Chapter 1

Writing Your
First Program

Writing Your First Program

Your First Program

This chapter presents the first Dialog Box program that you will create. Designing and
implementing Dialog Box programs involves two steps: The visual DCL programming
step and the AutoLISP code programming step.

Visual DCL Programming Step

Dialog boxes are written in the Dialog Control Language (DCL). In this step, you use
a text editor to create an ASCII text file with the .DCL extension. This file defines the
appearance and content of the dialog box.

Size and positioning of the information contained within the dialog box are controlled
automatically. A minimum amount of positioning information is required.

AutoLISP Code Programming Step

The DCL file defines the parts of the dialog box. An application is required to control
the use and behavior of the dialog box. Both AutoLISP and ADS provide functions to
program and control dialog boxes. This book focuses on using AutoLISP to control
the dialog boxes. AutoLISP provides a package of functions known as the Program-
mable Dialogue Box (PDB) facility. In this step, you use a text editor to create an
ASCII text file with the .LSP extension which contains the PDB functions.

Creating a Working Directory

1-2

Before writing the actual programs, create a subdirectory to store the .DCL and .LSP
files. From this point, we assume that you have created a directory called
C:\PROGRAMS on your local drive. All files will be saved in this directory.

To create the working directory:

O Atthe DOS prompt C:\> typ€D\ <return>

O Atthe DOS prompt C:\> typelID PROGRAMS <return>

O Or use the File Manager program of windows to create the working directory.

The Hello Program

A DCL file contains the description and layout of the dialog box on all platforms.

Differences in appearance depend on the platform’s graphical user interface (GUI).
Executing the Hello program does the following:

O Typing Hello at the AutoCAD Command prompt displays the dialog box as

shown in Figure 1.1. This dialog contains three command buttons (Display
Hello, Clear, and OK) and an empty text tile.

Figure 1.1.The Hello program.

The Hello Dialog

Dizplay Hello I | Clear I

O Selecting th@isplay Hellobutton, displays the text Hello World! in the text
tile (see Figure 1.2).

1-3

Writing Your First Program

Figure 1.2.Displaying the text inside the text tile.

The Hello Dialog

HELLO WORLD!

O To clear the text, select tidear button.

O SelectOK, to exit the program.

Creating the Program Files

Now that you know what the Hello program is supposed to do, let's write the program.

The very first thing you must do is write the code for the DCL file and the program
code for the AutoLISP file. This is accomplished in several ways. You may choose to
use the DOS editor outside of AutoCAD or from within AutoCAD. If you are using
the windows version of AutoCAD, you may use the Notepad, Write, Word or another
word processor or text editor.

Regardless of the editor you choose, be sure to save the program files in an ASCII or
non-document mode. Do not convert any program or DCL file to a document or word
processor format. Always save the files in a text format.

From within AutoCAD Release 12 and Release 13 you can type EDIT to start the text
editor. If AutoCAD returns Unknown command after typing EDIT, refer to the
AutoCAD documentation for adding the EDIT command to your ACAD.PGP file.

1-4

When the text refers to starting the text editor, we are referring to starting the editor
from within AutoCAD.

When writing the program you will always have at least two files: the dialog .DCL
definition file and the AutoLISP .LSP program file. Be sure to save these files in the
C:\PROGRAMS directory, whether you are using a DOS test editor or a windows test
editor. From this point on we assume that these files are located in this directory and

will instruct AutoLISP to look for these files in this location using a path statement
C:/PROGRAMS/for loading the DCL files and other external data files.

The Visual Implementation
of the Hello Program

Use the following steps to create the HELLO.DCL file.

g Start AutoCAD in the normal manner with a new drawing. This places you
inside the AutoCAD drawing editor with a new drawing.

Start the text editor.

Save the file as HELLO.DCL to the C:\PROGRAMS directory.
Write code inside the HELLO.DCL dialog box.

Save the .DCL file.

Start a new file from within the text editor.

Write code inside the LOADDCL.LSP AutoLISP file.

Save the file a LOADDCL.LSP and exit the text editor to return to
AutoCAD.

O o o o o oo

1-5

Writing Your First Program

O Load the AutoLISP program LOADDCL usi®gPPLOAD

O Execute LOADDCL to check the dialog box layout.
This chapter is not a typical chapter. This chapter teaches you the two steps involved
in creating and controlling a dialog box. It is the purpose of the following chapters to
teach you how to write the code for the DCL and AutoLISP files for specific tiles.
Each chapter gives examples of how the DCL code is written for the specific tile, and
how the tile is controlled from within an AutoLISP program.

When the dialog box is complete, it should look like the one shown in Figure 1.3.

Figure 1.3.The Hello program dialog box.

The Hello Dialog

| Dizplay Hello l | Clear l

The Code Inside the
HELLO.DCL File

You may type the code for the DCL file as each step is presented here or type the
entire code from the figure shown at the end of this section. The complete code is
shown in Figure 1.5.

