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5.1 INTRODUCTION

CAD tools have been defined in Chap. 1 as the melting pot of three disciplines:
design, geometric modeling, and computer graphics. While the latter discipline is
covered in Part IIL, this part discusses geometric modeling and its relevance to
CAD/CAM. Early CAD/CAM systems focused on improving the productivity of
draftsmen. More recently, they have focused on modeling engineering objects. As
a result, geometric models that once were more than adequate for drafting pur-
poses are not acceptable for engineering applications. A basic requirement, there-
fore, is that a geometric model should be an unambiguous representation of its
corresponding object. That is to say, the model should be unique and complete to
all engineering functions from documentation (drafting and shading) to engineer-
ing analysis to manufacturing.

A geometric model of an object and its related database have been defined
in Chap. 3. The three types of geometric models, wireframes, surfaces, and solids,
are covered in Chaps. 5, 6, and 7 respectively. Each chapter presents the available
types of entities of the modeling technique and their related mathematical repre-
sentations to enable good understanding of how and when to use these entities in
engineering applications. Users usually have to decide on the type of modeling
technique based on the ease of using the technique during the construction phase
and on the expected utilization of the resulting database later in the design and
manufacturing processes. Regardless of the chosen technique, the user constructs
a geometric model of an object on a CAD/CAM system by inputting the object
data as required by the modeling technique via the user interface provided by the
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154 GEOMETRIC MODELING

software. The software then converts such data into a mathematical representa-
tion which it stores in the model database for later use. The user may retrieve
and/or modify the model during the design and/or manufacturing processes.

To convey the importance of geometric modeling to the CAD/CAM
process, one may refer to other engineering disciplines and make the following
analogy. Geometric modeling to CAD/CAM is as important as governing equi-
librium equations to classical engineering fields as mechanics and thermal fluids.
From an engineering point of view, modeling of objects is by itself unimportant.
Rather, it is a means (tool) to enable useful engineering analysis and judgment. As
a matter of fact, the amount of time and effort a designer spends in creating a
geometric model cannot be justified unless the resulting database is utilized by
the applications module discussed in Chap. 3.

The need to study the mathematical basis of geometric modeling is many-
fold. From a strictly modeling point of view, it provides a good understanding of
terminology encountered in the CAD/CAM field as well as CAD/CAM system’
documentation. It also enables users to decide intelligently on the types of entities
necessary to use in a particular model to meet certain geometric requirements
such as slopes and/or curvatures. In addition, users become able to interpret any
unexpected results they may encounter from using a particular CAD/CAM
system. Moreover, those who are involved in the decision-making process and
evaluations of CAD/CAM systems becorhe equipped with better evaluation
criteria. o

From an engineering and design point of view, studying geometric model-
ing provides engineers and designers with new sets of tools and capabilities that
they can use in their daily engineering assignments. This is an important issue
because, historically, engineers cannot think in terms of tools they have not
learned to use or been exposed to. The tools are powerful if utilized innovatively
in engineering applications. It is usually left to the individual imagination to
apply these tools usefully to applications in a new context. For example, the mere
fact that CAD/CAM databases are centralized and associative provides great
capabilities that are utilized in Sec. 5.8 of this chapter. These capabilities are
usually more efficient than writing analyses and plotting programs on conven-
tional computers.

Having established the need for geometric modeling, what is the most useful
geometric model to engineering applications? Unfortunately, there is no direct
answer to this question. Nevertheless, the following answer may be offered. In
this book, the answer has two levels. At one level, engineers may agree that some
sort of geometry is required to carry engineering analysis. The degree of geomet-
ric detail depends on the analysis procedure that utilizes the geometry. Engineers
may also agree that there is no model that is sufficient to study all behavioral
aspects of an engineering component or a system. A machine part, for example,
can be modeled as a lumped mass rigid body on one occasion or-as a distributed
mass continuum on another occasion.

At the second level, the adequacy of geometry or a geometric model to an
analysis procedure is decided by its related useful attributes to that procedure.
Attributes of geometry is never an issue for manual procedures because the engi-
neer’s mind coordinates all the related facts and information. In computer-based
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modeling and analysis, attributes attached to geometric models determine their
relevance to design, analysis, and manufacturing. Current geometric models
offered by CAD/CAM systems seem to have adequate and enough geometric and
visualization (colors and shades) attributes. Based on these attributes, they are
utilized successfully in applications such as mass property calculations, mecha-
nism analysis, finite element modeling, and NC. If these attributes are insufficient
or must be reorganized for other applications, then new software must be written
based on the existing database structure of the geometric model which may be
modified to accept new attributes; or a completely new structure may have to be
developed. In conclusion, the study of existing geometric models provides
designers and engineers with the capabilities and limitations of these models and
paves the road for them to utilize the attributes of these models or create new
ones to benefit new engineering applications.

This chapter covers the available types and most useful mathematical repre-
sentations of curves. Sections 5.1 through 5.7 cover the basic related topics.
Section 5.8 applies these topics to design and engineering applications to demon-
strate their usefulness.

52 WIREFRAME MODELS

A wireframe model of an object is the simplest, but mose verbose, geometric
model that can be used to represent it mathematically in the computer. It is
sometimes referred to as a stick figure or an edge representation of the object.
The word “wireframe” is related to the fact that one may imagine a wire that is
bent to follow the object edges to generate the model. Typically, a wireframe
model consists entirely of points, lines, arcs and circles, conics, and curves. Wire-
frame modeling is the most commonly used technique and all commercial
CAD/CAM systems are wireframe-based.

Early wireframe modeling techniques developed in the 1960s were strictly
two dimensional and were designed to automate drafting and simple NC. Two-
dimensional wireframe models contained enough useful information to perform
the NC work. Users had to construct geometry in the desired various views inde-
pendently due to the lack of centralization and associativity of the resulting data-
base. Later in the early 1970s, the centralized associative database concept
enabled modeling of three-dimensional objects as wireframe models that can be
subject to three-dimensional transformations. Creating geometry in one view is
automatically projected and displayed in other views. This represents a substan-
tial saving and flexibility over manual design and drafting.

In constructing a wireframe model on a CAD/CAM system, the user should
follow the modeling guidelines discussed in Chap. 3. The detailed step-by-step
procedures to create models may vary according to system capabilities and the
user’s individual habits. In addition to the commands required to create the
common wireframe entities, users are provided with other tools that facilitate the
model construction. Part IV of the book covers these tools in detail. These tools,

" in general, help users to manage geometry as well as to avoid unnecessary calcu-

lations. For example, typical CAD/CAM systems provide users with possibly
three modes to input coordinates: cartesian, cylindrical, or spherical. Each mode
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has explicit or implicit inputs. Explicit input could be absolute or incremental
coordinates. Implicit input involves user digitizes. Another example is the geo-
metric modifiers which automatically identify specific locations such as end- or
midpoints of entities that are convenient to access once these entities are created
by the system.

Despite its many disadvantages, the major advantages of wireframe model-
ing is its simplicity to construct. Therefore, it does not require as much computer
time and memory as does surface or solid modeling. However, the user or termin-
al time needed to prepare and/or input data is substantial and increases rapidly
with the complexity of the object being modeled. Wireframe modeling is con-
‘sidered a natural extension of traditional methods of drafting. Consequently, it
does not require extensive training of users; nor does it demand the use of
unusual terminology as surfaces and solids. Wireframe models form the basis for
surface models. Most existing surface algorithms require wireframe entities to
generate surfaces (refer to Chap. 6). Lastly, the CPU time required to retrieve,
edit, or update a wireframe model is usually small compared to surface or solid
models.

The disadvantages of wireframe models are manyfold. Primarily, these
models are usually ambiguous representations of real objects and rely heavily on
human interpretation. A wireframe model of a box offers a typical example where
the model may represent more than one object depending on which face(s) is
assumed to exist. Models of complex designs having many edges become very
confusing and perhaps even impossible to interpret. To overcome this confusion,
lines can be hidden, dashed, or blanked. If done manually, these operations are
very tedious, error-prone, and can result in “nonsense” objects. Automatic
hidden line removal algorithms based on wireframe modeling are usually helpful.
Another disadvantage is the lack of visual coherence and information to deter-
mine the object profile. The obvious example is the representation of a hole or a
curved portion of the object. In most systems, the hole is displayed as two paral-
lel circles separated by the hole length. Some systems may connect a line between
the two circles on one side of the hole. In many cases, users add edges of the hole
for appearance purposes at the drafting mode or may use a cylindrical surface to
represent the hole which introduces problems later on during the model clean-up
phase. In adding the edges, inexperienced users tend to attempt to create tangent
lines beweeen the hole circles which obviously does not work. Figure 5-1 shows
possible cases to display holes and/or curved ends of objects. Representing the
intersection of plane faces with cylinders, cylinders with cylinders, or tangent
surfaces in general is usually a problem in wireframe modeling and requires user
manipulations.

Wireframe models are also considered lengthy or verbose when it comes to
the amount of defining data and command sequence required to construct them.
For example, compare the creation of a simple box as a wireframe and as a solid.
In the latter, the location of one corner, the length, width, and height are the
required input while in the former the coordinates of at least four corners of one

- face, the depth, and the edge connectivity are required, considering the box as a
two-and-a-half-dimensional object. In other words, both topological and geo-
metrical data are needed to construct wireframe models while solids require only
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(a) No edges displayed . (b) One edge displayed (¢} User-created edges

FIGURE 5-1
Displaying holes and curved ends in wireframe models.

geometrical data (refer to Chap. 7 for the difference between topology and
geometry). In addition, WCSs and construction planes always need to be defined
to facilitate model construction.

From an application, and consequently engineering, point of view, wire-
frame models are of limited use. Unless the object is two-and-a-half dimensional,
volume and mass properties, NC tool path generation, cross-sectioning, and
interference detections cannot be calculated. The model can, however, be used in
manual finite element modeling and tolerance analysis.

Despite the above-mentioned limitations, wireframe models are expected to
last and may extend to certain classes of solid modeling. For example, some solid

. modelers (such as Medusa) are based on wireframe input. The simplicity of the

geometrical concepts based on wireframe modeling makes them attractive to use
to introduce users to the CAD/CAM field. In addition, at early design stages,
designers might just need a sketchpad to try various ideas. Wireframes are ideal
to provide them with such a capability. From an industrial point of view, wire-
frame models may be sufficient to many design and manufacturing needs. From a
practical point of view, many companies have large amounts of wireframe data-
bases that are worth millions of dollars and man-hours and therefore make it
impossible to get rid of wireframe technology.

53 WIREFRAME ENTITIES

All existing CAD/CAM systems provide users with basic wireframe entities which
can be divided into analytic and synthetic entities. Analytic entities are points,
lines, arcs and circles, fillets and chamfers, and conics (ellipses, parabolas, and
hyperbolas). Synthetic entities include various types of spline [cubic spline, B-
spline, f(beta)-spline, v(nu)-spline] and Bezier curves. The mathematical proper-
ties of each entity and how it is used in engineering applications or converted
into a user interface are covered in the remainder of the chapter. It is quite
common for a user to be faced with many modifiers that can be used to create a
particular entity on a particular CAD/CAM system. Knowledge of the basics of
such an entity can only increase user productivity. Choosing the proper modifier
for a given input can save unnecessary calculations. Also, knowing a curve
behavior in relation to its input data can save time trying to achieve the
impossible. N
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TABLE 5.1
Methods of defining points

Explicit methods Implicit methods

1. Absolute cartesian co-ordinates
Y

A digitize d (with or without anactive grid)

+ P(xy.2) +d

Coordinates of resulting point can be obtained
by using the “verify” command. Coordinates are
X measured relative to the MCS as discussed in
Chap. 3
zZ

2. Absolute cylindrical coordinates Endpoint of an existing entity}

E,
P(R.6.2) / E( E.
R E, .
6 : Line Circle
. {\/Ez
EhEz E,
Arc Curve

(Spherical coordinates are seldom used in
practice)

3. Incremental cartesian coordinates
P(x+4x,y + dy, z—z)
Az

Ar |4y /
Reference ¢

point Py (x.y.z) C
Line Circle Arc

Cériterpoint (origin) of an existing entity}

z

4. Incremental cylindrical coordinates

P (R + 4AR. 0 + A0)

Intersection point of two existing entitiest

Re_ference
point Py (R,0) 7, 112

(Some CAD/CAM systems require moving
the current WCS to the reference point P, to
avoid unexpected results)

1 More details of these methods are covered in Sec. 11.2, Chap. 11.
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TABLE 52
Methods of defining lines

Method Hustration

—

Yw >( Xw

1. Points defined by any method of Table 5.1

2. Horizontal (parallel to the X axis of Yw
the current WCS) or vertical (parallel
to the Y axis of the current WCS)

.‘__

Xw

Zw Zy

3. Parallel or perpendicular to an existing line
' Reference line

(>0

One of the four possibilities is obtained
depending on user digitizes of the two circles

<>

One of the two possibilities is obtained

4. Tangent to existing entities

Tables 5.1 to 5.5 show the most common methods utilized by CAD/CAM
systems to create wireframe entities. Readers are advised to compare and/or
modify these methods to what their respective systems offer and what user inter-
faces of these systems require. As an example, defining a point using the endpoint
method requires the “ END” or “PND (point end)” modifier on the Computer-
vision or Calma system respectively. Such similarities among systems exist in all
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software modules, simply because they all share the same theory. Readers are
also advised to find commands corresponding to these tables on their particular
CAD/CAM systems. The following are some examples to illustrate using wire-
frame modeling techniques. These examples are independent of any system or
user interface and readers can simply convert them into a command sequence of
their choice.

TABLE 5.3
Methods of defining arcs and circles

Method THustration

1. Radius or diameter and center.
In the case of an arc, beginning and A
ending angles 6, and 6, are required

A

2. Three points defined by any
method of Table 5.1

3. Center and a point on the circle

4. Tangent to line, pass through a given
point, and with a given radius

S
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TABLE 54

Methods of defining ellipses and parabolas
Methods Mlustration
1. Ellipses

(a) Center and axes lengths

(b) Four points

(c) Two conjugate diameters

2. Parabolas

(a) Vertex and focus

(b) Three points
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TABLE 55
Methods of defining synthetic curves

Method Hllustration

1. Cubic spline Py P,

A given set of data points and
start and end slopes

2. Bezier curves

A given set of data points

3. B-spline curves

(a) Approximate a given set of data points

(b) Interpolate a given set of data points

Example 5.1. For the guide bracket shown in Fig. 5-2:

(a) Create the model database utilizing a CAD/CAM system.
(b) Obtain the orthographic views of the model.
(¢) Obtain a final drawing of the model.

Solution

(@) An efficient planning strategy is required before logging into the CAD/CAM
system. Examining Fig. 5-2 reveals that the geometric model of the guide
bracket is a two-and-a-half-dimensional model. It is symmetric with respect to
the model central vertical plane if the cut on the top right corner is ignored. Let
us choose the origin of the MCS at point 4 shown in the figure. The orientation
of the MCS is chosen properly, as discussed in Chap. 3, so that the front view of
the bracket is defined as shown. Assume the orientation shown to facilitate dis-
cussion. The following steps may be followed to construct the model:

1. Follow the part setup procedure of the CAD/CAM system. Define an iso-
metric view to begin constructing the model.

FIGURE 5-2
Guide bracket.

& 0.500 Drill through
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. Coordinate input relative to MCS
Point
X y Z
P, 2 1.00 -1.25
P, - Ay = —1.00% -
Py - — 0
Py — y=-2 —
Ps — - z=-15
Py - 7ty = 3.00 -

+ Absolute coordinate input.
1 System defaults to the last input value.

§ Relative (incremental) coordinate input.
Incremental coordinate input is very efficient
in this case.

All dimensions in inches

2. Begin by constructing the right face using a line command with the follow-
ing sequence of point input:

Py Pq

Ps

3. Project that face a distance of 2 inches in the direction shown above (X
axis).
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4. Construct the top part of the front face of the model as shown below:

d;

t=0.25

Trimming, offsetting, circle, and arc commands are useful. Cylindrical input
is needed to create the line at 45°.

5. Project the entities labeled by digitizes d, to d5 a distance of 0.25 inch in the
direction shown above (Z axis).

6. Create the slot in-the top face using a line command with the point sequence
shown below:

. Coordinate input relative to MCS
Point
x y z
Py 1.2 0 0 P P,
Py - - Az=-02] F

Pg — - dy Py P, d;

ol s

Trim the front horizontal line between points P; and Pg.

7. Project the entities labeled by digitizes d, to dy a distance of 2.25 inches in
the direction shown above (Y axis).

8. Construct the top face of the right flange of the bracket as shown below:

l

=025

First construct the two circles and then the two ‘tangents. Trim the outer
circle to finish the construction.
9. Project that top face a distance of 0.25 inch in the direction shown (Y axis).
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10. Construct the front face of the right support (wedge) using a line command
with the following point sequence:

Point Coordinate input relative to MCS P,
x y z
P, 2 -2 -0.425
P, Ax =05 - -
Ps 2 -1.5 -
P, - -2 —

Py. Py

11. Project that face a distance of 0.2 inch in the direction shown (Z axis).

12. Using the mirror command, copy the entities that resulted in steps 8 to 11 to
create the left flange of the model. The mirror plane is the vertical central
plane of the model. To facilitate using this command, a different layer (see
Chap. 11) should be used for steps 8 to 11 to isolate the entities to be mir-
rored from the others.

13. Connect any missing lines and obtain a hard copy or a plot of the model.

14. File the model to save it.

Top view

- T » LT

Frontview Right view

FIGURE 5-3
Orthographic views of guide bracket.
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0.250

2.000 —
T
0.200 P!
1.500 1.200
+ !:Il r_j #
. L - 0.425
) l T
0.500 1230545 500 0,200
22.000 / 0.500
@1.000 AN
000 —_
/ T
1.000
"
0.500
0 '
_J L—-l osoo |
0.400
FIGURE 5-4

Final drawing of guide bracket.

(b) Using a new drawing or screen layout, define views as shown below:

Top

Isometric

Front

Right

Follow all discussions in Chap. 3 to define these views. The result is shown

Fig. 5-3.

(c) Using the model clean-up procedure on the system, the model views are cleaned
according to the drafting conventions and the drawing of the model is shown in

Fig. 5-4.

This example illustrates most of the experiences encountered in creating
two-and-a-half-dimensional wireframe models on major CAD/CAM systems with

their related drafting work.

—~0.250

~
W
o

—)L——_o

= 1.500 !
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Example 5.2. For the stop block shown in Fig. 5-5:

(a) Create the model database utilizing a CAD/CAM system.
(b) Obtain the isometric view of the model.
(c) Obtain the final drawing of the model.

Solution

(a) Unlike Example 5.1, the geometric model of the stop block is given by its three
orthographic views. All existing mechanical designs are available in this form
where their related information are stored in blueprints. While scanning tech-
niques exist to convert blueprints into CAD databases automatically, or at least
semi-automatically, this example illustrates how to create a geometric model
database from its three orthogonal views. The planning strategy in this case
consists of choosing the proper location and orientation of the database MCS
and of trying to construct the model by working in four views simultaneously.
The general guiding rule should be to minimize the amount of calculations by
taking advantage of the centralization and associativity property of the data-
base. For example, the part of the block that is oriented at 30° should be con-
structed in the front view first and then finished off in the top and right views.
Assuming an MCS as shown, the following steps may be followed to create the
model database:

1. Follow the part setup procedure of the CAD/CAM system. Define four views
(front, top, right, and isometric) to construct the model.

