divide instructions into

types as shown in the table on the next page

Chapter 10 Part 2 34

Instruction Decoder (continued)

Truth Table for Instruction Decoder Logic

Instruction Function Type

Instruction Bits Control Word Bits

15 14 13 9 MB MD RW MW PL JB BC

Function unit operations using

registers

0 0 0 X 0 0 1 0 0 X X

Memory read 0 0 1 X 0 1 1 0 0 X X

Memory write 0 1 0 X 0 X 0 1 0 X X

Function unit operations using

register and constant

1 0 0 X 1 0 1 0 0 X X

Conditional branch on zero (Z) 1 1 0 0 X X 0 0 1 0 0

Conditional branch on negative (N) 1 1 0 1 X X 0 0 1 0 1

Unconditional Jump 1 1 1 X X X 0 0 1 1 X

Chapter 10 Part 2 35

Instruction Decoder (continued)

▪ The types are based on the blocks controlled and the seven signals to

be generated; types can be divided into two groups:

• Datapath and Memory Control (First 4 types)

• PC Control (Last 3 types)

▪ In Datapath and Memory Control blocks controlled are considered:

• Mux B (1st and 4th types)

• Memory and Mux D (2nd and 3rd types)

• By assigning codes with no or only one 1 for these, implementation of

MB, MD, RW and MW are simplified.

▪ In Control Unit more of a bit setting approach was used:

• Bit 15 = Bit 14 = 1 were assigned to generate PL

• Bit 13 values were assigned to generate JB.

• Bit 9 was use as BC which contradicts FS = 0000 needed for branches.

To force FS(6) to 0 for branches, Bit 9 into FS(6) is disabled by PL.

▪ Also, useful bit correlations between values in the two groups were

exploited in assigning the codes.

Chapter 10 Part 2 36

Instruction Decoder (continued)

▪ The end result by use of the types, careful assignment of

codes, and use of don't cares, yields very simple logic:

▪ This completes the

design of most of the

essential parts of

the single-cycle

simple computer

19–17

DA

16–14

AA

13–11

BA

10

MB

9–6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8–6 5–3 2–0

Chapter 10 Part 2 37

Example Instruction Execution

▪ Decoding, control inputs and paths shown

for ADI, RD and BRZ on next 6 slides

[][]

Six Instructions for the Single-Cycle Comp uter

Operation
code

Symbol ic
name Format Description Function MBMD RW MW PL JB BC

1000010 ADI Imme diate Add immediate
operand

1 0 1 0 0 0 0

0010000 LD Register Load memory
content into
register

0 1 1 0 0 1 0

0100000 ST Register Store register
content in
memory

0 1 0 1 0 0 0

0001110 SL Register Shift left 0 0 1 0 0 1 0

0001011 NOT Register Comple ment
register

0 0 1 0 0 0 1

1100000 BRZ Jump/Branch If R [SA] = 0, branch
to PC + se AD

If R[SA] = 0,
,

If R[S A]  0,

1 0 0 0 1 0 0

R DR[] R SA[] zf I(2:0)+

R DR[] M R SA[][]

M R SA R SB[]

R DR[] sl R SB[]

R DR[] R SA[]

PC PC se AD+
PC PC 1+

Chapter 10 Part 2 38

Decoding for ADI

19–17

DA

16–14

AA

13–11

BA

10

MB

9–6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8–6 5–3 2–0

1 0 0 0 0 1 0

1 10 0 1 0 0 00 0 0

Chapter 10 Part 2

39

Bus A Bus B
Address out

Data out
MW

Data in

MUX B
1 0

MUX D
0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data inAddress

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L
P B

C

Branch
Control

V
C
N
Z

J
BL

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Control Inputs and Paths for ADI