1-6

Type these two comment lines to identify the DCL file and its purpose:

/I HELLO.DCL
/I Display Hello World!

Always use comments to identify the DCL file name and how the file operates. This is
useful for printing the code and modifying the file at a later date. Comments are
preceded by two forward slash@3 . Anything that appears after the and the

end of the line is ignored. You may also use C language style comments of the form
[* comment text */ . The starting* and ending/ can be on separate

lines. An example of this using the comments above is:

/* HELLO.DCL
Display Hello World! */

Add a blank line after the comments above and type the next line to set the DCL audit
level to three (3):

dcl_settings : default_dcl_settings { audit_level = 3; }

Syntax errors, misuse of attributes or other errors are checked the first time a DCL file
is loaded. Errors encountered are written to theAlt&D.DCE an alert box displays,

and the DCL file does not load. To correct the error, edit the ACAD.DCE file for
possible warnings, error messages, and redundant attribute keys.

Before actual coding of the dialog box, prepare a sketch or an AutoCAD drawing of
the dialog to get the basic design, layout and appearance you are looking for. This
allows you to layout and revise your design before writing the actual code, which
saves considerable time. It is not unusual to spend one to three hours on the design
and coding of a dialog.

During development of the DCL file, keep the audit lev@ atd remove the

dcl_settings line before shipping to users. See the Table 1.1 for a definition of
the audit levels.

1-7

Writing Your First Program

Table 1.1. Semantic auditing levels.

Level |Description

0 No checking. Use if the DCL files have been audited.

1 Errors. Finds DCL bugs that may cause AutoCAD to terminate.

2 Warnings. Finds DCL bugs that result in dialogs with udesired layout and behaviour.

3 Hints. Finds redundant attribute definitions.

Add a blank line then type the next two lines to declare the dialog tile and add a label
for the dialog title:

hello : dialog {
label = “The Hello Dialog”;

This code names the dialog and begins the dialog definition. A cafadicates the
beginning of a tile definition. The name of the dialog tile is next after the colon
separated by a space. A curly brace indicates the beginning of the dialog definition
section. After defining all the tiles within the dialog definition, a closing curly brace
ends the dialog definition section. The closing curly brace for the code above will be
added after defining the other tiles.

Attributes, such as tHabel attribute above, are separated from their values by an
equal sign=) with a space on each side of the equal sign. Attribute lines are always
terminated with a semicolon. A missing semicolon or curly brace will cause an error.

DCL Syntax and Format

Proper syntax and format of a DCL file is important to prevent errors and enable
readability of the DCL file. This is similar to the formatting of an AutoLISP file. Use
indentation to indicate a tile definition indenting the tile’s attributes an additional two
spaces. Try to format your DCL files as the examples shown in this chapter. Remem-
ber to add a semicolon at the end of each attribute and a curly brace at the end of a tile
definition.

1-8

For additional reference, open some of the AutoCAD DCL files. Do not alter or
change these files as this can cause AutoCAD to run incorrectly.

Dialog Tile

A dialog tile is the primary tile that defines the dialog box. The dialog box name
appears before the dialog tile is declared separated by a space, a colon :, a space,
dialog, a space, and a curly brace. A dialog’s name is case sensitive and must be
called from the LISP program exactly as it appears in the DCL file. The Imglfoés
different from the namelello or HELLO. All other tile definitions will occur within

the curly braces of theialog tile, laid out within a column format.

DCL Syntax Example:

hello : dialog {
label = “The Hello Dialog”;
initial_focus = “cmd_hello”;
tile definitions....

}

A dialog box nametiello is declared, labeled, with the initial focus set to the
cmd_hello key, and all tiles are listed between the curly braces of the dialog tile
definition section. Attributes may be associated with each tile depending on the
specific needs of the individual tile. Attribute names are case-sensitive, so attributes
named_abelor LABEL will not have an effect on tHabel attribute of the tile.

Any combination of attributes may be included in the tile definition. Attributes specific

to a tile are also described after the DCL syntax example. Attributes fdiatbhg
tile are described as shown below:

1-9

Writing Your First Program

Attributes specific to the dialog tile:

initial_focus Specifies the key of the tile that receives the initial keyboard

focus.

label An optional label displayed as a title in the top border of the
dialog. The title may be changed at runtime usingsttetile
function.

value This attribute overrides that of the label and specifics a string to

display as the optional dialog box title. Both a label and a value
attribute should not be specified.

A dialog tile is laid out in a column format. Additional tiles within the dialog box
description are placed below the previous tile. All other tile descriptions occur within
the curly braces of the dialog definition tile section.