+ i S S
All dimensions

| in inches

R 1.000

Y4 ?

b
1

i

X
«—— 5.500 % 30
z . \(

5.000

\/ >2.ooo

FIGURE 5-5
Stop block.
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2. Begin by constructing the front view as shown below:

Point Coordinate input relative to MCS Pe P,

X v z

Py 0 0 0

I 5.5 — —

Py R=35 6=-30 — P,

Py 0 3 0

Ps Ax =4 B -

P, - Ay=35 — Py

P, Ax=3 - -

Py — Ay = -7 -

Connect P,, P,, and P using a line command. Connect P,, P,, Pq, P,, and
Py using a line command. Create line L, with a perpendicular line command.
Create line L, with a parallel line command. Trim lines L, and L, to their
intersection point.

3. Complete the creation of the top view. Notice that all entities created in the
front view are properly projected and displayed in the other three views. An
existing entity can be chosen (located) by digitizing it in any view where it is
most feasible and accessible. This usually makes construction much simpler.

4. Complete the creation of the right side view. The isometric view is now auto-
matically completed and the four views are shown in Fig. 5-6.

O

FIGURE 5-6
Views of stop block.
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FIGURE 5-7
Isometric view of stop block.

(b) Access a new drawing or screen layout and define the whole screen as an isomet-
ric view. Clean up the view to obtain Fig. 5-7. )
(¢) Using the clean-up procedure as discussed in Example 5.1, the final drawing of

the model is shown in Fig. 5-8.

&

—4.000 —3.000 —

R2.000

R 1.000

3.000
i !
3.000 1 ]
1
1
T

— s.500 30°

5.000 ¢
\7/ X.ooo
FIGURE 58

Final drawing of stop block.
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All dimensions in inches

Yws

FIGURE 5-9
Adjustment block.

Example 5.3. Create the database of the three-dimensional model shown in Fig. 5-9.

Solution. This is a three-dimensional geometric model. Its construction does not
usually follow any general guidelines. Typically, coordinates of its corners are
required for construction. However, the general rule of minimizing calculations and
utilizing capabilities of various CAD/CAM functions must always be followed. The
shortest way to construct this model is discussed below:

1. After the part setup procedure, define an isometric view. The MCS is chosen as
shown in Fig. 5-9.

2. Construct line L, between points (0, 0, 0) and (5, 0, 0) and L, between points
(0,0, 0) and (0, 4, 0).

3. Construct two circles to find the corner P,. The first circle has a center at E,
(endpoint of L;) and a radius of 6, and the second has a center at E, (end of line
L,) and a radius of 3. The intersection of the two circles defines P,.

4. Connect E, and P, and E, and P, using the proper line command.

5. Define a (WCS), such that its XY plane coincides with the bottom of the model
which is in turn assumed to lie in the X Z plane of the MCS.

6. Find point P, and construct the bottom edges in the same way as in steps 3

and 4.

Construct L, by connecting E, and point (0, 5, 4). The coordinates of the point

are measured with respect to the active (WCS),.

Construct two circles to find the corner P;. Define a (WCS), such that its XY

plane coincides with the top view of the model. Construct a circle with center E,

and radius 4. Define another (WCS), with its XY plane coincident with the right

view of the model. Construct a circle with center E; and radius 9. The intersec-

tion of the two circles defines P;.

Connect E; and P,, E; and P, P, and P, and Pz and E3 to complete the

model construction as shown in Fig. 5-10.

=

e

hed
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Ps E, Py
E,
E;
E, 2 E, E,
Py
E3 Ey
E
Py !
FIGURE 5-10

Views of adjustment block.

54 CURVE REPRESENTATION

Examples in the previous section have been chosen to require only simple geo-
metric entities (lines and circles) to provide a good understanding of issues
encountered in practicing CAD/CAM technology. However, many applications
(automotive and aerospace industries) require other general curves to meet
various shape constraints (continuity and/or curvature). The remainder of this
chaptér covers the basics of these curves.

A geometric description of curves defining an object can be tackled in
several ways. A curve can be described by arrays of coordinate data or by an
analytic equation. The coordinate array method is impractical for obvious
reasons. The storage required can be excessively large and the computation to
transform the data from one form to another is cumbersome. In addition, the
exact shape of the curve is not known, therefore impairing exact computations
such as intersections of curves and physical properties of objects (e.g., volume
calculations). From a design point of view, it becomes difficult to redesign shapes
of existing objects via the coordinate array method. Analytic equations of curves
provide designers with information such as the effect of data points on curve
behavior, control, continuity, and curvature.

The treatment of curves in computer graphics and CAD/CAM is different
from that in analytic geometry or approximation theory. Curves describing
engineering objects are generally smooth and well-behaved. In addition, not
every available form of a curve equation is efficient to use in CAD/CAM software
due to either computation or programming problems. For example, a curve
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¥ i Plx.y.2)

FIGURE 5-11
z Position vector of point P.

equation that results in a division by zero while calculating the curve slope causes
overflow and errors in calculations. Similarly, if the intersection of two curves is
to be found by solving their two equations numerically, the forms of the two
equations may be inadequate to program due to the known problems with
numerical solutions. In addition, considering that most design data of objects are
available in a discrete form, mainly key points, the curve equation should be able
to accept points and/or tangent values as input from the designer.

Curves can be described mathematically by nonparametric or parametric
equations. Nonparametric equations can be explicit or implicit. For a nonpara-
metric curve, the coordinates y and z of a point on the curve are expressed as two
separate functions of the third coordinate x as the independent variable [see Eq.
(5.1)]. This curve representation is known as the nonparametric explicit form. If
the coordinates x, y, and z are related together by two functions [see Eq. (5.2)], a
nonparametric implicit form results. For a parametric curve, on the other hand, a
parameter is introduced and the coordinates x, y, and z are expressed as func-
tions of this parameter [see Eq. (5.3)].

Explicit nonparametric representation of a general three-dimensional curve
takes the form: :

P=[x y z2I"=[x f(x) g(I" (.1

where P is the position vector of point P as shown in Fig. 5-11. Equation (5.1) is
a one-to-one relationship. Thus, this form cannot be used to represent closed
(e.g., circles) or multivalued curves (e.g., parabolas). The implicit nonparametric
representation can solve this problem and is given by the intersection of two
surfaces as

F(x,y,z2)=0
G(x,y,2) =0

However, the equation must be solved to find its roots (¥ -and z values) if a
certain value of x is given. This may be inconvenient and lengthy. Other limi-
tations of nonparametric representations of curves are:

(52)
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1. If the slope of a curve at a point is vertical or near vertical, its value becomes
infinity or very large, a difficult condition to deal with both computationally
and programming-wise. Other ill-defined mathematical conditions may result.

2. Shapes of most engineering objects are intrinsically independent of any coordi-
nate system. What determines the shape of an object is the relationship
between its data points themselves and not between these points and some
arbitrary coordinate system.

3. If the curve is to be displayed as a series of points or straight line segments, the
computations involved could be extensive.

Parametric representation of curves overcomes all of the above difficulties.
It allows closed and multiple-valued functions to be easily defined and replaces
the use of slopes with that of tangent vectors, as will be introduced shortly. In the
case of commonly used curves such as conics and cubics, these equations are
polynomials rather than equations involving roots. Hence, the parametric form is
not only more general but it is also well suited to computations and display. In
addition, this form has properties that are attractive to CAD/CAM and the inter-
active environment, as will be seen later in this chapter.

In parametric form, each point on a curve is expressed as a function of a
parameter u. The parameter acts as a local coordinate for points on the curve.
The parametric equation for a three-dimensional curve in space takes the follow-
ing vector form:

Pw=[x y zI"=[xw yu 2]

Equation (5.3) implies that the coordinates of a point on the curve are the com-
ponents of its position vector. It is a one-to-one mapping from the parametric
space {euclidean space E! in u values) to the cartesian space (E> in x, y, z values),

Upnin su< Umax (53)

_as shown in Fig. 5-12. The parametric curve is bounded by two parametric values

U, and u_,. . It is, however, convenient to normalize the parametric variable u
to have the limits 0 and 1. The positive sense on the curve is the sense in which u
increases (Fig. 5-12).

The parametric form as given by Eq. (5.3) facilitates many of the useful
related computations in geometric modeling. To check whether a given point lies
on the curve or not reduces to finding the corresponding u values and checking
whether that value lies in the stated u range. Points on the curve can be com-
puted by substituting the proper parametric values into Eq. (5.3). Geometrical
transformations (as discussed in Chap. 9) can be performed directly on para-
metric equations. Parametric geometry can be easily expressed in terms of vectors
and matrices which enables the use of simple computation techniques to solve

_complex analytical geometry problems. In addition, common forms for curves

which are extendable to surfaces can be found. For example, a cubic polynomial,
and a cubic polynomial for surfaces, can describe a three-dimensional curve suffi-
ciently in space. Furthermore, curves defined by Eq. (5.3) are inherently bounded
and, therefore, no additional geometric data is needed to define boundaries.
Lastly, the parametric form is better suited for display by the special graphics
hardware. Numerical values of coordinates of points on a curve can control the

. deflection of the electron beam of a graphics display, as discussed in Chap. 2.
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FIGURE 5-12
Parametric representation of a three-dimensional curve.

To evaluate the slope of a parametric curve at an arbitrary point on it, the
concept of the tangent vector must be introduced. As shown in Fig. 5-12, the
tangent vector is defined as vector P'(u) in the cartesian space such that

dP(u)
Pu)=—— :
Pl =" (54)
Substituting Eq. (5.3) into Eq. (5.4) yields the components of the tangent vector in
the parametric space as

Pw=[ y zI"=[W YW 7@, tduuSu<in, (55

where x'(u), y'(u), and z'(u) are the first parametric derivatives (with respect to u)
of the position vector components x(u), y(u), and z(u) respectively. The slopes of
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the curve are given by the ratios of the components of the tangent vector:

dy dy/du y
dx  dx/du X
(5.6)
d_z o ¥
dy y dz y

The tangent vector has the same direction as the tangent to the curve—
hence the name “tangent vector.” The magnitude of the vector is given by

P =/x*+y*+2? ()
and the direction cosines of the vector are given by

P'(u)
| P'(w)]

fi= =nmi+nj+nk (5.8)
where #i is the unit vector (Fig. 5-12) with cartesian space components n., n,, and
n,. The magnitude of the tangent vectors at the two ends of a curve affects its
shape and can be used to control it, as will be seen later.

There are two categories of curves that can be represented parametrically:
analytic and synthetic. Analytic curves are defined as those that can be described
by analytic equations such as lines, circles, and conics. Synthetic curves are the
ones that are described by a set of data points (control points) such as splines and
Bezier curves. Parametric polynomials usually fit the control points. While analy-
tic curves provide very compact forms to represent shapes and simplify the com-
putation of related properties such as areas and volumes, they are not attractive
to deal with interactively. Alternatively, synthetic curves provide designers with
greater flexibility and control of a curve shape by changing the positions of the
control points. Global as well as local control of the shape can be obtained as
discussed in Sec. 5.6.

Example 5.4. The nonparametric implicit equation of a circle with a center at the
origin and radius R is given by x? + y* = R2. Find the circle parametric equation.
Using the resulting equation, find the slopes at the angles 0, 45, and 90°.

Solution. In general, the parametric equation of a curve is not unique and can take
various forms. For a circle, let ’

x = R cos 2nu, O<uxl

Substituting into the circle equation gives y = R sin 27nu and the parametric equa-
tion of the circle becomes

P(u) = [R cos 2nu R sin 2mu]7, O<ux<l!
and the tangent vector is

P'(u) = [—2nR sin 2nu  2nR cos 2nu]”, O<u<l
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The parameter u takes the values 0, 0.125, and 0.25 at the angles 0, 45, and 90°
respectively, and the corresponding tangent vectors are given by
P0)=[0 2=R]"
P'(0.125) = [——ZnR/ﬁ 21tR/ﬁ]T
P(0.25) = [—2zR 0]7

For a two-dimensional curve, the slope is given by y’/x'. The slope at the given
angles are calculated as co, —1, and 0.

Example 5.5. The parametric equation of the helix shown in Fig. 5-13 with a radius
a and a pitch b is given by

P(u) = [a cos 2nu  asin 2au  2bmu]”, O<ux<l1

Find the nonparametric equation of the helix.

Solution. The helix equation gives
X = a cos 2nu y = asin 2nu z = 2bnu

Solving the first equation for u and substituting in the other two gives the following
explicit nonparametric equation [compare with Eq. (5.1)]:

o[ aon(oon (2)) ser(2)]

Solving the Z component for u and substituting in the x and y equations gives the
implicit nonparametric equation as [compare with Eq. (5.2)]

z
x-a(fos(-b-)-—o

z
—asinl=]=0

y asm(b)

3
/
s

S
e,

it

S

/Zg
I X
20—

FIGURE 5-13
A helix curve.
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55 PARAMETRIC REPRESENTATION OF
ANALYTIC CURVES

This section covers the basics of the parametric equations of analytic curves that
are most widely utilized in wireframe modeling. These developments are related,
whenever possible, to the common practice encountered on CAD/CAM systems.
This should enable users to fully realize the input parameters they deal with and
usually find in system documentation. It should also help developers who may be
interested in writing their own CAD/CAM software.

Parametric equations and their developments are presented in vector form.
The benefits of the vector form include developing a unified approach and consis-
tent notation to treat both two-dimensional and three-dimensional curves in
addition to yielding concise equations that are more convenient to program. The
following section provides a quick review of the most relevant vector algebra and
analysis needed here. Additional equations can be found in standard linear
algebra textbooks.

5.5.1 Review of Vector Algebra

Let A, B, and C be independent vecfors, i, J, and k be unit vectors in the X, Y,
and Z directions respectively, and K be a constant.

1. Magnitude of a vector is

|A| = /A2 + A2 + A?

where A, , A,, and A, are the cartesian components of the vector A.
2. The unit vector in the direction of A is

ﬁ IA[_nA,;:‘i\+nij+nAzﬁ

The components of fi, are also the direction cosines of the vector A.

3. If two vectors A and B are equal, then
A,=B, A,=B, and A, =B,

4. The scalar (dot or inner) product of two vectors A and B is a scalar value

given by

A-B=B-A=A,B . +A4,B,+A,B,=|A||B|cos b
where @ is the angle between A and B. Therefore the angle 6 between two
vectors is given by
A-B
|Al]B]

The scalar product can give the component of a vector A in the direction of
another vector B as

cos 8 =

A -fig={A}cos @
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Other properties of the scalar product are:
=A%
A-B=B-A
A-B+C)=A‘B+A-C
(KA)-B=A-(KB)=K(A"‘B)
;:i j:k‘i{:l i'j:j'i(:i("i‘::o i
5. The vector (cross) product of two vectors A and B is a vector perpendicular to
the plane formed by A and B and is given by
i j k
AxB=|4, A, A4,
B, B, B,
= (Asz - Asz)i + (Asz - Asz)j + (AxBy - AyBx)R
=(lA]|B] sin O)f ‘ .
where 1 is a unit vector in a direction perpendicular to the plane of A and B
and a sense determined by the advancement of the tip of a right-hand screw
when it is rotated from A to B (the right-hand rule). Utilizing both the scalar
and vector products, the angle 8 between two vectors can be written as
A x B
A-‘B

tan 6 =

The vector product can give the component of a vector A in a direction per-
pendicular to another vector B as

|A X fig] =]A|sin 0
Other properties of the vector product are:
AxB=-BxA
|A x B2=|A?|B|*sin® @
AxB+C)=AxB+AxC
(KA) x B=A x (KB) = K(A x B)

ixi=jxj=kxk=0
ixj=k

jxk=1
f{xi—i

AxBxC)=B(C-A)— CA-B) - (vector triple product)
A BxC)=B:-(CxA)=C-(AxB)

A, A, A,
=|B, B, B (scalar triple product)
Cc, C

z

C.

x
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6. Two vectors A and B are parallel if and only if
iy ig=1 or iy x fig| =0
7. Two vectors A and B are perpendicular if and only if

iy fg=0 or |, x fig|=1

The conditions for parallelism and perpendicularity are written as shown
above to reflect the expected skew symmetry of the two properties. For calcu-
lation purposes, it might be useful to replace [, X fizg] =0 by fiy X fiz =0 or
A x B = 0 for parallel lines and replace ii, * fi; = 0 by A *+ B = 0 for perpendicu-
lar lines.

5.5.2 Lines

Basic vector parametric equations of straight lines are derived here with two
questions in mind. First, how is a line equation converted by the CAD/CAM
software into the line database which is at a minimum at the two endpoints of
the line? Second, how are the mathematical requirements of an equation corre-
lated with various modifiers available with line commands offered by common
user interfaces? Consider the following two cases:

1. A line connecting two points P, and P,, as shown in Fig. 5-14. Define a
parameter u such that it has the values 0 and 1 at P, and P, respectively.
Utilizing the triangle OPP,, the following equation can be written:

P=P,+(P-P) (59
However, the vector (P — P,) is proportional to the vector P, — P, such that
P—P, =uP,—P,y) (5.10)
P,-P Pr -
Pa_p “=t
u=0 e
Y
P, P P,
o X

z

FIGURE 5-14
Line connecting two points P, and P,.
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Thus the equation of the line becomes

P=P, +uP,—P,), O<uxl (5.11)
In scalar form, this equation can be written as

x =Xy + u(x; — xy)

y=y;+u(yz—y1) O<uxl1 (5.12)
z=12zy +uz, — z,) !

Equation (5.11) defines a line bounded by the endpoints P, and P, whose
associated parametric values are 0 and 1 respectively. Any other point on the
line or its extension has a certain value of u which is proportional to the point
location, as Fig. 5-15-shows. The coordinates of any point in the figure are
obtained by substituting the corresponding u value in Eq. (5.11).

The tangent vector of the line is given by

P=P,—-P, (5.13)
or, in scalar form,

’

X' =x, —x;
Y=y:1—y (5-14)

Z'=z,—12
The independence of the tangent vector from u reflects the constant slope of
the straight line. For a two-dimensional line, the known infinite (vertical line)

and zero (horizontal line) slope conditions can be generated from Eq. (5.14).
The unit vector # in the direction of the line (Fig. 5-14) is given by

. P-P :
A= (5.15)

where L is the length of the line:
L=|P,-P,| =\/(x2 ——x1)2 +(y; ‘—)’1)2 +(zz“7-1)2 (5.16)

P~
Py _~i=1
P, u=0.75
Pq /////’“ =0
Py ,//?1/= -1
u=-15
FIGURE 5-15

Locating points on an existing line. =
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Regardless of the user input to create a line, a line database stores its
two endpoints and additional information such as its font, width, color, and
layer. Equations (5.11) and (5.13) show that the endpoints are enough to
provide all geometric properties and characteristics of the line. They are also
sufficient to construct and display the line. For reference purposes, CAD/CAM
software usually identifies the first point input by the user during line con-
struction as P,, where u = 0. These two equations can be programmed into a
subroutine thai can reside in a graphics library of the software and which can
be invoked, via the user interface, to construct lines. Point commands (or
definitions) on most systems provide users with a modifier to specify a u value
relative to an entity to generate points on it. In the case of a line, the value is
substituted into Eq. (5.11) to find the point coordinates.