1 1

0
 0

 1
 0 0 00 0 0

0 0 1 0

1

0

1

0

00 0

+

No Write

Increment

PC

Chapter 10 Part 2

40

Decoding for LD

19–17

DA

16–14

AA

13–11

BA

10

MB

9–6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8–6 5–3 2–0

0 0 1 0 0 0 0

0 10 0 0 0 1 00 1 0

Chapter 10 Part 2

41

Bus A Bus B
Address out

Data out
MW

Data in

MUX B
1 0

MUX D
0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data inAddress

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L
P B

C

Branch
Control

V
C
N
Z

J
BL

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Control Inputs and Paths for LD

0 1

0
 0

 0
 0 1 00 1 0

0 0 0 0

0

1

1

0

01 0

No Write

Increment

PC

Chapter 10 Part 2

42

Decoding for BRZ

19–17

DA

16–14

AA

13–11

BA

10

MB

9–6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8–6 5–3 2–0

1 1 0 0 0 0 0

1 00 0 0 0 0 10 0 0

Chapter 10 Part 2

43

Bus A Bus B
Address out

Data out
MW

Data in

MUX B
1 0

MUX D
0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data inAddress

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L
P B

C

Branch
Control

V
C
N
Z

J
BL

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Control Inputs and Paths for BRZ

1 0

0
 0

 0
 0 0 10 0 0

0 0 0 0

1

0

0

0

10 0

No Write

Branch on

Z

No Write

www.vlsi.itu.edu.tr

Single Cycle Control

⚫ Imagine that you have designed all datapath.

⚫ Then, you need apply a technique to control the

datapath.

⚫ One of the basic methods is called single cycle

control. Basically, the all datapath operations are

done in one clock cycle.

3.03.2021

44

www.vlsi.itu.edu.tr

Single Cycle Control

⚫ The selection variables for the datapath control the microoperations

executed within the datapath for any given clock pulse.

⚫ The selection variables control the addresses for the data read from

the register file, the function performed by the function unit, and the

data loaded into the register file, as well as the selection of external

data.

3.03.2021

45

www.vlsi.itu.edu.tr

Single Cycle Control

⚫ Delay path in a single cycle processor = delay of whole datapath

3.03.2021

46

www.vlsi.itu.edu.tr

Single Cycle Control

⚫ Although advantageous in terms of resource utilization

and control circuit simplicity, there are some important

issues with the single cycle control strategy.

⚫ One is in the area of performing complex operations.

⚫ For example, suppose that an instruction is desired that

executes unsigned binary multiplication using a

multiplication algorithm that processes one bit of the

multiplier at a time.

3.03.2021

47

www.vlsi.itu.edu.tr

Single Cycle Control

⚫ With the given datapath, this cannot be accomplished

by a microoperation that can be executed in a single

clock cycle.

⚫ Thus, a control organization that provides multiple clock

cycles for the execution of instructions is needed.

⚫ Finally, the single-cycle computer has a lower limit on

the clock period based on a long worst-case delay path.

3.03.2021

48

www.vlsi.itu.edu.tr

Single Cycle Control

⚫ Also, the single-cycle computer has two distinct N-bit

memories, one for instructions and one for data.

⚫ For a simple computer with instructions and data in the

same N-bit memory, two read accesses of memory are

required to execute an instruction that loads a data word

from memory into a register.

3.03.2021

49

www.vlsi.itu.edu.tr

Single Cycle Control

⚫ The first access obtains the instruction, and the second

access, if required, reads or writes the data word.

⚫ Since two different addresses must be applied to the

memory address inputs, at least two clock cycles, one

for each address, are required for obtaining and

executing the instruction.

⚫ All of these issues can be handled by using multi-cycle

control strategy (subject of next week).

3.03.2021

50

www.vlsi.itu.edu.tr

References

⚫ Krste Asanovic, CS 152 Computer Architecture and Engineering, University

of California at Berkeley, 2015.

⚫ Logic and Computer Design Fundamentals,M. Morris Mano Charles

Kime,Fourth Edition.

⚫ Weatherspoon, Bala, Bracy, and Sirer, CS3410, Compter Science, Cornell

University

3.03.2021

51