Type the next five lines to declare a text tile:

Next, type the following code below the label attribute of the dialog tile, to add the text
tile definition. The text tile is considered a child tile definition of the dialog. Children
tiles are not named as the dialog tile above, but are preceded by a colon : and the tile
attributes contained within the curly braces.

s text{
label = *;
key = “txt_hello”;
alignment = centered;

}

A text tile begins with a colon : followed by a space, the tile n@xie , followed by

a space and the opening curly brace. fElxé tile attributes are added next, followed
by the closing curly brace to end the tile definition. Tl attribute value is left
blank so the program can add the required text within the tile. A uniqgue name,
“txt_hello” is assigned to the text tikey attribute. The tiles alignment is set to
centered.

1-10

A text tile is one of the informative tiles used to display a text string in the dialog
box. Text tiles may be used in combination with the other texttdddspart
concatenation , andparagraph , to display large blocks of text within para-
graphs. These tiles are described in later chapters.

TEXT Tile

A text tile is a useful way to display feedback about user actions. A static message
may be defined in thiabel attribute or the message may change during runtime by
leaving the label blank. fext tile’s width is determined by the larger of the label
attribute or thevidth attribute. At lease one of these attributes must be specified for
the tile width.

DCL Syntax Example:

s text{
label = “This is a text tile”;
key = “txt_textl”
alignment = centered;

}

If the alignment tile is not specified the default text alignment is left. The value for the
key attribute is a quoted string that must be unique for each tile definition within the
dialog. Key values used in one dialog definition file may be reused in another dialog
definition file.

Text Tile Attributes:

alignment Values are left, right or centered.

fixed_height Values or true or false. If true, the tile does not fill the extra
space available in the layout/alignment process.

1-11

Writing Your First Program

fixed_width

height

is_bold

key

label
value

width

Values or true or false. If true, the tile does not fill the extra
space available in the layout/alignment process.

Specifies the height of the tile in character height units.

Values are true or false. If true, the text is displayed in bold
characters. This attribute is not supported on all platforms.

A key is a quoted string (a unique name) that the application
program uses to reference the tile.

Optional text displayed within the text tile.
A string to display in the text tile.
Specifies the width of the tile in character width units. This is a

minimum width and can be expanded during the layout/align
ment process.

Type the next seven lines of code to declare a button within a row:

Tiles within arow are placed horizontally as they are encountered within the DCL file
between the curly braces, from left to right, of it tile definition. Tiles within the
curly braces of theow are considered to be the children of v tile. Attributes

for therow tile apply to the tiles defined within tmew tile section.

1-12

:row {
: button {

label = “Display Hello”;
key = “cmd_hello”;

width = 18;

mnemonic = “D”;

}/button

A closing curly brace for theow tile is added after the next button is declared. A
row is one of the predefined tile clusters which provides a way of grouping related
tiles together. The row tile cluster is described before the next button tile is added.

ROW Tile Cluster

Tile clusters may not be selected themselves, only tiles within the clusters. Clusters do
not have assigned actions exceqlio rows andradio_columns . Row

attributes apply to the children tiles placed within the rows. Rows may contain any
type of tile including columns and other rows.

Attributes described below for threw tile cluster also apply to all tile clusters and
will not be repeated for the remaining tile cluster descriptions in the following chap-
ters.

DCL Syntax Example:

;row {
fixed_width = true;
alignment = centered;
: retirement_button {
label = "Apply";
key = "accept";
is_default = true;
}
. spacer { width = 2; }
cancel_button;
. spacer { width = 2; }
: retirement_button {
label = "Another";
key = "another";
}
. spacer { width = 2; }
help_button;
Hirow

1-13

Writing Your First Program

The attributedixed width

andalignment apply to all the tiles placed within

the row tile definition section.

Attributes:

1-14

alignment

children_alignment

children_fixed_height

children_fixed_width

fixed_height

fixed_width

height

width

Values are top, centered, and bottom. This attribute
specifies the vertical positing of the child tiles within the
cluster.

Values are top, centered, and bottom. This attribute
controlsthe horizontal and vertical positioning when the
tiles do not have specific alignment values.

Values are either true or false. Prevents a tile from
growing during the layout process. Has no effect on tiles
with a specific fixed_height value.

Values are either true or false. Prevents a tile from
growing during the layout process. Has no effect on tiles
with a specific fixed_width value.

Values are true or false. Prevents a tile from growing
during the layout process. Has no effect on tiles with a
specific fixed_height value.

Values are true or false. Prevents a tile from growing
during the layout process. Has no effect on tiles with a
specific fixed_width value.

Values are an integer or a real. Specifies the tile height
in character height units (the height of the screen
characters including line spacing).

Values are an integer or a real. Specifies the tile width in
character width units.

Figure 1.4 shows five buttons defined within a row.

Figure 1.4.Buttons within a row.

Five Buttons In & Row

| m || 2 || #3 || na || u5 |

BUTTON Tile

A button represents a tile that the user can push to make selections such as exiting
or canceling a dialog box. Actions that are immediately visible to the user can be
executed using button tile. All dialogs require at least one button to close or retire
the dialog. This can be an OK button or a user defined button equal to an OK button.
If this button is omitted, the user is trapped in the dialog and cannot exit until the
computer is restarted.