2. A line passing through a point P, in a direction defined by the unit vector i

(Fig. 5-16). Case 1 is considered the basic method to create a line because it
provides the line database directly with the two endpoints. This case and
others usually result in generating the endpoints from the user input or given
data, as discussed below. .

To develop the line equation for this case, consider a general point P on
the line at a distance L from P;. The vector equation of the line becomes (see
triangle OP,P)

P=P,+L1f —w<L<w (5.17)
and L is given by :
L=|B—P,] (5.18)

L is the parameter in Eq. (5.17). Thus, the tangent vector is f.

Once the user inputs P,, f, and L, the point P is calculated using Eq.
(5.17), and the line has the two endpoints P, and P with u values of 0 and 1 as
discussed in case 1. .

The following examples show how parametric equations of various line
forms can be developed. The examples relate to the most common line com-
mands offered by CAD/CAM software.

Py

P, P

FIGURE 5-16

z Line passing through P, in direction n.
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Example 5.6. Find the equations and endpoints of two lines, one horizontal and the
other vertical. Each line begins at and passes through a given point and is clipped
by another given point.

Solution. Horizontal and vertical lines are usually defined in reference to the current
WCS axes. Horizontal lines are parallel to the X axis and vertical lines are parallel
to the Y axis. Figure 5-17 shows a typical user working environment where the
WCS has a different orientation from the MCS. In this case, the WCS is equivalent
to the coordinate system used to develop the line equations. Once the endpoints are
calculated from these equations with respect to the WCS, they are transformed to
the MCS before the line display or storage.

Assume that three points Py, P,, and P, are given. The vertical line passes
through P, and ends at P, while the horizontal line passes through P, and ends at
P;. In general, the two lines cannot pass through points P, or P;. Therefore, the
ends are determined by projecting the points onto the lines as shown. Using Eq.
(5.17), the line equations are

Vertical: P=P,+La;,, O<L<L,
or Xy = xiw
Yw=yw+L
Zw = Zyw
where

L= Y;W —iw
and the endpoints are (x,y, y1w, Zyw) and (Xyp, V1w + Ly, Z1w)

Horizontal: P=P, + Li,, 0<L<L,

FIGURE 517
z Horizontal and vertical lines.
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or Xy =Xy + L
Yw = V1w
Iw = Zw
where

Ly = X3y — Xy

and the endpoints are (x,4, Y1w. Z1w) and (X5 + Lo, V1w, Z1w)-

Example 5.7. Find the equation and endpoints of a line that passes through a point
P, parallel to an existing line, and is trimmed by point P, as shown in Fig. 5-18.

Solution. To minimize confusion, the differentiation between the orientations of the
WCS and the MCS is ignored and the position vectors of the various points are
omitted from the figure. Assume that the existing line has the two endpoints P, and
P,, alength Ly, and a direction defined by the unit vector fi;. The new line has the
same direction fi;, a length L,, and endpoints P; and P5. P is the projection of P,
onto the line.

The equation of the new line is found by substituting the proper vectors into
Eq. (5.17). The unit vector i, is given by

P,—P,
L,

n, =

where L, is a known value [Eq. (5.16)]. L, can be found from the following equa-
tion:

Ly=i,-(P,—P;)
P,—P
'—‘—E"}"(Pz -P)
_ (xg = %3)(x3 = X3) + (Vs = y3) V2 = y0) + (24 — 23)(22 — 21)
\/(x«. — %32 + (s — ya)* + (24 — z3)?

Py

V4

FIGURE 5-18
Line parallel to an existing line.
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The equation of the new line becomes
P =P, + Li, 0<L<L,

and its two endpoints are Py(x,, ¥, z;) and Ps(x; + Lon,,, y, + Lyny,, z, +
L,n,,). As numerical examples, consider the simple two-dimensional case of con-
structing lines parallel to existing horizontal and vertical ones. Verify the above
equations for the horizontal lines case P (3, 2), P,(7, 4),-P5(2, 3), and P (5, 3). Repeat
for the vertical lines case P,(8, 9), P,(9, 2), P4(5, 3), and P,(5, 9). Readers can also
utilize the corresponding command to this example to construct the'line on their
CAD/CAM systems, verify the line to obtain its length and endpoints, and then
compare with the results obtained here.

Example 5.8. Relate the following CAD/CAM commands to their mathematical
foundations:

(a) The command that measures the angle between two intersecting lines.
(b) The command that finds the distance between a point and a line.

Solution

(a) If the endpoints of the two lines are P, P, and P,, P, (Fig. 5-19a), the angle
measurement command uses the equation
®,—P)-(P,~P,)

cos 6 =
IPz_le |P4"P3|

_ (x5 = x1) (x4 —X3) + (y2 = Y1) (Pa = ¥3) + (22 — 21)(z4 — 23)
\/[(xz — %12 + (¥, — ¥ + (@5 — 22 (% — %3)° + (Vo — 3 + (2 — 23)°]

(b) Figure 5-19b shows the distance D from point P, to the line whose endpoints are
P, and P, and direction is i. Its length is L. D is given by

i j k
X3 —Xy Y3—Y1 Z3—Z
Xy =Xy Ya—JY1 22724

—-P
D=1(Ps — Py xa]= (Ps—Pl)xg'z*Pi)l -

L L L

Py

Ps

P )
(a) Angle measurement command (b) Distance measurement command

FIGURE 5-19
Data related to line commands.
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(where, on the furtherest right-hand side, the inner vertical bars indicate the
determinant and the outer vertical bars indicate the magnitude of the resulting
vector) or

1
D= Z SQRT{[(y3 — y )22 — 21) = (25 — 2.0y, — y1)I?

+ [(z3 — 29)(x3 — x1) — (%3 — X, )z; — 2T
+ (%3 = x )2 — ¥1) — (73 = yo)lxz — %4017}

where SQRT is the square root. For a two-dimensional case, this equation
reduces to

1
D= i [0 = %1 Xy2 = 1) — (¥3 — ¥1Xx2 — x4)]

Example 5.9. Find the unit tangent vector in the direction of a line:

(a) Parallel to an existing line.
(b) Perpendicular to an existing line.

Solution. The conditions of parallelism or perpendicularity of two lines given in the
vector algebra reviewed in Sec. 5.5.1 are useful if the vector equations of the two
lines exist. If one equation is not available, which is mostly the case in practical
problems, the conditions should be reduced to find the unit tangent vector of the
missing line in terms of the existing one.-Figure 5-20 shows the existing line as L,
with a known unit tangent vector i,. The unit tangent vector i, is to be found in
terms of @,.

(a) For L, and L, to be parallel (Fig. 5-20a),
f, =i
or [ ny 123" =[ny, L

This equation defines an infinite number of lines in an infinite number of planes
in space. Additional geometric conditions are required to define a specific line.
This equation is equivalent to the condition of the equality of the two slopes of

() Parallel lines (b) Perpendicular lines

FIGURE 520
Unit tangent vectors of various lines.
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~

the two lines in the two-dimensional case. Neglecting the Z component, the
above equation gives the condition for this case as

[nax nZy]T=[n1x nly]T

Ray _ Ny
or _ =
Nax Ny
or m, =m;

where m, and m, are the slopes of the lines.
For L, and L, to be perpendicular (Fig. 5-20b),

A, i, =0
or RNy, + Ny ny, +10y.my, =0 (5.19)

Additional equations are needed to solve for fi,. The following two equations
can be written: )
|8, x d,|=1
or (nyyny, —ny; "zy)2 +(nyzng: = Ry ny)? + By, — 1y, n? =1 (520)
and
iy i, =Ry
or n,+n3,+nk =1 (5.21)

However, only two equations out of the above three are independent. For
example, squaring Eq. (5.19) and adding it to Eq. (5.20) results in Eq. (5.21) if the
identity n?, + n2, + n?_ = 1 is used. Therefore, only two equations are available
to solve for n,,, n,,, and n,., which implies that only two of these components
can be obtained as functions of the third. This situation results from the fact that
the perpendicular line L, to L, at point P shown in Fig. 5-20 is not unique. A
plane perpendicular to L, at P defines the locus of L, .

As a more defined case, assume that point P; is known and L, is the
perpendicular line from P to L,. Using the above equations to solve for fi, is
usually cumbersome. Instead, utilizing the triangle P PP;, the following equa-
tion can be written:

) P,P,=P,P + PP,
or . P,—P,=[(P;—P,) -0,]d, + Da, (522)
where D is the perpendicular distance between P, and L, and is given in the
previous example. Equation (5.22) gives i, as -
1 o
fi, = D {Py—P, —[P;—P)- ii,]8,}

In scalar form,

. .

Ny, = —D~ [(X3 — xl)(l - nf,) - ()’3 - yl)nh; Nyy — (23 - zl)nlxnlz]
1 2

nyy = D [lys = y)Q —nl)) — (x3 — x )y ng, — (23 — 200y, -1
1 2

n,y, = B [(zs — z X1 —n1) — (ys — yongyne. — (x3 — x )y ny.]

For the two-dimensional case, Eq. (5.22) becomes
X3 —xy = [(x3 — x1)nyx + (3 — y)ny,Iny, + Dy,
V3 = y1 =[x3 — xny + (y3 — yony,Iny, + Dny,

Multiplying the first and second equations by n,. and n,, respectively and
adding them, utilizing the identity n}, + n?, = 1, we get

D(ng.ny, +nyyny) =0

n, n
or 2y lx
Ny nly
n,, n
or Ty g
Nax Nyx
or mym, = —1

which is a known result from two-dimensional analytic geometry. In the two-
dimensional case ii, can be chosen such that

Nyx =Ny, Ny = —Ny,
or Ny = —ny, Nay =My,

Note: it is left to the reader to show that Eg. (5.22) can be reduced to the
condition fi, - i, = 0.

Other useful line cases are assigned as problems at the end of the chapter.

5.5.3 Circles

Circles and circular arcs are among the most common entities used in wireframe
modeling. Circles and circular arcs together with straight lines are sufficient to
construct a large percentage of existing mechanical parts and components in
practice. Besides other information, a circle database stores its radius and center
as its essential geometric data. If the plane of the circle cannot be defined from
the user input data as in the case of specifying a center and a radius, it is typically
assumed by the software to be the XY plane of the current WCS at the time of
construction. Regardless of the user input information to create a circle, such
information is always converted into a radius and center by the software. This
section presents some cases to show how such conversion is possible. Other cases
are left to the reader as problems at the end of the chapter.

The basic parametric equation of a circle can be written as (refer to
Fig. 5-21)

x=x,+Rcosu
y=y.+Rsinu O<u<=n (5.23)
z=7z,

assuming that the plane of the circle is the XY plane for simplicity. In this equa-
tion, the parameter u is the angle measured from the X axis to any point P on the
circle. This parameter is used by commercial software to locate points at certain




188 GEOMETRIC MODELING

u=u2
Y Prst (st Yasts Zasr1)
Pr (s Yo Zn)
Au P(x.y,z)
R
w=1 - £
P, (e yer ) u=2mr 3
P,
u =32
X
z
FIGURE 5-21

Circle defined by a radius and center.

angles on the circle for construction purposes. Some certain values of u are
shown in Fig. 5-21.

For display purposes, Eq. (5.23) can be used to generate points on the circle
circumference by incrementing u from 0 to 360. These points are in turn con-
nected with line segments to display the circle. However, this is an inefficient way
due to computing the trigonometric functions in the equation for each point. A
less computational method is to write Eq. (5.23) in an incremental form.
Assuming there is an increment Au between two consecutive points P(x,, y,, z,)
and P(X,:1, Va+1> Zs+1) OD the circle circumference, the following recursive
relationship can be written: -

X, =X+ Rcosu
V.=Y.+Rsinu
Xp+1 =X, + R cos (u+ Au) (5.24)
Va1 =Y. + Rsin (u + Au)
Zn+y = Zy
Expanding the x,,, and y,,, equation gives
Xppy =X, + (x, — x,) cos Au — (y, — y.) sin Au
Yu+1=Ye + (¥, — y.) cos Au + (x, — x.) sin Au (5.25)
Zp+1 = Zp

Thus, the circle can start from an arbitrary point and successive points with equal
spacing can'be calculated recursively. Cos Au and sin Au have to be calculated
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only once, which eliminates computation of trigonometric functions for each
point.. This algorithm is useful for hardware implementation to speed up the
circle generation and display.

Circular arcs are considered a special case of circles. Therefore, all dis-
cussions covered here regarding circles can easily be extended to arcs. A circular
arc equation can be written as

x=x,+ Rcosu
y=y.+Rsinu u <u<u, (5.26)

z=2,

where u; and u, are the starting and ending angles of the arc respectively. An arc
database includes its center and radius, as a circle, as well as its starting and
ending angles. Most user inputs offered by software to create arcs are similar to
these offered to create circles. In fact, some software packages do not even offer
arcs, in which case users have to create circles and then trim them using the
proper trimming boundaries. As indicated from Eq. (5.26) and Fig. 5-21, the arc
always connects its beginning and ending points in a counterclockwise direction.
This rule is usually the default of most CAD/CAM packages when the user input
is not sufficient to determine the arc position in space. For example, Fig. 5-22
shows the two possibilities to create an arc given two input points P; and P, to
define its diameter. In this case, the arc is obviously half a circle and P, is always
its starting point as it is input first by the user.

Following are some examples that show how various geometric data and
constraints, which can be thought of as’user inputs required by software pack-
ages, can be converted to a radius and center before its storage by the software in
the corresponding circle database. They also show that three constraints (points
and/or tangent vectors) are required to create a circle except for the obvious case
of a center and radius. In all these examples, the reader can verify the resulting
equations by comparing their results with those of an accessible CAD/CAM soft-
ware package.

Example 5.19. Find the radius and the center of a circle whose diameter is given by
two points.

FIGURE 5-22
Arc creation following counterclockwise direction.
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FIGURE 5-23 ) .
Circle defined by diameter P, P,.

Solution. Assume the circle diameter is given by the two points P, and P, as shown
in Fig. 5-23. The circle radius and center are

R=3/(x; = x> + 2 = y)* + (22 — 2,)*
Pc = %(Pl + PZ)

X1+ X, yi+y: 2tz |
2 . 2 2

or [xc yC zC]T = [

Example 5.11. Find the radius and the.center of a circle passing through three
points.

Solution. Figure 5-24 shows the three given points Py, P,, and P; that the circle
must pass through. The circle radius and center are shown as P, and R respectively.
From analytic geometry, P, is the intersection of the perpendicular lines to the
chords P,P,, P, P4, and P,P, from their midpoints P,, Ps, and P4 respectively.
The unit vectors defining the directions of these chords in space are known and

given by
P,—-P P,—-P P,—-P
i, = 2 1 fi, = 3 2 i, = 1 3
|P2_P1l IP3—P2| |P1“‘P3|
FIGURE 5-24

Circle passing through three points.
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To find the center of the circle, P, , the following three equations can be written:

P,—P
(PC_PI).ﬁl___M
2
-P
@ ~Py-a,= 22l 527)
P,-P
@ ~py-a, =222

Each of these vector equations implies that the component of a vector radius in the
direction of any of the three chords is equal to half the chord length. These equa-
tions can be used to solve for P, (x,, y., z.). Expanding and rearranging the equa-

tions in a matrix form yields
{

Ry My, Ny |} X b,
Nyz Mgy My || ¥ |=1|02 (5.28)
M3y N3y Na || 2 by
where
[P, =Py
b= —‘Z_Z—L' + (eymy + Yoy, + 20
|P; —P,|
b, =2 5 2 (xpnp + Yahay + 2305,)
|P, — Py
by = ';2—'3" + (X313, + Y33y + 23132)

The matrix equation (5.28) has the form [A]P, = b. Therefore,

Adj (4D

b
14|

P, =[A] b=

where Adj ([4]) and | A| are the adjoint matrix and determinant of [4] respectively.
Adj ([A]) is the matrix [C]" where [C] is the matrix formed by the cofactors C;; of
the elements a;; of [A4]. The cofactor C;; is given by

Cn’j = (—1)l+jMij
where M; is a unique scalar associated with the element a; and is defined as the

determinant of the (n — 1) x (n — 1) matrix obtained from the n x n matrix [4] by
crossing out the ith row and jth column. Thus

[c1rr
p -y
4]
and Al = ny(ngyny, — ng ns) — Ny ny, — ny ns) + ny(nyxna, — ngynsy)
Ciy Cip Cys
[C] = sz sz Czs
Csy Csp Cis
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The elements of [C] are given by
Ciy=ngyny, —ny.ny,  Cyp =Ny N3, —nyeny, Ciy=n,, N3y — Nay N3,
Cay=ny,ng, — nyny,  Chpy=nyeny, —ngny,  Cyy=nyn, —n,, N3y,
Cyy=nyn,, —n,ny, Cyy=nyn,, —n.n,, Cyy=ny, Ny — Ny Moy
The coordinates of the center can now be written as

1 A
X = |_A| (Ci1by + Cayby + C3, b3)

1
Ve = m (C12b1 + Ca3b; + Cy3b3)

1

z, = |_A| (C13by + Ca3bz + C33b3)
The radius R is the distance between P, and any of the three data points, that is,
R=|P.—P|=|P,—P;| =P, — P3|

or, for example,

R= \/(Xc — X2+ (. — ¥ + (2 — )

For the two-dimensional case, only two of the three relationships shown in
Eq. (5.27) are sufficient to find the center P,(x., y.). The third equation can be
used to check the results. Using the first two relationships, the following matrix

equations can be written:
Ny n2y Ve b 2

_1P,— Py

where

+ (M + yinyy)

—-P,]
= Tz + (X213, + Yo nzy)

Similar to the three-dimensional case, the centér is given by
_ myby—ny by
= RyxNay — ByyNax
_ ny.by — an'bl

<
Nix "2)- - nly Nax

Example 5.12. Find the center of a circle that is tangent to two known lines with a
given radius.

Solution. This case is shown in Fig. 5-25. The two existing lines are defined by the
point pairs (P,, P,) and (P;, P,). The unit vectors fi, and f, define the directions of
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P
(a) One solution (b) Multiple solutions

FIGURE 5-25 ¥
Circle tangent to two lines with given radius R.

the lines in space. The center of the circle P, is the intersection of the two normals to
the two lines at the tangency points. The unit vectors fi, and fi; define the directions
of these two normals in space.

Conceptually, P, can be found by finding the intersection of the two normals
by solving their two vector equations. However, this route is cambersome. Instead,
P_ is found as the intersection of the two lines P,.P,. and P. P,. that are parallel to
PP, and P, P, at distance R respectively. The following development is based on
the observation that the two lines P, P, and P, P, define the plane of the circle and
all the other lines and points shown in Fig. 5-25 lie in this plane.