When the user selects a button an associated action is executed. The action is defined
in theaction _tile attribute for the button tile.

DCL syntax Example:

: button {
label = “Button #17;
key = “cmd_buttonl”;
}

1-15

Writing Your First Program

Button Tile Attributes:

1-16

action

alignment

fixed_height

fixed_width

height

is_cancel

is_default

is_enabled

is_tab_stop

key

label

Specifies an AutoLISP expression to execute when this tile is
selected. Since all tiles can have only one action an action_tile
statement in the .LSP file overrides the action attribute in the
.DCL file.

Values include left, right and centered for buttons within a
column and top, bottom or centered for rows.

Values are true or false. If true the button does not fill the extra
space during the layout/alignment process.

Values are true or false. If true the button does not fill the extra
space during the layout/alignment process.

Specifies the height of the button in character height units.
Values are true or false. Specifies whether this button is selected
when the user presses Ctrl + C or Esc. The Cancel button is
usually assigned this attribute.

Values are true or false. Specifies whether this button is selected
when the user presses the Enter key. The OK button is usually
assigned this attribute.

Values are true or false. If false the tile is initially grayed out.

Values are true or false. If true the tile receives keyboard focus
when the user moves to the tile using the tab key.

A quoted string (a unique name) to reference the button tile.

Specifies the text that appears inside the button

mnemonic A mnemonic attribute designates a keyboard mnemonic for the
tile. The mnemonic character is underlined in the tile’s label.

width Specifies the width of the button in character width units.

Type the following six lines of code to declare another button and end the row:

Add the code for the Clear button, then close the row tile cluster adding the closing
curly brace.

: button {
label = “Clear”;
key = “cmd_clear”;
width = 10;
mnemonic = “C”;
}/button
Hirow

This ends the two buttons within thaw. The closing curly brace for tlew should
align with the colon for theow tile definition added above.

Type the next line to declare the PDB predefined tile OK:
The OK button may be used alone, as shown below or in a subassembly of OK and
Cancel. Most dialogs include an OK and Cancel button. An “information only” dialog
generally has a single OK button.

ok_only;
This tile contains a button with thaebel “OK” and thekey“accept,” and sets an

attribute called “is_default” to true. The definition for this predefined tile is stored in
the base.dcl file provided by AutoCAD.

1-17

Writing Your First Program

Type the next line to add the closing curly brace:

}/dialog hello

This is the final line of code in the HELLO.DCL file, which describes the layout of the
hello dialog. Check your code carefully with the code shown on this page before
saving. If the code is correct, save the file and proceed to enter the code for the dialog
checking program.

Your code should now appear as shown in Figure 1.5.
Figure 1.5.Hello DCL code.

/I HELLO.DCL
/I Display Hello World!

dcl_settings : default_dcl_settings { audit_level = 3; }

hello : dialog {
label = “The Hello Dialog”;
text {label ="
key = “txt_hello”;
alignment = centered;

}
:row {

: button { label = “Display Hello”;
key = “cmd_hello”;
width = 18;
mnemonic = “D”;

}

: button { label = “Clear”;
key = “cmd_clear”;
width = 10;
mnemonic = “C”;

}

Hirow
ok_only;

}/dialog hello

1-18

After verifying the code above, save the DCL file. The above code was written in the
DCL language. A program to check the appearance of the DCL file will now be
written in AutoLISP. Start a new file and save iL&ADDCL.LSP .

This program is used to check the dialog box appearance and functionality. It is best to
check the code for the dialog and its appearance before writing the AutoLISP code to
control the dialog box. Use this program to load and check all dialog boxes before
writing the AutoLISP program code. Be sure to type this code exactly as it appears or
use the code from the diskette. If you encounter any problems, refer to the Chapter on
Debugging. The AutoLISP code for this program will not be explained at this time as
this program is only for the purpose of loading the DCL file.

Figure 1.6. LOADDCL.LSP Type the code exactly as follows:

;;; LOADDCL.LSP
;;; Loads, displays, activates and unloads a dialog box of
;»» the same name. Used to verify dialog box design.

(defun C:LOADDCL (/ DCL_ID DLBNAME)
(setq DLBNAME (getstring “\nDCL File Name: “))
(if (findfile (strcat “C:/PROGRAMS/” DLBNAME “.DCL"))
(progn
(setq DCL_ID
(load_dialog (strcat “C:/PROGRAMS/” DLBNAME))
(if (not (new_dialog DLBNAME DCL_ID)) (exit))

(action_tile “accept” “(done_dialog)”)
(action_tile “cancel” “(done_dialog)”)

(start_dialog)
(unload_dialog DCL_ID)
)i;progn
(alert
(strcat “Unable to display < “ DLBNAME “ > Dialog!"))
)isif
)

1-19

Writing Your First Program

Now, save the file and exit the text editor to check the dialog box code and design. You
should now be returned to AutoCAD. From within AutoCAD, at the command
prompt, execute th&pploadprogram.
Command: APPLOAD <return>
The APPLOAD dialog box appears as shown in Figure 1.7.