The unit vectors can be defined as

P,—P P,—P i, x @
ﬁ1= 2 1 ﬁz= 4 3 ﬁ3= .l .2

[Py — Py [Py — P I8y x f,]
i, =iy X Ay fis =0, x fiy

where fi, is the unit vector perpendicular to the plane of the circle. The endpoints of
the parallel lines are given by

P,.=P, + Ri, P, =P, + Rii,
and P, =P + Riig P, =P, + Ri,
Thus, the parametric vector equations of these parallel lines becomes
P=P, +uP,—P,) + R, (5.29)
P=P; + v(P, —P;) + Riis (5.30)
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Therefore, the intersection point of the two lines is defined by the equation
P, + u(P, — P,) + Rii, = P, + o(P, — P) + Ra; (5.31)

This vector equation can be solved for either u or v which, in turn, can be substi-
tuted into Eq. (5.29) or Eq. (5.30) to find P. . If this equation is solved in scalar form,
two components, say in the X and Y directions, give u and v. The third component,
in the Z direction, can be used to check the computations involved.
To find u, take the scalar product of Eq. (5.31) with fi, . This gives
(P, =Py *fs+(1—f @R ‘

= 5.32
“ (B, P,) -8, 32)

Substituting this value in Eq. (5.29) gives

(P3;—P,) -85+ (1 —f, -8 -R
P, —P,) i

which can easily be written in scalar form to yield the coordinates x., y., and z, of

the centerpoint P.. The two-dimensional case exhibits no special characteristics
from the three-dimensional case. ’

P,=P, + [ ](P2 —P)+Ri,  (533)

The above development was not concerned with the existence of the four
multiple solutions shown in Fig. 5-25b if the two known lines, and not their
extensions, intersect. In such a case, the software package often follows a certain
convention or requests the user to digitize the quadrant where the circle is to
reside. One common convention is that the circle becomes tangent to the closest
line segments chosen by the user while digitizing the two known lines to identify
them. For all solutions, the above development is valid.

A point of interest here is the possible graphical solution to find the point
P, which is useful to verify the above results if the case of constructing a circle
tangent to two lines is not provided by the software, but the other simpler case of
a radius and center is. In terms of a typical CAD/CAM software package, the
graphical solution consists of defining a WCS utilizing the endpoints of the two
known lines. The XY plane of WCS becomes the plane of the lines. Using the
parallel line command, the user can construct the two lines P,. P,. and P;. P,..
The circle can now be constructed with the radius R and P, as the intersection of
these two parallel lines. Using the verify command the user can obtain the coor-
dinates of P, and compare with the results of Eq. (5.33).

Two special cases related to Egs. (5.32) and (5.33) are discussed here. First,
consider the case when the two known lines are parallel, as shown in Fig. 5-26a.
In this case fi, = fi,, i, = —#fs, iy * §; = —1, and (P, — P,) - fi5 = 0. Therefore,
u—> oo and P, is not defined. However, the locus of P, is defined as the parallel
line to the known lines at the middle distance between them, as shown in the
figure. In this case the software can override the user input of R and replaces it by
half the perpendicular distance between the two lines. Such a distance can be
computed as shown in Sec. 5.5.2. The two endpoints of the locus of P, are given
by

P, + P, P,+P,
PL1=““"2‘— L2 ="
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Py

~5p,
Soi?c
N~
Py
~
AN
Py AN
N,
~.
Py
(a) Parallel lines (b) Perpendicular lines
FIGURE 5-26

Circles tangent to parallel and perpendicular lines.

An infinite number of circles exists with centers on the locus. The software can
either display a warning message to the user or choose point P;, or P, as a
default center.

The second case is shown in Fig. 5-26b, where the two known lines are
perpendicular to each other. In this case fi, =fi,, fi; =, and f, * 5 =0.
Equations (5.33) and (5.32) become

P, —Py)-A, +R
[P; — Py
P. =P, +[P; —Py) i, + R]a; + Rii,
This equation for P, is also obvious if we consider the triangle P, P, P5 and write
the vector equation PP, = P,Ps + P P,.
The above development can be extended to fillets connecting lines as

follows. Once P, is known from Eq. (5.33), the two points Ps and Pg (Fig. 5-25q)
are given by

P, =P, — Ri,
P, =P, — Ri

These two points define the beginning and the end of the fillet and can be used to
construct the proper part of the circle that forms the fillet.

5.5.4 Ellipses

Mathematically the ellipse is a curve generated by a point moving in space such
that at any position the sum of its distances from two fixed points (foci) is con-
stant and equal to the major diameter. Each focus is located on the major axis of
the ellipse at a distance from its center equal to ./A* — B* (4 and B are the
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major and minor radii). Circular holes and forms become ellipses when they are
viewed obliquely relative to their planes.

The development of the parametric equation and other related character-
istics of ellipses, elliptic arcs, and fillets are similar to those of circles, circular
arcs, and fillets. However, four conditions (points and/or tangent vectors) are
required to define the geometric shape of an ellipse as compared to three condi-
tions to define a circle. The default plane of an ellipse, as in a circle, is the XY
plane of the current WCS 'at the time of construction if the user,input is not
enough to define the ellipse plane, as in the case of inputing the center, half of the
length of the major axis, and half of the length of the minor axis. The database of
an ellipse usually stores user input as a centerpoint, half the length of the major
axis, half the length of the minor axis, and other information (orientation, starting
and ending angles, layer, font, name, color, etc.).

Figure 5-27 shows an ellipse with point P, as the center and the lengths of
half of the major and minor axes are A and B respectively. The parametric equa-
tion of an ellipse can be written as

x=x,+ Acosu

y=Yy.+Bsinu O<u<2n (5.34)
z=1z,
Yw
Pasy
P(x.y.z)
B
A B sinu
P (xcy Yer Zc) 0 X,
A cos u—>[ v

-z X

FIGURE 5-27
Ellipse defined by a center, major and minor axes.
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assuming the plane of the ellipse is the XY plane. The parameter u is the angle as
in the case of a circle. However, for a point P shown in the figure, it is not the
angle between the line PP, and the major axis of the ellipse. Instead, it is defined
as shown. To find point P on the ellipse that corresponds to an angle u, the two
concentric circles C, and C, are constructed with centers at P, and radii of 4 and
B respectively. A radial line is constructed at the angle u to intersect both circles
at points P, and P, respectively. If a line parallel to the minor axis is drawn from
P, and a line parallel to the major axis is drawn from P,, the intersection of
these two lines defines the point P.

Similar development as in the case of a circle results in the following recur-
sive relationships which are useful for generating points on the ellipse for display
purposes without excessive evaluations of trigonometric functions:

A
Xps1 = X, + (x, — x.) cos Au — 3 Ve — y.) sin Au

A .
VYar1 =Y + (n — ¥.) cOS Au + 3 (x, — x.) sin Au (5.35)
Zp+y = Zp

If the ellipse major axis is inclined with an angle « relative to the X axis as
shown in Fig. 5-28, the ellipse equation becomes
x=xc+Acosucosa—B‘sinusina
y=y£+Acosusihcx+Bsi'nucosa O0<u<2n (5.36)
z=1z,
Equations (5.36) cannot be reduced to a recursive relationship similar to
what is given by Egs. (5.35). Instead these equations can be written as
Xp+1 = X, + A cos (u, + Au) cos « — B sin (u, + Au) sin «
Voi+1 =Y. + A cos (u, + Au) sin o + B sin (u, + Au) cos a (5.37)
Zn+1 = Za
where u, = (n — l)u The first point corresponds to n = 0 which lies at the end of
the major axis. In' addition, cos (u, + Au) and sin (u, + Au) are evaluated from
the double-angle formulas for cosine and sine. If the calculations from the
previous point for sin u, and cos u, are stored temporarily, cos (u, + Au) and
sin (u, + Au) can be evaluated without calculating trigonometric functions for

each point. Cos Au and sin Au need to be calculated only once. Therefore, com-
putational savings similar to the circle case can be achieved.

Example 5.13. Find the center, the lengths of half the axes, and the orientation in
space of an ellipse defined by:

(@) Its circumscribing rectangle.
(b) Onme of its internal rectangles.
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X
Px.y.z)
YW
A cos u cos a
a
. P, d
A
Y — ’<—— Bsinu sina

L—A €os u sin a

V4

FIGURE 5-28
An inclined ellipse.

Solution. Both cases are equivalent to defining an ellipse by four points. The user
interface can let the user input the three corner points of the rectangle or one corner
point, the lengths of the rectangle sides, and an orientation.

(a) From Fig. 5-29a:
P, =3P, +P3) =3P, +P,)
Py =3P, +P;)
P, =3P +P,)
A=1P. =Pyl = /e = x)7 + U — 2P + G — 2
B=IP.—P,|=/(x. = x)" + (e = 3)* + (. — 2)°
The orientation of the ellipse in space can be defined by the unit vectors &, i, ,
and ii; instead of the angle «. These vectors are given by '
P,—-P P,—P
R v A R X

fiy =1f; x1ii,
To display the ellipse, points on its circumference can be computed in the local
(WCS) system X, Yy, Zy, utilizing the equation

Xy =Acosu

yw=Bcosu O<u<2n

Zp =0
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z

(b) Internal rectangle

FIGURE 5-29
An ellipse defined by four points.

These points can then be transformed to the MCS utilizing Eq. (3.3) as follows:
Nyx Max Naxy X || Xw

[X y z 1]T= y n2y n3y:Yc Yw

00 01|t
The transformed points can be input to the graphics display driver to display the

ellipse.
(b) P, &y, i,, and fi; can be calculated as in case (). To find 4 and B, one can write

Ps=3®,+Py)

In reference to the WCS coordinate system, the x and y coordinates of point P;
are |P; — P,| and | P; — P | respectively. Substituting into the ellipse equation,

[Ps—P.> |P;—Ps>

2 B

1 (5.38)
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To write another equation in 4 and B, consider the triangle P, P, P, and write
the law of cosines as

[Py — Pyl =|P,—P,|> + 4> — 24|P, — P, | cos 0 (5.39)

The angle 6 can be computed as the angle between the two vectors (Ps — P,)
and (P; — P,). To calculate the length | P, — Py|, Py which has the coordinates
(4, 0, 0) in the WCS system must be transformed to the MCS. Consequently its
MCS coordinates become (x, + n,. A4, y. + ny, 4, z, + n,_ A). Substituting these
coordinates into Eq. (5.39), 2 second-order equation in A resultss which can be
solved for A. Then Eq. (5.38) can be used to solve for B. The remainder of the
solution (finding the ellipse orientation and displaying it) is identical to case (a).

Example 5.14. Find the center, the lengths of half the axes, and the orientation of an
ellipse given two of its conjugate diameters.

Solution. This is a case of defining an ellipse by four points that form two of its
conjugate diameters. Figure 5-30 shows the two conjugate diameters and the rele-
vant unit vectors. The center of the ellipse is given by

P = %(Px +Pj) = '%(Pz +Py)
The unit vectors #,, fi,, and fi, are given by
ﬁl_Pj—Pl B, = P,—P, i, = i, x 1,

TPy =P, TP, - P, [fy X i, |

Utilizing the ellipse equation for points P, and P, the following two equations can
be written: 5 s
(Ly cos 8;)* (L sin 8,)

‘Az ot le“ =1 (5.40)

(Ly cos 8, (L, sin 6,)° )

= + B (5.41)

FIGURE 5-30
X : An ellipse defined by two
: conjugate diameters.
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where
Li=[P,—P.| Ly=|P;—P]
The angles 8, and 6, can be related together as follows:
fi, - i, = cos (8; + 8,)
or 0, +0,=K (542)

where K is a known value. In addition, applying the law of sines to the triangles
P_P,P,and P_P, P, we can write

L _ L (543)
sin 8; sin 6,
L - (5.44)
sin (180 — 6;) sin 6,
where .
Ly=|P, —Ps| Li=Ls—L, Ls=|P; — P,
Dividing Eq. (5.44) by (5.43) and using (5.42) gives
. sin 6, _ L,L, (5.45)
sin (K —68y)  Ly(L¢ — Ld)
Applying the law of cosines to the same friangles gives
L2=1L2%+ L% —2L,L, cos 0, (5.46)
(Lg —L)* =12+ L%~ 2L, L, cos 6, (547

Equations (5.40), (5.41), (5.42), (5.45), (5.46), and (5.47) form six equations to be
solved for 4, B, 6,, 0,, L, and L,. Subtracting Egs. (5.47) and (5.46) and using
(5.42) gives :

L3—L?—-L%+2L,Lg
" 2[L, cos (K — 8,) — L, cos 8,]

L, (5.48)

If Eq. (5.48) is substituted into (5.46) and the resulting L, is substituted into
(5.45), a nonlinear equation in 6, results which can be solved for ,. Consequently
0, can be found from Eq. (5.42). Equations (5.40) and (5.41) can therefore be solved
for A and B. ] . .

The orientation of the ellipse can be found by determining the unit vectors fi,
and #, that define the directions of the major and the minor axes respectively. To
find #,, the following three equations can be written:

i, *fi, =cos 0,

=

, < i, =cos 0
fiy <, =0

These equations can be solved for the components n,,, n,,, and n,, using the
matrix approach utilized in Example 5.11. The unit vector ii, can be found as

i, =0y X i,
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With #,, 0,, and @i, known, the orientation of the ellipse is completely defined in
space and transformation of points on the ellipse from the WCS system to the MCS
can be performed for display and plotting purposes.

Note: case (b) of Example 5.13 is a special case of this example.

Example 5.15. Find the tangent to an ellipse from a given point P, outside the
ellipse.

Solution. Two tangents can be drawn to the ellipse from P, as shown in Fig. 5-31.

Assume the tangency point is Py. First, transform P, from the MCS to the ellipse
local WCS system using the equation

P, =[TIP,» (5-49)

The transformation matrix [T] is known because the orientation of the ellipse is
known. P,y holds the local coordinates of P, which should be [x,5 yiy O]
Therefore:

Py =[T]" 1P1
The tangent vector to the ellipse is given by
P'=[—Asinu Bcosu 0]F
At point Py, this vector becomes ‘
P =[—Asin u’T Bcosuy 017
and the slope of the tangent is given by .-~

Bcosu
§=-——=—I
A sin up

This slope S can also be found using the two points P, and Py as

Yiw — B sin u
§=2r T (5.50)

Xy — A cos up

Yw &

X
Py i

z X

FIGURE 5-31
Tangent to an ellipse from an outside point.
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Therefore,

Viw— Bsinup _BcosuT

xyw — A cos ur A sin uy
which gives

x,B cos up + y A sin up = AB
or K, cos ur + K, sin up = AB

where K, = x,B and K, = y,A. Define an angle y such that y = tan™! (K,/K),).
Thus, the above equation can be rewritten as

AB
Sin (7 + tiy) =~
JK?+ K2
, T . N
or up =sin m b

The arcsine function gives two angles that result in two tangents.
Once uy is known, the local coordinates of Py become

Prw=[xrw yrw 01" =[Acosur Bsinup 0]7

P can be substituted in Eq. (5.49) to obtain P. Therefore, the tangent is defined
and stored in the database by the two endpoints P; and P;. In practice, the
CAD/CAM software can ask the user to digitize close to the desired tangent so that
the other one is eliminated.

55.5 Parabolas

The parabola is defined mathematically as a curve generated by a point that
moves such that its distance from a fixed point (the focus Py) is always equal to
its distance to a fixed line (the directrix) as shown in Fig. 5-32. The vertex P, is
the intersection point of the parabola with its axis of symmetry. It is located
midway between the directrix and the focus. The focus lies on the axis of sym-
metry. Useful applications of the parabolic curve in engineering design include its
use in parabolic sound and light reflectors, radar antennas, and in bridge arches.
Three conditions are required to define a parabola, a parabolic curve, or a
parabolic arc. The default plane of a parabola is the XY plane of the current
WCS at the time of construction. The database of a parabola usually stores the
coordinates of its vertex, distances yyp and y y, that define its endpoints as
shown in Fig. 5-32, the distance A between the focus and the vertex (the focal
distance), and the orientation angle a. Unlike the ellipse, the parabola is not a
closed curve. Thus, the two endpoints determine the amount of the parabola to
be displayed.
Assuming the local coordinate system of the parabola as shown in
Fig. 5-32, its parametric equation can be written as
x = x, + Au?
y =1y, + 24u 0<u< (5.51)

=Zl]
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Yw
P(x.y.2)
I
|
= Aw?
= : |\ Vaw
{ l
A—
{PF d . 1 —> X, '
By(Xy: Yor 20) ‘ : L ¥
-Axis of
2A4u 1], symmetry
Lw

FIGURE 5-32
Basic geometry of a parabola.

If the range of thg y coordinate is limited to ygy and y, for positive and nega-
tive values respectively, the corresponding u values become

_Yaw
Y=
5.52
_Yw (5-52)
Uy =—
24

The r‘ecu-rsive relationships to generate points on the parabola are obtained by
substituting u, + Au for points n + 1. This gives

Xpr1 =X, + (Vo — y,) Au + A(Au)?
yn+1 =JYn + 2A Au (5.53)
Zn+1 = Z,

] If thfe parabolic axis of symmetry is inclined with an angle o as shown in
Fig. 5-33, its equation becomes

x =X, + Au® cos & — 24u sin « ,
Y=, + Au? sin a + 2A4u cos « (5.54)

z=1z,
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Xw

FIGURE 5-33
An inclined parabola.
and the recursive relationships reduce to
X,4+1 = X, €O & + (1 — cos &)x,; + (Au cos « —sin )Yy~ Vo)
+ A Au(Au cos « — 2 sin )
Vs = (cOs & + Au sin &)y, + (1 — cos & — Au sin &)y, . (5.55)
+ (x, — x,) sin & + A Au(Au sin o + 2 cos a)

Znt1 = 2y

An alternative to Egs. (5.55) would be to use Egs. (5.53) to generate the points in
the WCS local coordinate system of the parabola and then utilize Eq. (3.3) to
transform these points to the MCS before displaying or plotting them. If the
X, Y, and the XY planes coincide, the transformation matrix becomes

cos o sin o 0| x,
—sin o cos « 0 Ve

= o o 1z o9
0 0 0, 1

If the two planes are different, then the unit vectors fi.y , fi,s, and i that define
the orientation of the parabolic local coordinate system relative to the MCS must

be calculated before using Eq. (3.3).

Example 5.16. Find the focal distance and the orientation in space of a parabola
that passes through three points, one of which is the vertex.

Solution. Figure 5-34 shows two cases in which point P, is the vertex. In Fig. 5-34q,
the other two points P, and P, define a line perpendicular to the Xy axis of the
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where L, = |P, — P,|and L, = |P; — P, [. In addition,
i, - fi, =cos (f; + 0,)
or 6,+0,=K (5.59)

where
K=cos™!(n, "iiy)

The solution of Egs. (5.57), (5.58), and (5.59) gives 4, 6;, and 8,. If we divide
Eq. (5.57) by (5.58) and use (5.59), we obtain

L, sinf, *  cosé,

L,{sin(K—0,)] cos(K—8,)
which is a nonlinear equation in #,. One way to solve it would be to plot both the
left- and right-hand sides as functions of 6, (0 < 8, < 90) and find the intersection

(@) P,~Py is perpendicular to the Xy axis (6) General case point using the intersection modifier provided by the CAD/CAM software. Once 6,
FIGURE 534 is found, Eq. (5.57) can be solved for 4 and (5.59) solved for 6, . To find the orienta-

A parabola passing through three points. tion of the parabola, write

Ay *fi, =cos 6;

i, - i, =cos 6,
parabola while Fig. 5-34b shows the general case. The solution for the first case can

be found as follows. The angles 6, and 6, in this case are equal. Thus, fiy -8, =0
I’,z +P, which can be solved for the components of ii,. Then
oz ‘ 8, = i, X &,
The angle 6, can be found from 5.5.6 Hyperbolas
[P, — P, A hyperbola is described mathematically as a curve generated by a point moving
tan 6, = ———— P
P, - Py such that at any position the difference of its distances from the fixed points (foci)

F and F' is a constant and equal to the transverse axis of the hyperbola. Figure

Using the parabolic equation y3, = 44x,,, the focal distance A can be written as
gtep q Y ¥ 5-35 shows the geometry of a hyperbola.