Figure 1.7.Appload dialog box.

Filen & Load .

[T |

H Savw Limi

| paan | Ty | | Exa i H|

When the dialog first appears it may be empty or list some files in the Files to load:
list box. Select th&ile... button at the top right to open the File selection dialog
Figure 1.8.

Figure 1.8.Appload File Selection dialog.

1-20

= Select LISP{ADS Routine
File Hame: Directories:
|’.Isp;’_exe | c:hacadwin
acad.exe + = eh *
acadapp.exe
acadl.exe
acadps.exe £ fonts
ame_eve =1 sample
‘ asvu.exe 1 source
atoolbox.exe £ support
Find File._.
averendr.exe ol £ vb ry =
List Files of Type: Drives:
[Lisp7ADS [~ LSP EXE[#] [= c: ms-dos_5 [2]

This dialog displays directories in the list box on the right and files names on the left.
Move to theC:\PROGRAMS subdirectory and select the fUOADDCL.LSP then

click OK. The dialog closes and the file is now listed and highlighted iAR

LOAD dialog. Select theoad button at the bottom left of the dialog. If thead

button is grayed out, click on the LOADDCL.LSP file; thead button should now be
accessible.

This loads the LOADDCL file and checks it for any errors. If any errors are encoun-
tered refer to the Chapter on Debugging. You are now ready to verify the layout and
code for the HELLO dialog. At the AutoCAD Command: prompt type:

Command: LOADDCL <return>
DCL File Name: hello <return>

Remember to type the dialog box name in lower case letters exactly as it is typed in
the HELLO.DCL file. The dialog box displays, and should look like the one shown in
Figure 1.1. If the dialog box did not show and you received an alert box, correct the
errors indicated or check theCAD.DCE file for possible errors.

No action will occur if you click on the buttons as no functions have been assigned to
the tiles.

Click onOK to clear the dialog box.
Always use th& OADDCL.LSProutine to verify dialog box design and check for
possible syntax errors before writing the program to control the dialog tiles. Often, it

may take several attempts to correct the DCL syntax and make the dialog box design
functional and acceptable.

1-21

Writing Your First Program

Building DCL files
from Tables

You will be instructed to create many Dialog boxes throughout this book. However, to
gain experience at learning the DCL language, try to create the DCL files from the
DCL File Definition table. A DCL File Definition table is a table that contains the tile
references that define the dialog box. Your job is to follow the table, line by line, and
to write the code for the DCL file in the proper format. Table 1.2 is the DCL File
Definition table for the HELLO.DCL dialog box.

The DCL File Definition table is made up of three sections: Tile Reference, Attribute,
and Value.

Tile Reference This shows the basic tile types as predefined by the PDB facility.
This includes buttons, toggles, tile clusters, text clusters, and
edit boxes that are combined to form dialog boxes. A tile
reference has the form:

: tile name {
attribute = value;

Thetile nameis the name of a predefined tile as defined by the PDB facility listed in
the Tile Reference part of the table. A coloimdicates the beginning of a tile defini-
tion. The name of the tile is next after the caleeparated by a space. A curly brace
indicates the beginning of the tile definition section. A closing curly brace is added
after the attributes.

Attribute A tile’s attribute defines its physical appearance and function.
Examples include key, label, height, width, enabled, and dis
abled.

Value The value assigned to the tile attribute must be of a specific type,

integer, real, string or a reserved word.
1-22

Table 1.2.The DCL file definition table of the HELLO dialog box.

Tile Reference Attribute Value
dialog label “The Hello Program”
text key “txt_hello”
label
alignment centered
row {
button label “Display Hello”
key “cmd_hello”
width 18
mnemonic “D”
button label “Clear”
key “cmd_clear”
width 10
mnemonic “C”
Hirow
ok_only

Entering the AutoLISP Code
of the Hello Program

You are now ready to write the code to control the HELLO dialog. Start the text editor
and type the following code exactly as shown. Or, you may type the code as each line
is explained in the next section.

1-23

Writing Your First Program

o o 0O

a

Start the text editor and type the code inside the HELLO program.
Save the file as HELLO.LSP and exit the text editor.
Load the HELLO program file in AutoCAD using APPLOAD.

Execute the program at the AutoCAD Command prompt.

The HELLO Program

1-24

.. HELLO.LSP
;;; Displays HELLO WORLD! in the text tile.

(defun C:HELLO (/ CMD:HELLO CMD:CLEAR DCL_ID)

(defun CMD:HELLO ()
(set_tile “Ist_hello” “HELLO WORLD!"))