AR X
4| P,—P,| Y .
D\'
The orientation of the parabola is determined by the unit vectors #, and i, along Conjugate axis—| s,‘@Q‘
the X and Y, axes and the vector fi; which is perpendicular to its plane. These A |
vectors are given as )
LIS Y B
L |, + B,] N Origin ; Transverse axis
w
~ - - - F P, F
. i, x fi, @ty x fi; v
i, = = —
7 |, x @] sin (8, + 6,)
A, = i, x f,
. P"
where the unit vectors fi, and &, can easily be computed from the given points. q{"%,
Unlike the above case, the angles §, and 8, are not equal for the second case %

(Fig. 5-34b). Applying the parabolic equations to points P, and P;, we can write
respectively

z X

L, sin? 0, = 44 cos 8, (5.57)
s FIGURE 5-35
L, sin®* 8, =44 cos 0, (5.58) Hyperbola geometry.
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The parametric equation of a hyperbola is given by
x =x,+ A cosh u

y=y,+ Bsinhu (5.60)

z=12,

This equation is based on the nonparametric implicit equation of the hyperbola
which can be written as A

=% -yl _

4> B

by utilizing the identity cosh® u — sinh® u = 1. . :
Similar to the ellipse developments, equations of an inclined hyperbola and

recursive relationships can be derived. Also, the examples covered in the ellipse
section can be extended to hyperbolas.

1 (5.61)

5.5.7 Conics

Conic curves or conic sections form the most general form of quadratic curves.

Lines, circles, ellipses, parabolas, and hyperbolas covered in the previous sections

are all special forms of conic curves. They all can be generated when a right -

circular cone of revolution is cut by planes at different angles relative to the cone
axis—thus the derivation of the name conics. Straight lines result from intersec-
ting a cone with a plane parallel to its axis and passing through its vertex. Circles
result when the cone is sectioned by a plane perpendicular to its axis while
ellipses, parabolas, and hyperbolas are generated when the plane is inclined to
the axis by various angles.

The general implicit nonparametric quadratic equation that describes a
planar conic curve has five coefficients if the coefficient of the term x? is made
equal to one; that is, normalize the equation by dividing it by this coefficient if it
is not one. Thus, five conditions are required to completely define a conic curve.
As presented in the previous sections, these reduce to two conditions to define
lines, three for circles and parabolas, and four for ellipses and hyperbolas.

The conic parametric equation can be developed if five conditions are speci-
fied. Two cases are discussed here: specifying five points or three points and two
tangent vectors. The development is based on the observation that a quadratic
equation can be written as the product of two linear equations. Figure 5-36
shows a conic curve passing through points P, to Ps. Define the two pairs of
lines (L,, L;) and (L5, L,) shown in the figure. Their equations are

Li=0 L,=0 Ly=0 L,=0 (5.62)

The four intersection points of these pairs are given by points P, to P,. Let us
define the two conics:

LiL,=0 L,L,=0 (5.63)

Each one of these conics passes through points P, to P, but not necessarily
through point P;. However, any linear combination of these two conics rep-

' FIGURE 5-36
A conic curve defined by five points.

resents another conic (since it is quadratic) which passes through their intersec-
tion points P, to P,. For example, the equation

aL,L, +bLyL, =0 (5.64)

represents such a conic. For the conic to pass through point Pjs its .coordinates
are substituted into Eq. (5.64) to find the ratio b/a. A more convenient form of
Eq. (5.64) is .

(1 —wLL, +ul;Lg=0, O<u<l (5.65)

Equation (5.65) gives the parametric equation of a conic curve with t}'le param-
eter u. Changing the value of u results in a family (or pencil) of conics, two of
which are L,L, =0 (u=0) and Ly L, =0 (u = 1). To use Eq. (5.65), four _dat.a
points are used to find the equations for the lines L; to Ly and the fifth point is
used to find the u value. )

The case of a conic defined by three points and two tangent vectors is
considered as an adaptation of the above case. If we make lines L; and L,
tangent to the conic curve, points P, and P, become one point (?he tangent
point) and P; and P, become another point. Consequently, the two l}nes {.3 and
L, are merged into one line. Figure 5-37 shows the conic geometry in this case.
The definition of this conic curve is equivalent to a four-point definition: the two
points of tangency P, and P,, the intersection point P, of the two tangents L,
and L,, and a fourth point P;, known as the shoulder point. P; must al:ways be
chosen inside the triangle P,P,P, to ensure the continuity of the conic curve
segment that lies inside the triangle between P, and P,. Equation (5.65) is then
reduced for this case to

(1—wL,L, +ul?=0, O<u<l (5.66)

Similar to the first case, points P;, P,, and P, determine the equations for the

lines L, to L, and the point Pj is used to find the u value. ) .
The choice of the position of P; determines the type of resulting conic

curve. If P; is the midpoint of the line joining the midpoints of the tangents L,
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FIGURE 5-37
A conic curve defined by three points
and two tangent vectors.

and L,, then the conic is a parabola. P; becomes the vertex of the parabola and
the line connecting P, and P, becomes its axis of symmetry. It is also obvious
that the distance between P; and P, is equal to the distance between P, and the
intersection point of the axis of symmetry and L, (a2 known characteristic of
parabolas). If P, lies inside the parabola and line Ly, the resulting conic is an
ellipse. If it is outside the parabola, a hyperbolic curve results. To check which
type of conic curve results from a given input data, let P,, be the midpoint of the
line L; and let the line L, intersect the conic curve at the point P,. The para-
metric equation of line L, is P = P, + u(P, — P,). Let the parameter u take the
value s at P,. Then (P, — P,) = s(P, — P,,). Therefore, the conic curve is parabol-
ic if s = 4, elliptic if s < 4, and hyperbolic if s > 1. A further test is necessary to
determine whether an eliptic curve is circular. If [P, — P, | = |P, — P,| and

s [P, — P,
1_52—4|P4_P1i [P, — P,

(5.67)
then the arc is circular.
Example 5.17. Find the equation of a conic curve defined by five points P, to Ps.

Solution. Equation (5.65) must be reduced further to be able to utilize it to generate
points on the conic curve for display purposes. The approach taken in this example
is to create a local (WCS) coordinate system (X, Y Zy) in the plane of the conic
curve (Fig. 5-38), write Eq. (5.65) in this system, generate points, and lastly trans-
form these points to the global MCS (X YZ). The input point P, is taken as the
origin of the local system and the vector (P, — P,) as its Xy, axis. To define the
system, the unit vectors along the axes are calculated as

P,—-P, . P,-P,
1= n, =
[Py —P,| [Py — P,|

-1

. R (5.68)

fiy x n,|

B

=

, = fiy X A,
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FIGURE 5-38
Local coordinate system of a conic curve.

At this point, it might be useful to ensure that the five points the user has inputted
lie in one plane (the conic curve plane). This can simply be achieved by checking
whether the scalar (dot) products of the vector fi; with the vectors (P, — P,) and
(P53 — Py) are zeros or not.

The points P, to Ps can be transformed from the MCS to the local system
using the equation

Xw
x y z 17 =[1]|”” (5.69)
Zw
1
x
-1 Yy
or xw yw zw T =([r1* 7 (5.70)
1
where
Ry, Nar MNaz | X2
- nly nZ)’ n3y : y2 (5.71)
[T] ny, Ny, nBZI Zz

Notice that the Z, components of all the points will be zeros.
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The equation of a line can be written as

Axy + Byy + C=0
B C
= —_ —=0 5.7
or L xW+AyW+A (5.72)

For each of the lines L, to L,, the local coordinates of its two known points can be
substituted into the above equation to find the two ratios B/4 and C/A. Utilizing
the resulting equations with Eq. (5.65) gives an implicit equation of the conic curve
that has the general form

fxw,yw, =0, O<ux<l1 (5.73)

Substituting the local coordinates of P into this equation gives the value of u. Now,
this equation can be used to generate points on the conic curve. These points can be
transformed to the MCS using Eq. (5.69) for display, plotting, and storage purposes.
Notice that this approach can also apply to Eq. (5.66).

5.6 PARAMETRIC REPRESENTATION OF
SYNTHETIC CURVES

Analytic curves, described in the previous section, are usually not sufficient to
meet geometric design requirements of mechanical parts. Products such as car
bodies, ship hulls, airplane fuselage and wings, propeller blades, shoe insoles, and
bottles are a few examples that require free-form, or synthetic, curves and sur-
faces. The need for synthetic curves in design arises on two occasions: when a
curve is represented by a collection of measured data points and when an existing
curve must change to meet new design requirements. In the latter occasion, the
designer would need a curve representation that is directly related to the data
points and is flexible enough to bend, twist, or change the curve shape by chang-
ing one or more data points. Data points are usually called control points and
the curve itself is called an interpolant if it passes through all the data points.

Mathematically, synthetic curves represent a curve-fitting problem to con-
struct a smooth curve that passes through given data points. Therefore, poly-
nomials are the typical form of these curves. Various continuity requirements can
be specified at the data points to impose various degrees of smoothness of the
resulting curve. The order of continuity becomes important when a complex
curve is modeled by several curve segments pieced together end to end. Zero-
order continuity (C°) yields a position continuous curve. First (C - and second
(C*-order continuities imply slope and curvature continuous curves respectively.
A C! curve is the minimum acceptable curve for engineering design. Figure 5-39
shows a geometrical interpretation of these orders of continuity. A cubic poly-
nomial is the minimum-order polynomial that can guarantee the generation of
C° C*, or C? curves. In addition, the cubic polynomial is the lowest-degree poly-
nomial that permits inflection within a curve segment and that allows representa-
tion of nonplanar (twisted) three-dimensional curves in space. Higher-order
polynomials.are not commonly used in CAD/CAM because they tend to oscillate
about control points, are computationally inconvenient, and are uneconomical of
storing curve and surface representations in the computer.
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f‘gents

Center of curvature

Center of curvature

+ Control point

(a) Zero-ordercontinuity (C” curve)

Tangent

Centers of
curvature

Center of curvature

(b) First-order continuity (C ! curve) () Second-order continuity (C?curve)

FIGURE 5-39
Various orders of continuity of curves.

The type of input data and its influence on the control of the resulting
synthetic curve determine the use and effectiveness of the curve in design. For
example, curve segments that require positions of control points and/or tangent
vectors at these points are easier to deal with and gather data for than those that
might require curvature information. Also, the designer may prefer to control the
shape of the, curve locally instead of globally by changing the control point‘(s). If
changing a control point results in changing the curve locally in the vicinity of
that point, local control of the curve is achieved; otherwise global control result§.

Major CAD/CAM systems provide three types of synthetic curves: Hermite
cubic spline, Bezier, and B-spline curves. The cubic spline curve passes through
the data points and therefore is an interpolant. Bezier and B-spline curves in
general approximate the data points, that is, they do not pass through them.
Under certain conditions, the B-spline curve can be an interpolant, as will be seen
in Sec. 5.6.3. Both the cubic spline and Bezier curves have a first-order continuity
and the B-spline curve has a second-order continuity. The formulation of each
curve is discussed below. :

5.6.1 Hermite Cubic Splines

Parametric spline curves are defined as piecewise polynomial curves with a
certain order of continuity. A polynomial of degree N has continuity of deriv-
atives of order (N — 1). Parametric cubic splines are used to interpolate to given
data, not to design free-form curves as Bezier and B-spline curves do. Splines
draw their name from the traditional draftsman’s tool called “French curves or
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splines.” The Hermite form of a cubic spline is determined by defining positions
and tangent vectors at the data points.

The most commonly used spline curve is a three-dimensional planar curve.
The three-dimensional twisted curves are not covered here. For the planar curve,
the XY plane of the current WCS is typically used to define the plane of the data
points and consequently the plane of the curve. The WCS then serves as the local
coordinate system of the spline and is related to the MCS via the proper trans-
formation matrix, as discussed in Chap. 3. i

The parametric cubic spline curve (or cubic spline for short) connects two
data (end) points and utilizes a cubic equation. Therefore, four conditions are
required to determine the coefficients of the equation. When these are the posi-
tions of the two endpoints and the two tangent vectors at the points, a Hermite
cubic spline results. Thus the Hermite spline is considered as one form of the
general parametric cubic spline. The reader is encouraged to extend the forth-
coming development of the Hermite cubic spline to a cubic spline defined by four
given data points. The parametric equation of a cubic spline segment is given by

Pu) = i G, O<u<l (5.74)
where u is the parameter and C; la.r‘:e the polynomial (also called algebraic) coeffi-
cients. In scalar form this equation is written as

x(u) = Csu® + Copti® + Cpou+ Co,
W) = Cyyu® + Coyu? + Cyu + Co, (575)
2(u) = Cy,u® + Cp,u® + Cyu + Co,

In an expanded vector form, Eq. (5.74) can be written as

Pu) = Cyu® + C,u? + Ciu + C, (5.76)
This equation can also be written in a matrix form as
Pu) = UTC (5.77)

where U=[u® u®> u 1]TandC=[C; C, C, C,]".Cis called the coeffi-
cients vector.

The tangent vector to the curve at any point is given by differentiating Eq.
(5.74) with respect to u to give

3
Pw= Y Ciu!, O<ucx<l1 : (5.78)
i=0
In order to find the coefficients C;, consider the cubic spline curve with the two
endpoints P, and P; shown in Fig. 5-40. Applying the boundary conditions
Py, Poatu=0and Py, P; at u = 1), Egs. (5.74) and (5.78) give

P, =C,
P, =C,
P,=C,+C,+C, +C,
P, =3C,+2C, + C,

(5.79)
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Pi(u=1)

Py(u=0)

FIGURE 5-40
z Hermite cubic spline curve.

Solving these four equations simultaneously for the coefficients gives
Co=P,
C, =P
C, = 3(P, — Pg) — 2(P; — PY):
C;=2P,—P)+P,+ P}

Substituting Eqgs. (5.80) into Eq.‘ (5.76) and rearranging gives

P(u) = 2u® — 3u? + )Py + (—24° + 3u?)P,
+ W -2 +uPy+ W —u)P;, O=<u<l (5.81)

(5.80)

P,. P, P,, and P are called geometric coefficients. The tangent vector becomes
P'(u) = (61 — 6u)P, + (—6u* + 6u)P,
+ (3u® — 4u + VP, + 3u® — 2u)P, O<uxl1 (5.82)

The functions of u in Eqs. (5.81) and (5.82) are called blending functions. The first
two functions blend P, and P, and the second two blend P}, and P’ to produce
the left-hand side in each equation.

Equation (5.81) can be written in a matrix form as

P) = UMV, O<ux<l (5.83)

where [My] is the Hermite matrix and V is the geometry (or boundary
conditions) vector. Both are given by

2 =2 1 1
-3 3 -2 -1
= 5.84
™Md=|"0 o 1 o (5.84)
1 0 0 ©

V=[P, P, ’1]T (5.85)
. ",-' (e - N

i
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Comparing Egs. (5.77) and (5.83) show that C = [M4]V or V = [M ]~ 'C where

0 0-01
1 1 11
-1 _ 5.86
[Mg] 001 0 (5.86)
3210
Similarly, Eq. (5.82) can be written as ’ : !
Pw) = UT[Mg]"V (5.87)
where [M]* is given by
0 0 0 0
.| 6 -6 3 3
IMal=| o ¢ _i _, (5.88)
0 0 1 0

Equation (5.81) describes the cubic spline curve in terms of its two end-
points and their tangent vectors. The equation shows that the curve passes
through the endpoints (u = 0 and 1). It also shows that the curve’s shape can be
controlled by changing its endpoints or its tangent vectors. If the two endpoints
P, and P, are fixed in space, the designer can control the shape of the spline by
changing either the magnitudes or the directions of the tangent vectors P}, and
P). The change of both the magnitudes and the directions is, of course, per-
missible. However, for planar splines tangent vectors can be replaced by slopes.
In this case, a default value, say one, for the lengths of the tangent vectors might
be assumed by the software to enable Eq. (5.81) to be used. For example, if the
slope at Py is given as 30°, then P, becomes [cos 30 sin 30 = 0]. It is obvious
that the slope angle and the components of P} are given relative to the axes of

" the WCS that is active at the time of creating the spline curve.

Equation (5.81) can also be used to display or plot the spline. Points can be
generated on the spline for different values of u between 0 and 1. These points are
then transformed to the MCS for display or plotting purposes.

Equation (5.81) is for one cubic spline segment. It can be generalized for any
two adjacent spline segments of a spline curve that are to fit a given number of
data points. This introduces the problem of blending or joining cubic spline seg-
ments which can be stated as follows. Given a set of n points Py, Py, ..., P,_,
and the two end tangent vectors Py and P,_, (Fig. 5-41) connect the points with
a cubic spline curve. The spline curve is created as a blend of spline segments
connecting the set of points starting from P, and ending at P,_,. Tangent vectors
at the intermediate points P, through P,_, are needed as shown in Eq. (5.81) to
compute these segments. To eliminate the need for these vectors, the continuity of
curvature at these points can be imposed. To illustrate the procedure, consider
eliminating P, between the first two segments that connect points P,, P,, and
P, . For curvature continuity between the first two segments, we can write

B Py = 1) = P'luy = 0) | (589)

TYPES AND MATHEMATICAL REPRESENTATIONS OF CURVEs 217

z

FIGURE 541
Hermite cubic spline curve.

where the subscripts of u refer to the segment number. Differentiating Eq. (5.82)
and using the result with Eq. (5.89), we obtain

P, = —1(3P, + P; — 3P, + P}) (5.90)

For more than two segments, a matrix equation can result from repeating this
procedure, which can be solved for the intermediate tangent vectors in terms of
the data points and the two end tangent vectors Py and P, ;. Thus, the geomet-
ric information of a cubic spline database consists of the set of the data points
and the two end tangent vectors. R T T

The use of the cubic splines in desxgn apphcatlons is not very popular com-
pared to Bezier or B-spline curves. The control of the curve is not very obvious
from the input data due to its global control characteristics. For example, chang-
ing the position of a data point or an end slope changes the entire shape qf .the
spline which does not provide the intuitive feel required for design. In addition,

(a) Change of data points

FIGURE 5-42 L

Control of cubic spline curve.

PRS- |
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the order of the curve is always constant (cubic) regardless of the number of data
points. In order to increase the flexibility of the curve, more points must be input,
thus creating more splines which are all still of cubic order. Figure 5-42 shows the
control aspects of the cubic spline curve.