(defun CMD:CLEAR () (set_tile “Ist_hello” “))
(setq DCL_ID (load_dialog “HELLO.DCL™))
(if (not (new_dialog “hello” DCL_ID)) (exit))

(action_tile “cmd_hello” “(cmd:hello)”)
(action_tile “cmd_clear” “(cmd:clear)”)

(action_tile “accept” “(done_dialog)”)
(start_dialog)

(unload_dialog DCL_ID)

(princ)

)/Idefun of hello

(prompt “\nType < HELLO > to execute.”)
(princ)

The AutoLISP Code
Inside the HELLO Program

Type the next two lines to ass comments to identify the LSP file and its purpose:

.. HELLO.LSP
;;; Displays the text HELLO WORLD! in a text tile.

Comments within an AutoLISP file are preceded by one or more semicolons.
AutoLISP ignores any data on the same line following a semicolon. Comments may
start at the beginning of a line (as shown above) or after an AutoLISP expression.
Examples of this include:

(setq X 1) ;setXto 1l

For AutoCAD/AutoLISP Release 13, comments may be enclosed in the string ;...|;.
The comments may start on one line and may end after several lines. Examples of this
format include:

;] HELLO.LSP
Displays the text HELLO WORLD! in a text tile. |;

(setq X ;| set Xto 1 |; 1.0)

(setq X 1);|setXtol
This is the default value for X |;

Use caution adding comments in this manner as a missing semicolon will cause an
error. Also, if your program must be compatible with Release 12, use a semicolon as
shown above.

Type the next line to define the function HELLO:

(defun C:HELLO (/ CMD:HELLO CMD:CLEAR DCL_ID)

1-25

Writing Your First Program

User defined functions are created using the internal AutoLISP furiE&tUN,

which is short foDEfine FUNction. New functions and commands are added to
AutoCAD by usingDEFUNto define and implement those commands and functions.
A DEFUN function has the syntax:

(defun NAME (JARGUMENTS] / [LOCAL VARIABLES])
([expressions]......)
([expressions]......)

)

The NAMBportion is simply the name of the function you are defining. /ARG U-
MENTSJfollowing the function name are independent variables that take the values
given them when the function is called. An optioifal forward slash may follow and
the local variables declared. Not all functions hB&R@GUMENTSand may only
have[LOCAL VARIABLES]

L.ocal and Global Variables

A [LOCAL VARIABLE]will only have a value bound to it while the function or
program is executing. Once the function has finished the value (AL VARI-
ABLE] s set to nil. Variables that are not declared in this section are considered global
and retain their value after the function has executed.
By retaining their values, global variables may be used by other functions. If no
[ARGUMENTS)or [LOCAL VARIABLES] are declared, you must supply an empty
set of parenthes¢} after the function name. For example:
Function with no arguments or local variables:

(defun NEWFUNC () (expressions........)

Function with two arguments and no local variables:

(defun NEWFUNC (A B) (expressions........)

1-26

Function with no arguments and two local variables:
(defun NEWFUNC (/ C D) (expressions........)
Function with two arguments and two local variables:

(defun NEWFUNC (A B/ C D) (expressions........)

WARNING: Never use the name of an AutoCAD command built-in or external as the
name of a user defined function. This makes the built-in function inaccessible.

Expressions

One or mordEXPRESSIONS...] may follow thefARGUMENTSJand[LOCAL
VARIABLES] after thedefunfunction. These expressions are evaluated when the
function is called. This function doubles any nhumber passed to it @5thé)
argument.

Command: (defun DOUBLE (NUM) (* NUM 2))

This function has onPARGUMENT]and no[LOCAL VARIABLES] . To call the
function and double the number 12, you would type:

Command: (DOUBLE 12)
LISP returns: 24

User Defined Commands

New commands are added to AutoCAD usiri@d before the user defined func-
tion name after thdefun The“C:” is not a reference to a disk drive, but a special
prefix that denotes a command line function. TARGUMENT Jlist must be nil, but

1-27

Writing Your First Program

[LOCAL VARIABLES] are permitted. Here is the same program, now defined as an
AutoCAD command, named DOUBLE:

(defun C:DOUBLE (/ NUM DNUM)
(setq NUM (getreal “\nEnter Number to Double: “))
(setg DNUM (* NUM 2))
(prompt
(strcat “\nDoubled number is < “ (rtos DNUM 2 2) “ >"))
)

This command has two local variablsM andDNUM. The number to double is
now requested from the user. Notice the program as a function before must be en-
closed in parenthesis when executed. As an AutoCAD command, the program is
executed from the AutoCAD Command: prompt by typing the command name
DOUBLEand pressing return.

Type the next line of code to define the CMD:HELLO function:

You may also define a function within another function or command. This is often
referred to as a subroutine. A subroutine may perform a specific task over and over
again. Subroutines may be created as a stand alone function, available to other
programs, and located in the ACAD.LSP file. This allows access to the subroutine
from any program you are using. Subroutines that perform a specific task, or are
never used by another program, should be defined within the program itself as in this
case.

The CMD:HELLO subroutine performs a specific task as doe€ti®:CLEAR
function, and is included within théELLO program. Add a blank line then type this
function on the next line:

(defun CMD:HELLO () (set_tile “txt_hello” “HELLO WORLD!"))
Short, user defined functions, may be typed on a single line. This user defined function

adds the text HELLO WORLD! to thexttile with the attributdeyvalue
“txt_hello”

1-28

SET _TILE Function

Use theset_tilefunction for setting the initial value of a tile or for changing the value
during program execution. Syntax for et _tilefunction is:

(set_tile KEY VALUE)

TheKEY argument is a string that representskKBE& value for the tiles’s key attribute
as specified in the DCL file. TRdALUE argument is a string that specifies the new
value assigned the tile. This value is different for different types of tiles. Refer to the
VALUE attributes for each specific tile for this argument.

Add a blank line then type the next line of code to defin€ti®:CLEARfunction:
(defun CMD:CLEAR () (set_tile “txt_hello” "))

The CMD:CLEARfunction clears theext tile when theClear button on the dialog
is selected.

Displaying the dialog box involves several steps. A DCL file must first be loaded. Use
theload_dialogfunction to load the DCL file into memory. Add a blank line and type
the next line of code:

(setq DCL_ID (load_dialog “C:/PROGRAMS/HELLO.DCL")

The SETQfunction is discussed before th@ AD_DIALOGfunction.
SETQ Function

This is the basic assignment function which assigns a value to a variable or a symbol.
In AutoLISP, variables and symboils store values accessed by programs. Variables are
user defined and refer to program data. The values of variables may change during
program execution. The syntax for tRETQfunction is:

(setq VARIABLE1 VALUE1 [VARIABLE2 VALUEZ?]....)

1-29

Writing Your First Program

A singleSETQexpression may set any number of variables. A variables’ value may
also be set to the value of another AutoLISP expression withiBEi&expression.

In the program code above the variableL_ID is assigned the DCL identification
number for the loaded dialog box calling {We&AD DIALOG) function.

NOTE: For ease of reading an AutoLISP program, type AutoLISP expressions in
lowercase characters and program variables in uppercase characters.

LOAD_DIALOG Function

Code within a DCL file must be loaded into memory before AutoLISP can display the
dialog box LOAD_DIALOGopens the specified DCL file and reads the tile descrip-
tions into memory. Syntax f&WfOAD_DIALOGis:

(load_dialog DCLFILENAME)

The DCLFILENAMEargument is a string containing the name of the DCL file to load.
If the file is located outside the AutoCAD library path, the specific directory path must
be included with the file name for the DCL file to load. Examples of this include:

(load_dialog “C:W\PROGRAMSWHELLO.DCL")

(load_dialog “C:/PROGRAMS/HELLO.DCL")

AutoLISP adds a default file extension of .DCL to the file name if the file extension is
omitted. Other file extensions may be used as with .LSP files, but AutoLISP automati-
cally recognizes the .DCL extension.

When the DCL file is loaded successfully, a DCL identification number (a positive
integer) is returned. This number is incremented by one each time a DCL file is
successfully loaded. Setting this number to the variable DCL_ID allows AutoLISP to
access the DCL code. If the DCL file was not loaded successfully, the DCL identifica-
tion number is set to -1.

1-30

Activate the Dialog

After the dialog is loaded into memory, it must be activated. Next, type the code to call
the functiomnew_dialogpassing the nanféello” and DCL identification number,
DCL_ID, as arguments. This activates the dialog and exits if the dialog doesn’t load
correctly.

(if (not (new_dialog “hello” DCL_ID)) (exit))

NEW_DIALOG Function

This function activates the dialog nhame found within the DCL file indicated. You may
have more than one dialog definition within a single .DCL file. Use the

load dialog function to load the main DCL file, whilkeew _dialog calls the
specific dialog definition within the main DCL file. The syntax fimw_dialog is:

(new_dialog DLGNAME DCL_ID [ACTION [SCREEN-PT]])

TheDLGNAMEargument is the name of the dialog definition within the DCL file.
This name must be typed exactly the same as it appears in the DCL file. If you use
uppercase characters you must use uppercase characters here.

DCL_IDis the DCL identification number assigned to the main DCL file loaded.
These are the two required arguments.

An optionalACTIONargument may be added to execute a default AutoLISP expres-
sion and must be specified when 8@REEN-PBRrgument is present. TRCREEN-
PTargument is a 2D point list that specifies the upper-left corner of the dialog in
Windows. In DOS the point refers to the lower-left corner.

Add a blank line then type the next line of code to add theditén_tile
statement:

An action_tile statement defines what action is taken when a certain tile in the
dialog box is selected by the user. You associate an AutoLISP expression with the tile

1-31

Writing Your First Program

by calling the action_tile function. This first expression is associated with the
“Display Hello” button which has the attribute key valieend _hello.”

(action_tile “cmd_hello” “(CMD:HELLO)")

When the user selects the “Display Hello” button, this executd€MB:HELLO)
subroutine as described and defined previously.