Example 5.18. What shape of a cubic spline curve results if:
(a) Po =P, Py =P,?7 .
(b) Py =P,, P, = —P? '

Solution. This example illustrates how to create a closed curve using cubic splines.
Consider only one segment in this example. Therefore the two endpoints P, and P,
are always identical.

(@) If we substitute the given end conditions into Egs. (5.81) and (5.82), we get
P(u) = Qu® — 3u* + P, + Py
P(u) = (6u* — 6u + 1)P,

This spline passes by P, at u =0, %, 1. Figure 5-43a shows the curve for P, =
[0 0 0] and a slope of 45°, that is, Py = [1//2 1//2 0]". The spline is a
straight line in the cartesian space because the slope y'/x’ = y/x, is constant.
Points 1, 2, 3, ..., 11 shown in the figure correspond to values of u equal to 0,
0.1,0.2, ..., 1 respectively. The spline has two extreme points 3 and 9 at u = 0.2
and 0.8 respectively. The extreme points can be obtained from solving the equa-
tion P(u) = 0. -
(b) Similar to (a) we obtain

P(u) = (—u® + uP, + P,
P(u) = (—2u + 1P,

10 2

45°

11

@Py=P, P, =P, ()P, =P, P, = —P,

FIGURE 5-43
Closed cubic spline curves.
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This spline has an extreme point at u = 3. It begins the tangent to P}, and then
overlaps to become the tangent to P). Figure 5-43b shows the curve for P, =
[0 0 0]7 and slopes of 45 and 225°. The same analysis made above in (a) can
be applied here. The reader may attempt to solve this example on a CAD/CAM
system and compare the results using the “verify” command.

5.6.2 Bezier Curves

Cubic splines discussed in the previous section are based on interpolation tech-
niques. Curves resulting from these techniques pass through the given points.
Another alternative to create curves is to use approximation techniques which
produce curves that do not pass through the given data points. Instead, these
points are used to control the shape of the resulting curves. Most often, approx-
imation techniques are preferred over interpolation techniques in curve design
due to the added flexibility and the additional intuitive feel provided by the
former. Bezier and B-spline curves are examples based on approximation tech-
niques.

Bezier curves and surfaces are credited to P. Bezier of the French car firm
Regie Renault who developed (about 1962) and used them in his software system
called UNISURF which has been used by designers to define the outer panels of
several Renault cars. These curves, known as Bezier curves, were also indepen-
dently developed by P. DeCasteljau of the French car company Citroen (about
1959) which used it as part of its CAD system. The Bezier UNISURF system was
soon published in the literature; this is the reason that the curves now bear
Bezier’s name. )

As its mathematics show shortly, the major differences between the Bezier
curve and the cubic spline curve are:

1. The shape of Bezier curve is controlled by its defining points only. First deriv-
atives are not used in the curve development as in the case of the cubic spline.
This allows the designer a much better feel for the relationship between input
(points) and output (curve).

2. The order or the degree of Bezier curve is variable and is related to the
number of points defining it; n + 1 points define an nth degree curve which
permits higher-order continuity. This is not the case for cubic splines where
the degree is always cubic for a spline segment.

3. The Bezier curve is smoother than the cubic spline because it has higher-order
derivatives.

The Bezier curve is defined in terms of the locations of n + 1 points. These
points are called data or control points. They form the vertices of what is called
the control or Bezier characteristic polygon which uniquely defines the curve
shape as shown in Fig. 5-44. Only the first and the last control points or vertices
of the polygon actually lie on the curve. The other vertices define the order,
derivatives, and shape of the curve. The curve is also always tangent to the first
and last polygon segments. In addition, the curve shape tends to follow the
polygon shape. These three observations should enable the user to sketch or
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P
f‘s‘_“h-“‘~‘_“ P“

/ "\

P Control points (vertices)
———— Characteristic polygon

FIGURE 54
Cubic Bezier curve (nomenclature).

predict the curve shape once its control points are given as illustrated in Fig.
5-45. The figure shows that the order of defining the control points changes the
polygon definition which changes the resulting curve shape consequently. The
arrow depicted on each curve shows its parametrization direction.
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FIGURE 5-45
Cubic Bezier curves for various control points.
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Mathematically, for n + 1 control points, the Bezier curve is defined by the
following polynomial of degree n:

PW=Y P.B ) O<us<l (591)
i=0 :

where P(u) is any point on the curve and P; is a control point. B; , are the
Bernstein polynomials. Thus, the Bezier curve has a Bernstein basis. The Bern-
stein polynomial sérves as the blending or basis function for the Bezier curve and
is given by

B, () = C(n, du'(l —u)"~" (5.92)
where C(n, i) is the binomial coefficient
o n!
Cn, i) = 1—‘()1—;-1—)—' (5.93)

Utilizing Eqgs. (5.92) and (5.93) and observmg that C(n, 0) = C(n, n) = 1, Eq. (5.91)
can be expanded to glve

Pw) = Py(l — w)" + P,C(n, Du(l — u)*~! + P, C(n, 2)u’(1 — w2
+o 4+ P, _Cyn—1uw (1 —-w)+P,w,  O0<u<l (599

The characteristics of the Bezier curve are based on the properties of the
Bernstein polynomials and can be summarized as follows:

1. The curve interpolates the first and last control points; that is, it passes
through P, and P, if we substitute u = 0 and 1 in Eq. (5.94).

2. The curve is tangent to the first and last segments of the characteristic
polygen. Using Egs. (5.91) and (5.92), the rth derivatives at the starting and
ending points are given by respectively:

B n! r . .
SR P(0) = p—— igo (—1y~'C(r, )P, (5.95)
n! L [P
P(1)= (n—_—;)—'— i;} (=1C(r, )P, _; (5.96)
Therefore, the first derivatives at the endpoints are
P(0) =n(P, — Py) (5.97)
P(l) =n®,-P,-,) (5.98)

where (P, — P;) and (P, — P,_,) define the first and last segments of the curve
polygon. Similarly, it can be shown that the second derivative at P, is deter-
mined by Py, P,, and P,; or, in general, the rth derivative at an endpoint is
determined by its r neighboring vertices.

3. The curve is symmetric with respect to u and (1 — u). This means that the
sequence of control points defining the curve can be reversed without change
of the curve shape; that is, reversing the direction of parametrization does not
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change the curve shape. This can be achieved by substituting 1 — u = v in Eq.
(5.94) and noticing that C(n, i) = C(n, n —i). This is a result of the fact that
B; (u)and B, _; ,(u) are symmetric if they are plotted as functions of u.

4. The interpblation polynomial B; (u) has a maximum value of C(n, i) (i/n)
(1 —i/n)""" occurring at u =i/n which can be obtained from the equation
d(B;, ,)/du = 0. This implies that each control point is most influential on the
curve shape at u = i/n. For example, for a cubic Bezier curve, Py, P, P,, and
P, are most influential when u =0, §, £, and 1 respectively. Therefore, each
control point is weighed by its blending function for each u value.

5. The curve shape can be modified by either changing one or more vertices of its
polygon or by keeping the polygon fixed and specifying multiple coincident
points at a vertex, as shown in Fig. 5-46. In Fig. 5-464, the vertex P, is pulled
to the new position P% and in Fig. 5-46b, P, is assigned a multiplicity K. The
higher the multiplicity, the more the curve is pulled toward P, .

6. A closed Bezier curve can simply be generated by closing its characteristic
polygon or choosing P, and P, to be coincident. Figure 5-45 shows examples
of closed curves. i '

7. For any valid value of u, the sum of the B; , functions associated with the
control points is always equal to unity for any degree of Bezier curve. This fact
can be used to check numerical computations and software developments.

' Thus far, only one Bezier curve segment is considered. In practical applica-
tions, the need may arise to deal with composite curves where various curve

(b) Specifying multiple coincident points at a vertex

FIGURE 5-46
Modifications of cubic Bezier curve.

VI
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(b) C' continuity

FIGURE 547
Blending Bezier curve segments.

segments are blended or joined together. In these applications maintaining con-
tinuity of various orders between the segments might be desired. Figure 5-47
shows two curve segments defined by the two sets of points Py, P,, P3, Py and
P,, P5, Pg, P;, Pg. To achieve a zero-order (C® continuity, it is sufficient to
make one of the end control points of the segments common, e.g,, P, in Fig. 5-
47a. To achieve a first-order (C') continuity, the end slope of one segment must
equal the starting slope of the next segment; that is, the corresponding tangent
vectors are related to each other by a constant. This condition requires that the
last segment of the first polygon and the first segment of the second polygon form
a straight line. With regards to Fig. 5-47b, the three points P, Py, and P must
be collinear. Utilizing Egs. (5.97) and (5.98), we can write

R IR P, —P;=%P; — P, (5:99)

""A most desirable feature for any curve defined by a polygon such as the
Bezier curve is the convex hull property. This property relates the curve to its
characteristic polygon. This is what guarantees that incremental changes in
control point positions produce intuitive geometric changes. A curve is said to

" “have the convex hull property if it lies entirely within the convex hull defined by

the polygon vertices. In a plane, the convex hull is a closed polygon and in three
dimensions it is a polyhedron. The shaded area shown in Fig. 5-48 defines the
convex hull of a Bezier curve. The hull is formed by connecting the vertices of the

~ characteristic polygon.

[ BT P
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FIGURE 5-48
The convex hull of a Bezier curve.

Curves that possess the convex hull property enjoy some important conse-
quences. If the polygon defining a curve segment degenerates to a straight line,
the resulting segment must therefore be linear. Thus a Bezier curve may have
locally linear segments embedded in it, which is a useful design feature. Also, the
size of the convex hull is an upper bound on the size of the curve itself; that is,
the curve always lies inside its convex hull. This is a useful property for graphics
functions such as displaying or clipping the curve. For example, instead of testing
the curve itself for clipping, its convex hull is tested first and only if it intersects
the display window boundaries should the curve itself be examined. A third con-
sequence of the convex hull property is that the curve never oscillates wildly
away from its defining control points because the curve is guaranteed to lie
within its convex hull.

From a software point of view, the database of a Bezier curve includes the
coordinates of the control points defining its polygon stored in the same order as
input by the user. Other information which may obviously be stored include
layer, color, name, font, and line width .of the curve. .

While a Bezier curve seems superior to a cubic spline curve, it still has some
disadvantages. First, the curve does not pass through the control points which
may be inconvenient to some designers. Second, the curve lacks local control. It
only has the global control nature. If one control point is changed, the whole
curve changes. Therefore, the designer cannot selectively change parts of the
curve. T

Example 5.19. The coordinates of four control points relative to a current WCS are
given by

P,=[2 2 0], P,=[2 3 0]F, P,=[3 3 0], and P,=[3 2 0O
Find the equation of the resulting Bezier curve. Also find points on the curve for

11 3 -
u=0,;,7,g,and1. ' o

[ : e
¢ {

Solution. Equation (5.91) gives
Pw)=P,By 5+ P,B; 7+ P232_3ﬂ+P3B3'3, O<uxl1
Using Egs. (5.92) and (5:93), the above equétion becomes : :

P(w) = Py(l — ) + 3P,u(l — 1) + 3P,u%(l — ) + P5u’, O<u<l

,:(“ :

!
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P (2.3) P> (3.3)

|

Py(2.2) X P3(3.2)

FIGURE 5-49
Bezier curve and generated points.

Substituting the u values into this equation gives
PO)=P,=[2 2 0]F

N 27 27 9 1

P(Z) =2 Po+ Py Py o Py = (2156 2563 07
0 1 3 3 1

P(5)=§Po +3 PPt Pa=[25 275 Of
3\ 1 9 27 27

P<Z> =g Pt g Pt Rty - 284 2563 01

PA)=P,=[3 2 0]

3
Observe that 3, B, 5 is always equal to unity for any u value. Figure 5-49 shows the
i=0
curve and the points.

Example 5.20. A cubic spline curve is defined by the equation
Pw)=Csv® +C,u* +Ciu+Cy, v 0<uxl (5.100)

where C;, C,, C,, and C, are the polynomial coefficients [see Eq. (5.76)]. Assuming
these coefficients are known, find the four control points that define an identical
Bezier curve.

Solution. The Bezier equation is

Pw)=PyBy 3 +PB; 3 +P,B, 5 +P3B; 3 (5.101)

where

By s=1—3u+3u®—u® B, ,=3u—6u’+3u
B, =3 —3u? By ,=u
Substituting all these functions into Eq. (5.101) and rgarranging, we obtain
P(u) = (—P, + 3P, - 3P, + Py + (3P, — 6P1L+ 3P
: + (=3P, +3Pu+P, (5102

c [ S T oy
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Comparing the coefficients of Eqgs. (5.100) and (5.102) gives

Py =G,

P, =3C, +C,
P,=4C, + 2C, + 3Cy)
P;=C;+C,+C, +C,

’ 4
Note: to check these results, observe that the Bezier curve passes through points P,
and P, where # =0 and 1 respectively. These two points are obtained from Eq.
(5.100) for the same value of u.

5.6.3 B-Spline Curves

B-spline curves provide another effective method, besides that of Bezier, of gener-
ating curves defined by polygons. In fact, B-spline curves are the proper and
powerful generalization of Bezier curves. In addition to sharing most of the char-
acteristics of Bezier curves they enjoy some other unique advantages. They
provide local control of the curve shape as opposed to global control by using a
special set of blending functions that provide local influence. They also provide
the ability to add control points without increasing the degree of the curve.

B-spline curves have the ability to interpolate or approximate a set of given
data points. Interpolation is useful in displaying design or engineering results
such as stress or displacement distribution in a part while approximation is good
to design free-form curves. Interpolation is also useful if the designer has mea-
sured data points in hand that must lie on the resulting curve. This section covers
only B-spline curves as used for approximation.

In contrast to Bezier curves, the theory of B-spline curves separates the
degree of the resulting curve from the number of the given control points. While
four control points can always produce a cubic Bezier curve, they can generate a
linear, quadratic, or cubic B-spline curve. This flexibility in the degree of the
resulting curve is achieved by choosing the basis (blending) functions of B-spline
curves with an additional degree of freedom that does not exist in Bernstein
polynomials. These basis functions are the B-splines—thus the name B-spline
curves.

Similar to Bezier curves, the B-spline curve defined by n + 1 control points
P; is given by '

P = Y PN, (), O<u<u,, (5.103)
i=0

N, (u) are the B-spline functions. Thus B-spline curves have a B-spline basis. The
control points (sometimes called deBoor points) form the vertices of the control
or deBoor polygon. There are two major differences between Egs. (5.103) and
(5.91). First, the parameter k controls the degree (k — 1) of the resulting B-spline
curve and is usually independent of the number of control points except as
restricted as shown below. Second, the maximum limit of the parameter u is no
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longer unity as it was so chosen arbitrarily for Bezier curves. The B-spline func-
tions have the following properties:

n
Partition of unity: 3 N; ,(u) =1
i=o

Positivity: N; (w)=0
Local support: N; w)=0 ifud [y, igsr]
Continuity: N; (u) is (k — 2) times continuously differentiable

The first property ensures that the relationship between the curve and its
defining control points is invariant under affine transformations. The second
property guarantees that the curve segment lies completely within the convex hull
of P;. The third property indicates that each segment of a B-spline curve is influ-
enced by only k control points or each control point affects only k curve seg-
ments. It is useful to notice that the Bernstein polynomial, B; (), has the same
first two properties mentioned above. )

"The B-spline function also has the property of recursion which is defined as

Ni x—1(w) Nivp -1

N, u) = u—u, + Uiy — U 5.104
1) = ) i+k—1 — U (i )ui+k"ui+l ( )
where
1, U SUS Uy
o 5.105
Nia {0’ otherwise ( )

Choose 0/0 = 0 if the denominators in Eq. (5.104) become zero. Equation (5.105)
shows that N; , is a unit step function.

Because N; , is constant for k = 1, a general value of k produces a poly-
nomial in u of degree (k — 1) [see Eq. (5.104)] and therefore a curve of order k
and degree (k — 1). The u; are called parametric knots or knot values. These
values form a sequence of nondecreasing integers called the knot vector. The
values of the u; depend on whether the B-spline curve is an open (nonperiodic) or
closed (periodic) curve. For an open curve, they are given by

0, j<k o
w={j—k+1, k<j<n - = - (5106
n—k+2  j>n o
where
0<j<n+k (5.107)
and the range of u is
O<u<sn—k+2 - Lo (5.108)

Relation (5.107) shows that (n + k + 1) knots are needed to create a (k — 1)
degree curve defined by (n + 1) control points. These knots are evenly spaced
over the range of u with unit separation (Au = 1) between noncoincident knots.
Multiple (coincident) knots for certain values of u may exist.
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FIGURE 5-50
Local control of B-spline curves.

While the degree of the resulting B-spline curve is controlled by k, the range
of the parameter u as given by Eq. (5.108) implies that there is a limit on k that is
determined by the number of the given control points. This limit is found by
requiring the upper bound in Eq. (5.108) to be greater than the lower bound for
the u range to be valid, that is,

n—k+2>0 (5.109)

This relation shows that a minimum of two, three, and four control points are
required to define a linear, quadratic, and cubic B-spline curve respectively.

The characteristics of B-spline curves that are useful in design can be sum-
marized as follows:

1. The local control of the curve can be achieved by changing the position of a
control point(s), using multiple control points by placing several points at the
same location, or by choosing a different degree (k — 1). As mentioned earlier,
changing one control point affects only k segments. Figure 5-50 shows the
local control for a cubic B-spline curve by moving P to P¥ and P¥*. The four
curve segments surrounding P change only.

2. A nonperiodic B-spline curve passes through the first and last control points

Py and P,., and is tangent to the first (P; — P,) and last (P,,, — P,)

segments of the control polygon, similar to the Bezier curve, as shown in

Fig. 5-50.

Increasing the degree of the curve tightens it. In general, the less the degree,

the closer the curve gets to the control points, as shown in Fig. 5-51. When

k =1, a zero-degree curve results. The curve then becomes the control points

themselves. When k = 2, the curve becomes the polygon segments themselves.

4. A second-degree curve is always tangent to the midpoints of all the internal
polygon segments (see Fig. 5-51). This is not the case for other degrees.

w
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k = 6 (quintic) \)
k = 4 (cubic) P:"\\

AN ¢ = 3 (quadratic)
*p, —~ ;/
5
¢ = 2 (linear)’

FIGURE 5-51
Effect of the degree of B-spline curve on its shape.

Py

5. If k equals the number of control points (n + 1), then the resulting B-spline
curve becomes a Bezier curve (see Fig. 5-52). In this case the range of u
becomes zero to one [see Eq. (5.108)] as expected.

6. Multiple control points induce regions of high curvature of a B-spline curve.
This is useful when creating sharp corners in the curve (see Fig. 5-53). This
effect is equivalent to saying that the curve is pulled more towards a control
point by increasing its multiplicity.

7. Increasing the degree of the curve makes it more difficult to control and to
calculate accurately. Therefore, a cubic B-spline is sufficient for a large number
of applications.

— N Pe

. N\
B-spline curve -\
(k = 6) AN -
Bezier curve N -

(a) No multiple control points

P3P, Ps
—t

Py TN

B-spline curve
(k =8) \,

\ s
N Bezier curve N
N/ }%
N P,
Py
(b) Multiple control points
FIGURE 5-52

Identical B-spline and Bezier curves.
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FIGURE 5-53

Multiple control point B-spline curves.