ACTION_TILE Function

Assigns an action for AutoLISP to execute when the user selects the specified tile in
the dialog box. The syntax faction_tileis:

(action_tile KEY ACTION-EXPRESSION)

The KEYargument is the attributeeyvalue assigned to the tile that triggers the
action. TheKEY argument is case sensitive and must match the attkibytalue
assigned to the tile.

The ACTION-EXPRESSION argument is an AutoLISP expression presented as a
string by enclosing the entire expression in double quotes. If the AutoLISP expression
must contain quotation marks, precede each quotation mark with a backslash charac-
ter. The following expression shows an example of this:

(setvar “SNAPMODE" 0);;expression with quotation marks

(action_tile “tog_snap”
“(setvar "'SNAPMODEY\’ (atoi $value))”)

This expression refers to the tiles current valudvasue Additional tile values may

be obtained during program execution. Table 1.3 list the variable names used and their
descriptions:

1-32

Table 1.3.Action expression variables.

Variable Name

Description

$data

Application specific data (as set by client_data_tile)

$key Key value attribute for the selected tile.
$reason Code indicating user action. Used with edit_box, list_box, image_button
and slider tiles.
1 = User selected tile
2 = User exited edit_box
3 = User changed value of slider
4 = User pressed enter when a list_box item was highlighted.
$value The current value of the tile as a string.
$x By Point coordinates indicating the position the user picked on an

image_button tile.

Type the next line of code to add the second action_tile expression:

The second expression is associated wittCiheARbutton using the attribute key
value “cmd_clear”

(action_tile “cmd_clear” “(CMD:CLEAR)")

Selecting this tile executes t@MD:CLEAR) function as defined previously.

Add a blank line then type the next line of code to adadhien_tileexpression for

the OK button:

(action_tile “accept

(done_dialog)”)

The final action expression is associated with the OK button using the key

“accept”.

Selecting this tile executes the predefidgdne dialog)

expres-

sion and closes the dialog.

1-33

Writing Your First Program

DONE_DIALOG function

Once the user has completed the information requested within the various tiles of the
dialog, the current dialog must be dismissed. This is accomplished calling the
done_dialog function. Thedone_dialogsyntax is:

(done_dialog [STATUS])

The predefined tile®K andCancelautomatically issue done_dialogvhen selected.

This returns the integer 1,dK is selected, and 0@ancelis selected. An optional
[STATUS] argument may be supplied as the returned value instead of the standard 0
or 1. The[STATUS] value is returned by treart _dialogfunction when a variable

is assigned to th&tart dialogfunction, as in this example:

(action_tile “cmd_line” “(done_dialog 5)")
(setq DO_NEXT (start_dialog))
This code assigns the variali® NEXTo the value of 5 when themd_line”
tile is selected by the user. Decisions can now be made by the program based on the
returned value of thBO_NEXWariable. Examples of this are explained in later
chapters.
Add a blank line and type the next line of code to display the dialog box:
(start_dialog)
This function uses no arguments. Values returnestdoy dialogdepend on the
done_dialogexpression within thaction_tilestatement as explained above. The
dialog remains active untildone_dialogs called. Nested dialogs put the main dialog
on hold and reactivate it after they are closed.

Type the next line of code to unload the DCL file:

(unload_dialog DCL_ID)

1-34

This function prevents conflicts between tiles that reference previously defined tile
names.

Type the next line of code to add the princ function. Use a princ function to suppress
the nil returned after program execution:

(princ)
Type the final closing parenthesis to close the rdafanof the HELLO program:
)/Idefun of hello

Type the next two lines of code to add a prompt to inform the user how the program is
executed:

(prompt “\nType < HELLO > to execute.”)

(princ)
Always add a prompt to inform the user how to execute the program. This prompt is
outside the closing parenthesis of tiefun When the program loads, this prompt is
displayed. To suppress the returmédcafter the prompt, add tt{princ) function
as the last line.

Save the code and exit the text editor. From within AutoCAD execute the HELLO
program.

Executing the Hello Program

The Hello program is completed. Use the following steps to execute the program from
within AutoCAD:

O Use Appload to load the HELLO.LSP file.
O Type HELLO at the AutoCAD command prompt to execute the program.

O Click the Display Hello and Clear buttons to display and clear the text.
1-35

Writing Your First Program

O You may use the Alt-D and Alt-C keys to set the focus to these buttons. After
the focus is set to the button press the enter key or space bar to execute the
button.

O To exitand close the dialog press the OK button.

Note that the text displays inside the text tile when the Display Hello button is se-

lected. The clear button displays a blank text string when selected thus clearing the
text tile.

Summary

In this chapter you wrote your first custom Dialog Box program. You learned about
the steps necessary to write a Dialog Box program:

O The visual DCL code programming step
O The AutoLISP code programming step

In the visual programming step you created dialog box tile definitions within a .DCL
dialog definition file.

In the AutoLISP code programming step you created the program to control the dialog
tiles as they are selected by the user in the dialog box.

1-36