Thus far, open or nonperiodic B-spline curves have been discussed. The
same theory can be extended to cover closed or periodic B-spline curves. The
only difference between open and closed curves is in the choice of the knots and
the basic functions. Equations (5.106) to (5.108) determine the knots and the
spacing between them for open curves. Closed curves utilize periodic B-spline
functions as their basis with knots at the integers. These basis functions are cyclic
translates of a single canonical function, with a period (interval) of k for support.
For example, for a closed B-spline curve of order 2 (k = 2) or a degree 1 (k — 1),
the basis function is linear, has a nonzero value in the interval (0, 2) only, and has
a maximum value of one at u = 1, as shown in Fig. 5-54. The knot vector in this
case is [0 1 2]. Quadratic and cubic closed curves have quadratic and cubic
basis functions with intervals of (0, 3) and (0, 4) and knot vectorsof [0 1 2 3]
and[0 1 2 3 4]respectively.

The closed B-spline curve of degree (k — 1) or order k defined by (n + 1)
control points is given by Eg. (5.103) as the open curve. However, for closed
curves Egs. (5.104) to (5.108) become

N; W)= Ng (u—i+n+1)mod(n+1) (5.110)
u; =j, 0<j<n+1 (5.111)
0O<j<n+1 (5.112)
and the range of u is
O<u<n+1 (5.113)
The mod (n + 1) in Eq. (5.110) is the modulo function. It is defined as
A, A<n
A mod n=+0, A=n (5.114)
remainder of A/n, A>n

For example, 3.5 mod 6 = 3.5, 6 mod 6 = 0, and 7 mod 6 = 1. The mod function
enables the periodic (cyclic) translation [mod (n + 1)] of the canonical basis func-
tion Ng . Ny, is the same as for open curves and can be calculated using Eqgs.
(5.104) and (5.105).
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(a) Linear function (k = 2)
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(b) Quadratic function (k = 3)
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FIGURE 5-54

(c) Cubic function (k = 4) Periodic B-spline basis functions.

Like open curves, closed B-spline curves enjoy the properties of partition of
unity, positivity, local support, and continuity. They also share the same charac-
teristics of the open curves except that they do not pass through the first and last
control points and therefore are not tangent to the first and last segments of the
control polygon. In representing closed curves, closed polygons are used where
the first and last control points are connected by a polygon segment. It should be
noticed that a closed B-spline curve can not be generated by simply using an
open curve with the first and last control points being the same (coincident). The
resulting curve is only C° continuous, as shown in Fig. 5-55. Only if the first and
last segments of the polygon are colinear does a C! continuous curve result as in
a Bezier curve.

Based on the above theory, the database of a B-spline curve includes the
type of curve (open or closed), its order k or degree (k — 1), and the coordinates
of the control points defining its polygon stored in the same order as input by the
user. Other information such as layer, color, name, font, and line width of the
curve may be stored.




232 GEOMETRIC MODELING

Py, Ps

(a) C" continuity

FIGURE 5-55
An open B-spline curve with P, and P, coincident.

Example 5.21. Find the equation of a cubic B-spline curve defined by the same
control points as in Example 5.19. How does the curve compare with the Bezier

curve?

Solution. This cubic spline has k = 4 and n = 3. Eight knots are needed to calculate

I
7

Py, Ps

1
1
|
i
I
I
|
|
|
|
|
|
|
|
+

Py Ps

(b) C" continuity

the B-spline functions. Equation (5.106) gives the knot vector

[uo uy up us u, us ug uq]

The range of u [Eq. (5.108)] is 0 < u < 1. Equation (5.103) gives : Coh

To calculate the above B-spline functions, use Egs. (5. 104) and (5 105) together w1th'

the knot vector as follows:

1, u=0

Nog;=N,,=N, ;=
0,1 L1 2.1 {o, elsewhere

N;,

_ 1, O0<ux<l1
70, elsewhere

1, u=1

N,.=N<.,=N,,=
41 1 6.1 {0, elsewhere

as [00 001 1 1 1]

i

PW)=PoNo o + PN, 4 +P,N, (+P;N;,, O<us<l (5115

foovl o .
' Bt

No, N uN,, (—u)N
Noz—(u_“o) +(uz—u) l:‘= (;)1"' 01'1=0
1
Ny, Nay ulN; (=u)N,,
N ,=@u-— + - = : = =0
12=(u—uy) " — (u3 u) —— 0 + 0
_ Nz.1 Ny, _uNy, (1—“)N3;1
Njyo=(u uz)us_uz‘*‘(ua, u)u4-u3— 0 + 1 —Fl‘“)N3,1'
‘ N, o U—wN. o
N; ,=(u—u;) +(u5—u) =uN3‘1+———41— uN; 4
Uy — _u4 0
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Ngi , A —u)Ns 4

Noo=@—u) +(us—u) " =(u-1)-7)'—+—-—6-—'—=0
— ¥s
N u—1)Ns; (1—wN
st—(u—u) +(u7——u) j; =t 0) =0
6 .
Nos—(u"“o) +(u3—u) —u _“" (- “)“0
1
Ny, N 1 —uN
Nos = =) +(u4—u)—~——’—=u—3'-2-+(———‘f#=u_u)w3,1
Uz — — Uy
N,
Niys=(@—u) +(u5—u) — =uN2'2+(1—u)N3,2=2u(1——-u)N3'1
Uy — 3

N

Ns.s (u«—ua) +(u6—u) j‘=u2N3'1+(l—u) 22 = N, ,

4

N

N43—(u—u) +(u7—u) =(u—1 ...u)_.___é-2=0
N04—(u—-uo) +(u4—u) - 3 —(1—u’Ns,

l
N14—(u—“1) +(u5_“)"““'—=3u(1—u)2N3'1

Uy
Naa (u—uz) +(u6—u)———=3u(1—u)N3'1

T U3
N34—(“—u) +(u7——u) 3 =N, ,

“4

Substituting N, , into Eq. (5.115) gives
P(u) = [Po(1 — u)® + 3P,u(l — u)? +'3I’2 v (1 —u) + P, u3]N3" » O=<ux1
Substituting N5, into this equation gives the curve equation as
Pu) = Po(1 —uw)® + 3Pu(l —u? + 3Pu*(l —w) + Pyu, O<ux<l
This equation is the same as the one for the Bezier curve in Exé.mple 5.19. Thus the
cubic B-spline curve defined by four control points is identical to the cubic Bezier

curve defined by the same points. This fact can be generalized for a (k — 1)-degree
curve as mentioned earlier.

There are two observations that are worth mentioning here. First, the sum
of the two subscripts (i, k) of any B-spline function N, , cannot exceed (n + k).
This gives a control on how far to go to calculate N;,. In this example six
functions of N; 4, five of N; ,, and four of N; ; were needed such that (6 + 1) for
the first, (5 + 2) for the second, and (4 + 3) for the last are always equal to 7
(n + k). Second, whenever the limits of u for any N; , are equal, the u range
becomes one point.

Example 5.22. Find the equation of a closed (periodic) B-spline curve defined by
four control points. -
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Solution. This closed cubic spline has k = 4, n = 3. Using Eqgs. (5.111) to (5.113), the
knot vector [u, wu; wu, u; u,]istheintegers[0 1 2 3 4] and the range of
uis 0 < u < 4. Equation (5.103) gives the curve equation as

P)=PoNo s+ PN, s +P,N;, s+ P3N, ., 0<u<d (5116
To calculate the above B-spline functions, use Eq. (5.110) to obtain
i Noalw) =No o(u+4) mod 4)
DL | Ny =Ny i+ 3) mod 4 :
N, 4w} = Ny 4{(u + 2) mod 4)
N3 () = Ny 4((u + 1) mod 4)

In the above equations, N, , on the right-hand side is the function for the open
curve and on the left-hand side is the periodic function for the closed curve. Substi-
tuting these equations into Eq. (5.116) we get

P(u) = Py N, 4((1 + 4) mod 4) + PN, ((u + 3) mod 4)
4+ P,No 4((# +2) mod 4) + Py Ny ((u+ )modd), O<u<4 (5117)

In Eq. (5.117), the function N, 4 has various arguments, which can be found if
specific values of u are used. To find N ., similar calculations to the previous
example 5.21 are performed using the above knot vector as follows:

1, O<ux<l1
No.1={

0, elsewhere
Nia= {é ilsi:hfrez
R A
Nax= {(1) zli:hfr:
No o= (u— ) uivi'io + (uy — ) uﬁ’:i‘l =uN, ,; +(2—uN, ,
Ny o= (u—u) uf’:;l + (43 — 1) uivi'i‘z =@m—N; , +(3—uN,
Ny o=(u—up) uivj ;2 + (g — 1) uivj La =m—2N,,+@~uwN; ,
No.s = (4= ) ;e b (g =) S = SN, 43 (= N

= 3N,y + 3[u2 —w) + B —u)u — DIN, ; + 33 —u)’N, 4

N2.2

: 1 1
Nys=@—uy) » =5(u—1)N1,2+§(4—u)N2'2
2 -

N
L2 4, — )
Uz — Uy u, —

= Y- PNy 3+ 3l — D0 — ) + (@ — 2@ — wN;, , + 3@ — N ,
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N N 1 1
Noo=(u—ug) —22 + (uy, —u) —2—=-uNo 3+ (4 — )N, 3
Uy — Ug u,—uy, 3 3

= 3PN, ; + [PQ2 —w) + u@3 — wu — 1) + @ —wu — "IN, ,
+uB -+ @ —ufu— DB —w) + @ — W —2)IN, , + (4~ N3, 1}
or
No o= i[?Ng, s + (=3u® + 120> — 12u + 4N, , + (3u® — 24u® + 60u — 44)N, ,
+ (=t + 1207 — 48u + 64)N 1]

Due to the non-zero values of the functions N; , for various intervals of u, the above
equation can be written as
L3, o<ux<l
L—3u® + 124> —12u+4), 1<ux<2
1(3u® — 24u” + 60u — 44), 2<u<3
H—u® + 12u® — 48u + 64), 3<u<é
To check the correctness of the above expression of N, 4(u), one would expect to
obtain Fig. 5-54c if this function is plotted. Indeed, this figure is the plot of Ng . If
u=0, 1,2 3, and 4 are substituted into this function, the corresponding values of
Ny, 4 that are shown in the figure are obtained.

Equations (5.117) and (5.118) together can be used to evaluate points on the
closed B-spline curve for display or plotting purposes. As an illustration, consider
the following points:

P(0) = P No_ (4 mod 4) + P,N,, 43 mod 4)
+ P, N, 4(2 mod 4) + P3N, (1 mod 4)
=Py Ny, 4(0) + P No 4(3) + P2 Ng 4(2) + P3N 4(1)
=%PL+%P2+%P3

No,@ = (5.118)

Similarly,
P(0.5) = Py Ng, 4(0-5) + P N 4(3.5) + P, N 4(2.5) + P3Ny 4(1.5)
1 1 23 23
=EP° +Z§P1+4—8'P2 +5P3

P(1) = Po Ng (1) + P Ng 4(0) + P, No 4(3) + P3 No, 4(2)

=3Py +§P, + 3P,
P(2) = PNy, 4(2) + P No 4(1) + Py No 4(0) + Py No 4(3) = §P + §P1 + 3P;
P(3) = PoNo 4(3) + PiNo 4(2) + Py No 4(1) + P3Ny 4(0) = P + 3P, + 3P,
P(4) = Py No, 4(0) + PN, 4(3) + P, No 4(2) + P3Ny o(1) = §P; + 5P, + P,

In the above calculations, notice the cyclic rotation of the N, , coefficients of the
control points for the various values of u excluding u = 0.5. Notice also the effect of
the canonical (symmetric) form of N, , on the coefficients of the control points. If
the u values are 0.5, 1.5, 2.5, and 3.5, or other values separated by unity, a similar
cyclic rotation of the coefficients is expected. Finally, notice that P(0) and P(4) are
equal, which ensures obtaining a closed B-spline curve.
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The theory of the B-spline has been extended further to allow more control
of the curve shape and continuity. For example, f-spline (beta-spline) and
v-spline (nu-spline) curves provide manipulation of the curve shape and maintain
its geometric continuity rather than its parametric continuity as provided by
B-spline curves. The f-spline (sometimes called the spline in tension) curve is a
generalization of the uniform cubic B-spline curve. The f-spline curve provides
the designer with two additional parameters: the bias and the tension to control
the shape of the curve. Therefore, the control points and the degree of the
B-spline curve can remain fixed and yet the curve shape can be manipulated.

Although the p-spline curve is capable of applying tension at each control
point, its formulation as piecewise hyperbolic sines and cosines makes its compu-
tation expensive. The v-spline curve is therefore developed as a plecewxse poly-
nomial alternative to the spline in tension.

5.64 Rational Curves

A rational curve is defined by the algebraic ratio of two polynomials while a
nonrational curve [Eq. (5.103) gives an example] is defined by one polynomial.
Rational curves draw their theories from projective geometry. They are impor-
tant because of their invariance under projective transformation; that is, the per-
spective image of a rational curve is a rational curve. Rational Bezier curves,
rational B-spline and f-spline curves, rational conic sections, rational cubics, and
rational surfaces have been formulated. The most widely used rational curves are
NURBS (nonuniform rational B-splines). A brief description of rational B-spline
curves is given below.

The formulation of rational curves requires the introduction of homoge-
neous space and the homogeneous coordinates. This subject is covered in detail
in Chap. 9 (Sec. 9.2.5). The homogeneous space is four-dimensional space. A
point in E? with coordinates (x, y, z) is represented in the homogeneous space by
the coordinates (x*, y*, z*, h), where h is a scalar factor. The relationship between
the two types of coordinates is given by Eq. (9.59).

A rational B-spline curve defined by n + 1 control points P; is given by

Pu =Y PR (), O<u<uy, (5.119)
i=0

R; \(u) are the rational B-spline basis functions and are given by
h;N;
Riv k(u) = - itvi, k(u)
Zi=0 b N; (1)

The above equation shows that R; ,(u) are a generalization of the nonrational
basis functions N; (u). If we substitute ;= 1 in the equation, R; (1) = N, (u).
The rational basis functions R, ,(u) have nearly all the analytic and geom'etric
characteristics - of their nonrational B-spline counterparts All the discussions
covered in Sec. 5.6.3 apply here.

- The main difference between rational:and nonrational B-splme curves is the
ability to use h; at each control point to control the behavior of the rational
B-splines (or rational curves in general). Thus, similarly to the knot vector, one

(5.120)
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can define a homogeneous coordinate vector H =[hy hy h, hy - b7 at
the control points Py, P, ..., P, of the rational B-spline curve. The choice of the
H vector controls the behavior of the curve.

A rational B-spline is considered a unified representation that can define a
variety of curves and surfaces. The premise is that it can represent all wireframe,
surface, and solid entities. This allows unification and conversion from one mod-
eling technique to another. Such an approach has some drawbacks, including the
loss of information on simple shapes. For example, if a circular cylinder (hole) is
represented by a B-spline, some data on the specific curve type may be lost unless
it is carried along. Data including the fact that the part feature was a cylinder
would be useful to manufacturing to identify it as a hole to be drilled or bored
rather than a surface to be milled.

57 CURVE MANIPULATIONS

Analytic and synthetic curves essential to wireframe modeling have been present-
ed in Secs. 5.5 and 5.6. The effective use of these curves in a design and manufac-
turing environment depends mainly on their manipulation to achieve goals in
hand. A user might want to blend Bezier and B-spline curves with a certain
continuity requirement, or the intersection of two curves in space might provide
the coordinates of an important point to engineering calculations or modeling of
a part. The next sections cover some useful features of curve manipulations. Refer
to Chap. 12 for more details on the implementation of curve manipulations in
CAD/CAM softwear.

5.7.1 Displaying

Displaying curves provides the designer with a means of visualizing geometric
models within the limits of the wireframe modeling technique. Various colors can
be assigned to various curves for identification and other purposes. To display a
curve many closely spaced points on it are-generated for various permissible
values of the parameter u. The curve parametric equation is obviously used to
generate the coordinates of these points. The display processing unit (see Chap. 2)
receives these coordinates and changes them to two-dimensional coordinates
relative to the device coordinate system of the display terminal. The resulting
points are displayed and are connected by short-line segments. Line-generation
hardware exists (refer to Chap. 2) for creating and displaying these line segments.

To display a straight line, the two endpoints are fed to the line-generation
hardware to generate intermediate points and connect them by short-line seg-
ments. Equations of curves, such as circles and conic sections, that involve trigo-
nometric functions are usually rewritten to minimize computation time to
generate points on these curves for display purposes [see Egs. {5.25), (5. 35), (5.37),
and (5.55)]. As mentioned in Chap. 2, displaying a curve and representing it in its
database are two different things.
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5.7.2 Evaluating Points on Curves

Points on curves are generated for display purposes as discussed previously or for
other purposes. For example, finite element modeling techniques (see Chap. 18)
requires generating nodal points (nodes) on the model to be used later in finite
element analysis. In most CAD/CAM systems, the function of evaluating points
on curves is made available to the user via a “generate point on” command or its
equivalent. .

It is also mentioned in the previous section that a curve parametric equa-
tion is used to evaluate points on it. Evaluation methods must be efficient and
fast for interactive purposes as well as capable of producing enough points to
display a smooth curve. The obvious method of calculating the coordinates of
points on a curve by substituting successive values of its parameter into its equa-
tion is inefficient. Incremental methods proved more efficient.

The forward difference technique to evaluate a curve polynomial equation
at equal intervals of its parameter is the most common incremental method. Con-
sider applying the method to a cubic polynomial as an example. If the curve is
given by o

Pu=aw’ +b’ +cu+d, O<guxl (5.121)

and if (n + 1) equally spaced points are to be evaluated for the u range, then
Au = 1/n. The following equations can be used to initialize the method:

PO)=d
APy = a(Au)® + b(Au)* + c(Au)
A, Py = 6a(Au)® + 2b(Au)?
A3 Py = 6a(Au)®

(5.122)

Any successive point can be evaluated from

Py =P+ AP, 0<i<n
APy =AP + AP (5.123)
APy = AP + AP

These equations show that only three additions are needed to generate any point
and 3n additions generate the n points. In general, for a polynomial of degree n, n
additions are required to calculate one point.

Evaluating a point on a curve given by its parametric value, v, is sometimes
called the direct point solution. It entails evaluating three polynomials in u, one
for each coordinate of the point. The inverse problem is another form of evalu-
ating a point on a curve. Given a point on or close to a curve in terms of its
cartesian coordinates x, y, and z, find the corresponding u value. This problem
arises, for example, if tangent vectors are to be evaluated at certain locations on

* the curve. The solution of this problem is called the inverse point solution and

requires the solution of a nonlinear polynomial in u via numerical methods (see
Prob. 5.18 at the end of the chapter).
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5.7.3 Blending

The construction of composite curves from the various types of parametric curve
segments covered in Secs. 5.5 and 5.6 forms the core of the blending problem
which can be stated as follows. Given two curve segments P;(u,), 0 <u; <a,
P,(u,), 0 < u, < b, find the conditions for the two segments to be continuous at
the joint. Notice that the upper limits on u, and u, are taken to be a and b, and
not 1, for generality (B-spline curves have an upper limit that is not unity in
general). Three classes of continuity at the joint can be considered (see Fig. 5-39).
The first is C° continuity; that is, the ending point of the first curve and the
starting point of the second curve are the same. This gives

P.(a) =P,0) (5.124)

If the two segments are to be C' continuous as well, they must have slope
continuity, that is,

@) = o, T
20) =, T

where a; and «, are constants and T is the common unit tangent vector at the
joint. It has already been shown how to use curve characteristics for b}ending
purposes as in the case with Bezier curves. Another example is the blending of a
Bezier curve and an open B-spline curve. For slope continuity at the joint, the
last segment of the control polygon of the former and the first segment of the
control polygon of the latter must be colinear.

The third useful class of continuity is if the curvature (C? continuity) is to
be continuous at the joint in addition to position and slope. To achieve curvature
continuity is less straightforward and requires the binormal vector to a curve at a
point. Figure 5-56 shows the tangent unit vector T, the normal unit vector N, the
center of curvature O, and the radius of curvature p at point P on a curve

(5.125)

u=0 U= Umax

o4
Center of curvature

FIGURE 5-56
Binormal vector to a curve.
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segment. The curvature at P is defined as 1/p. The binormal vector B is defined
as

B=TxN (5.126)

The curvature is related to the curve derivatives through the vector B by the
following equation:

1 P xP
—_ B = 3 A
p [P
where P” is the second derivative with respect to the parameter u. The following
condition can then be written for curvature continuity at the joint:

Pi(a) x Pi(a) _ P5(0) x P3(0)

(5.127)

- = - (5.128)
|Py(a) [P50)]?
Substituting Eqs, (5.125) into the above equation gives
2 .
Tx{@:(%)TxZ@ (5.129)
2.
This equation can be satisfied if
" o3 2 7"
50)={—) Pi(a (5.130)
oy
or, in general, if
" oz 2 7" ’
20 = =) PiO) + yPi(a) (5-131)
1

where y is an arbitrary scalar which is chosen as zero for practical purposes.

5.7.4 Segmentation

Segmentation or curve splitting is defined as replacing one existing curve by one
or more curve segments of the same curve type such that the shape of the com-
posite curve is identical to that of the original curve. Segmentation is a very
useful feature for CAD/CAM systems; it is implemented as a “divide entity”
command. Model clean-up for drafting and documentation purposes is an
example where an entity (curve) might be divided into two at the line of sight of
another (normally the two entities do not intersect in space). One of the resulting
segments is then removed or blanked out. Another example is when a closed
curve has to be split for modeling purposes. Consider the case of creating a ruled
surface using a closed rectangle and a circle as rails of the surface (see Chap. 6).
In this case the circle is split into four segments at the intersections of the rectan-
gle diagonals with the circle. Each of the resulting four segments is then used with
the proper rectangle side to create the four ruled surfaces shown in Fig. 5-57.

~ Mathematically, curve segmentation is a reparametrization or parameter
transformation of the curve. Splitting lines, circles, and conics is a simple
problem. To split a line connecting two points P, and P, at a point P,, all that
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FIGURE 5-57
Segmentation of a circle for modeling purposes.

is needed is to define two new lines connecting the point pairs (P,, P,) and
(P,, P,). For circles and conics, the angle corresponding to the splitting point
together with the starting and ending angles of the original curve deﬁnes the
proper range of the parameter u (in this case the angle) for the resulting .two
segments. In other words, the parameter transformation in the case of lines,
circles, and conics is trivial.

Polynomial curves such as cubic splines, Bezier curves, and B-spline curves
require a different parameter transformation. If the .degree of the polynomial
defining a curve is to be unchanged, which is the case in segmentat_lon, the trans-
formation must be linear. Let us assume that a polynomial curve is defined over
the range u = U, U,. To split the curve at a point defined by u = u; means that

- the first and the second segments are to be defined over the range u = u,, 4, and

4 = uy, u,, respectively. A new parameter v is introduced for each s_egment such
that its range is v = 0, 1 (see Fig. 5-58). The parameter transformation takes the

form:

u=uy + (U — up)v for the first segment (5.132)

and u=1u; + Uy — UV for the second segment

FIGURE 5-58
Reparametrization-of a segmented curve.
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It is clear that v =0, 1 corresponds to the proper u values as required. If Eq.
(5.132) is substituted into the equation of a given curve, the proper equation of
each segment, and consequently its database, can be obtained in terms of the
parameter v. To facilitate this substitution in the curve polynomial equation
where u is raised to different powers, the following equation can be used:

LUt = Z":O <':)u’6(Au0 v)* " , (5.133)

where Auy = u; — ugy. A similar equation can be written for the second segment.
If the curve is to be divided into more than two segments, Egs. (5.132) and (5.133)
can be applied successively.

Example 5.23. A cubic spline connecting two pbints is to be divided by a user into
two segments. Find the endpoints and slopes for each segment.

Solution. Instead of substituting Eq. (5.133) into Eq. (5.81) of the spline directly and
reducing the result, it is more efficient to use the matrix form given by Eq. (5.83).
The vector U in this equation can be written in terms of the parameter v using Eq.

(5.133) as:
Aud 0 0 0
e @ u 1]=0° o o 1] 3ug Auj Aud 0 0
© T 3ud Auy 2ug Aug Auy 0
ud u? u, 1
or in a matrix form
‘ ' U =v[T]

Substituting this equation into Eq. (5.83), we obtain
P(u) = vI[TI[My]V = P*(v)
This equation can be rewritten in a similar form to Eq. (5.83) as
P*(0) = vI[Myl[My] ' [TIIM ]V = v [MIV*

Therefore, the modified geometry, or boundary conditions, vector of the first spline
segment is given by
V* = [My] ' [TIIMgIV

Expanding this equation and utilizing Eqs. (5.84) to (5.86) and Auy = u, — u,, we
get

P = (2u3 - 3u§ — 1P, + (—2ud + 3ud)P,
+ (13 — 2uf + uglPo + (u3 — ud)Py
P¥ = Qu; — 3u? — )P, + (=243 + 3ud)P,
+ (@ — 2u] + u)P, + (uf — uDP)
Py = (u, — up)[(6ud — 6ug)P, + (—6u + 6uy)P,
+ (3ud — duy + )P, + (3ul — 2uy)Py]
P¥ = (u, — ug)[(6u? — 6u )P, + (—6u? + 6u,)P,
+ (3u? — 4u, + )Py + (3u? — 2u,)Py]
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where P¥ = dP¥/dv and P;= dP,/du. Comparing the above four equations with
Eqgs. (5.81) and (5.82) reveals that

s =P P} = P(u)
Py =(u —ugPy  PY = (u, — ugPu)
These equations conclude that the first spline segment has the endpoints P, and
P(u,) which lie on the original curve and its end tangent vectors are related to the

end vectors of the original curve by the factor (u; — u,). The boundary conditions
for the second segment can, therefore, be written as

P§ = P(u,) Pi=P,

Py = (p—u)P'(u) PP =(u,—u)Py
While the endpoints of each segment are logically understood, the above equations
show that the magnitudes of the tangent vectors are scaled by the range (u; — uo)
{or (u,, — uy)] of the parametric variable to preserve the directions of the tangent

vectors and thus the shape of the curve. This scale factor can be derived in another
‘way as follows:

_du P
T

Substituting Eq. (5.132) gives the same result as above.

Similar development can be applied to split a Bezier curve or a B-spline
curve. Refer to the problems at the end of the chapter.

5.7.5 Trimming

Trimming curves or entities is a very useful function provided by all CAD/CAM
systems. Trimming can truncate or extend a curve. Trimming is mathematically
identical to segmentation covered in the previous section. The only difference
between the two is that the result of trimming a curve is only one segment of the

/+ U= Uy
/
// v=1
v=1," u=u
u=us
v=0 .
~ U= Uy,
//’ u=uy
-
d
7/
/
/
l/ v=0
" U=ty
U= Ug =y
(a) Truncated curve (b) Extended curve
FIGURE 5-59

Reparametrization of a trimmed curve.
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P (1)

P/ (1) =Q,(v)

FIGURE 5-60
Intersection of two parametric curves in
space.

curve bounded by the trimming boundaries. All the mathematical treatment of
the sggmentation applies here. The trimming function requires evaluating the
equation of the desired segment of the curves, deleting the original curve, and
then s‘toring and displaying the desired segment. Figure 5-59 shows the r’epar-
amettnzati.on of a trimmed curve. Extending general curves (Fig. 5-59b) such as
;ubxc splines, Bezier curves, and B-spline curves may not be recommended
p:gg;s; gﬁ: curve behavior outside its original interval u, < u < u,, may not be

5.7.6 Intersection

The int.ersection point P, (see Fig. 5-60) of two parametric curves P(u) and Q(v) in
three-dimensional space requires the solution of the following equation in the
parameters u and v:

P(4) — Q@) =0 (5.134)

This equation repr?sents three scalar equations that take the polynomial nonlin-
ear form generally in the two parameter unknowns. One way to find u and v is to
solve the X and Y components of the equation simultaneously, that is,

P () -0 )=0
PW-0m=0 (139
and then use the Z component, P (u) — Q,(v) = 0, to verify the solution.

The roots of Eq. (5.134) or (5.135) can be found by numerical analysis
methods ;uch as the Newtqn—Raphson method. This method requires an initial
guess which can be deteqnmed interactively. The user is usually asked by the
CAD/C{\I.\/I' software to dlgiFize the two curves whose intersection is required.
These digitizes could be possibly changed to an initial guess to start the solution.

If more than one intersection poi i igiti
nore point exists, the user must digitize cl
desired intersection point. ¥ ose to the

Example 5.24. Find the intersection point of two lines.

Solution. Assume the equations of the lines are )
P() = Py + u(®; —Py) 13
Q(v) =Q, + U(Q1 - Qo) (5137)
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The intersection point is given by the solution of the equation

P, + u(P; — Pg) = Qo + 1(Q; — Qo) (5.138)
Taking the dot product of the above equation with the vector (Qq X Q,) we obtain

(Qo x Q) - [Py + ulP, — Py)l=0 .
since (Qg x Q) is perpendicular to the plane of Qo and Q, and hence to the two
vectors. Solving the above equation for u gives
-P
_ (Qo x Q1) " Po (5.139)
Qo x Q)P — Py)

Thus, u is given in terms of the endpoints of the two lines. Substituting Eq. (5.139)
into (5.136) results in the coordinates of the intersection point which are usually
calculated in terms of the MCS of the given model or part. Equation (5.138) could
have been solved for v instead of u to give

_ (Po x Py) - Qo
P xPy) - (Q, — Qo)

u=

v =

The above approach can be extended to find the intersection of a line given
by Py + (P, — Po) and a curve given by Q(v) such as a Bezier or B-spline curve.
In this case u should be eliminated from the two equations to obtain

(Po x Py) - Q) =0

577 Transformation

Manipulation or transformation of geométric entities during model construction
or creating the model database offers a distinct advantage of CAD/CAM tech-
nology over traditional drafting methods. With transformation techniques, the
designer can project, translate, rotate, mirror, and scale various entities. Section
5.3 shows how two-and-a-half-dimensional objects can be constructed easily
using a “project” command. It also shows how the “mirror” command helps
construct symmetric objects. Transformation is also useful in studying the motion
of mechanisms, robots, and other objects in space. Animation techniques
(Chap. 13) may be based on transforming an object into various positions and
then replaying these positions continuously.

Simple transformations such as those mentioned above are usually referred
to as rigid-body transformations. They can be directly applied to parametric rep-
resentations of geometric models. To translate a model of a car, all points, lines,
curves, and surfaces forming the model must be translated.

Homogeneous transformation, as discussed in Chap. 9, offers a concise
matrix form to perform all rigid-body transformations as matrix multiplications,
which is a desired feature from the software development point of view. Equation
(3.3) gives the general homogeneous transformation matrix [7]. The proper
choice of the elements of this matrix produces the various rigid-body transfor-
mations.

One of the main characteristics of rigid-body transformations is that geo-
metric properties of curves, surfaces, and solids are invariant under these trans-
formations. -For example, originally parallel or perpendicular straight lines
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remain so after transformations. Intersection points of curves are transformed
into the new intersection points, that is, one-to-one transformation. Chapter 9
discusses in more detail the subject of geometric transformation.

58 DESIGN AND ENGINEERING APPLICATIONS

This section presents some examples that show how theories covered in this
chapter are applied to design and engineering problems. Consequently, it shows
how existing CAD/CAM systems can be stretched beyond just using them for
drafting, geometric modeling, and beyond what application modules of these
systems offer. The reader is advised to work these examples on an actual
CAD/CAM system.

Example 5.25. For the state of plane stress shown in Fig. 5-61, determine:

(a) The principal stresses.
(b) The state of stress exerted on plane a-a.

Solution. The solution of this typical problem is to use Mohr’s circle which is a
graphical method. The centralization of CAD/CAM databases can be used to sim-
plify the use of the method. The designer follows the part setup procedure covered
in Chap. 3 and utilizes the default view and construction plane. Then two lines are
created, one horizontal and one vertical, passing through the origin of the MCS.
These form the o and 7 axes (see Fig. 5-62). The stresses at the X and Y planes can
be used to form the endpoints P, and P, of a line. These points have the coordi-
nates (—400, —600, 0) and (800, 600, 0). Now a circle can be constructed whose
center is the intersection of the line with the ¢ axis and whose diameter is that line.
The intersection points P; and P, of the circle with the ¢ axis are the principal
stresses. Their coordinates are (0, 0, 0) and (o, 0, 0), and o, and o, can
simply be obtained using the “verify” command available on the CAD/CAM
system. The orientation of the principal planes can be found by evaluating the angle
a between the o axis and the line using the “measure angle” command.

800 {bfin?

/ 400 Ib/in

600 Ib/in® €——]

FIGURE 5-61
Stress state.
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P, (5. 7..0)
o (00T P (800.600.0)

Py (0max- 0.0) 4
Ty = 1048.528 Ib/in®
Ormin = —648.328 [b/in?
Tmin = 848.528 Ib/in*
a = 36.87°

(a) Mohr’s circle

T
min a

N

a'u

o, = —224.346 Ib/in*
= 734.972 ib/in*
(b) Stress values Ta

FIGURE 5-62
Stress calculations via Mohr's circle.

To find the state of stress on plane a-a, a line that passes through the circle
center and has an angle of 120° with the ¢ axis can be constructed. Its intersection
point with the circle gives the state of stress on this plane. The complete solution is
shown in Fig. 5-62.

The above procedure can be automated by writing a macro (refer to Chap.
15). The ease with which the designer can learn macro programming versus learn-
ing a full programming language makes this procedure attractive.

Example 5.26. The bar AB shown in Fig. 5-63 moves with its ends in contact with
the horizontal and vertical walls. Assuming a plane motion, find the locus of point C
on the bar for D = 6 inches and L = 20 inches. What is the locus if C is the center-
point of the rod? Prove your answer.

Solution. The planning strategy to solve this problem begins by trying to generate
enough points on the locus and then interpolating these points by a B-spline curve.
Follow a similar part setup procedure as in the previous example. Create two lines,
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FIGURE 5-63 5

7.~ Bar AB in plane motion.

b) Locus of point C
(a) Generating points on the locus (b) p

FIGURE 5-64

horizontal and vertical, passing through the origin of the MCS to represent the two Locus of point C on bar AB.

walls. The bar AB is represented by a line of length 20 inches (see Fig. 5-64).

The extreme positions of point C are at distances D and L — D from point O
when the bar 4B coincides with the vertical and horizontal walls respectively. To " 3y
find any other point on the locus, let us start from the vertical position of AB and ¢ ) =(x—=3+0 -3
increment its motion until it becomes horizontal. Thus, we start when point 4 is at
the location (0, L, 0). Assuming that ten points are enough to generate the locus,
point A4 has the coordinates (0, L — m AL, 0) where AL = L/10 and 0 < m < 10. To ¢,=xz20
find point C for any position of the bar, create a circle with center at 4 and radius o

Example 5.27. Minimize the function

subject to the constraints

equal to L. The intersection point between the circle and the horizontal line gives $.=y=0
point B and, therefore, the orientation of the bar. Point C can be located on 4B py=x+y—4<0
using a point command with a parameter u value equal to D/L or (1 — D/L) depend- i L
ing on whether point B or A is input first in the line command used to create the Solution. After following the part setup, construct the honzox}tal and' ve;tlcalhhgeé
line. The algorithm to generate points on the locus can therefore be written as passing through the origin of the MCS. 'Ijhe a!aove c.onstrzum set is t3 e3 soa ed
. triangle shown in Fig. 5-66. The function ¢ is a circle w1t§ a center at G, 3, ).ar:

LOOP C1 =circle with P, =A, R=1L has a minimum value at that point ignoring the constraints. Wlth thf; }cl:ortlstra;cs,

L1 = Line connecting P, = A and P, = Intersection of C1 and horizontal line the minimum corresponds to the circle that is tangent to the line ¢; . the zgg‘n g

C = pointatu=1—D/L point is the intersection point P between ¢; and the line connect12ng0 ?['herffore

A = point at (0, L — m AL, 0) and the center C. Verifying this point gives its coordinates as (2, 2, 0). ]

when m is equal to 10 exit Omin = 92, 2) = 2.

Go to LOOP
Once all the points are generated, they are connected with a B-spline curve via a Y
B-spline command. The locus is shown in Fig. 5-64. To facilitate the management of A
all graphics entities during construction, it is recommended that all possible aids
such as layers, colors, and fonts be used (see Chap. 11). This method lends itself to
macro programming which is useful in parametric design studies.

If point C is the center of 4B, the locus becomes a circle with center at O and N
radius equal to the distance OC. Indeed, the locus of C is an ellipse in general with
center at O and major and minor axes of lengths equal to (L — D) and D if D < L2 Cley.0)
and vice versa if D > L/2. To prove this, consider Fig. 5-65, which gives the follow- . e
ing coordinates of point C: . ! D

N [
x=(L—D)cosf® y=Dsinb z=0 ‘; P FIGURE 5-65

irdl ; f point C.
which is an equation of an ellipse. If D = L/2, an equation of a circle results. B 0 B X Analytic development of locus of p
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Y Gmin

It
"~

C(3.3.0)

P(2.2.0)

\ FIGURE 5-66
o X Minimum of the function ¢(x, y).

Example 5.28. A four-bar mechanism is shown Fig. 5-67. The input angular velocity
of the link AB is w; = 200 r/min clockwise. Point E, the center of the link CB, is
connected to a valve that is not shown in the figure. The mechanism is to be
redesigned such that:

Design criterion. The maximum Tlinear velocity of point E, vg ..., must be
greater than its current value by at least 5 inches/s.

Design constraints. (1) Only L and LL lengths can change and (2) 4B must
rotate the full 360°.

Solution. The solution to this design problem requires the velocity analysis of
mechanisms. Either the relative velocity or instantaneous center concept can be
utilized. The latter is used here because it lends itself to CAD/CAM techniques. The
velocity analysis is shown in Fig. 5-68. The instantaneous center of the mechanism
is the intersection point I of links 4B and CD for any configuration of the mecha-
nism. The velocity analysis gives

vpg=,L=0w,L,
w, = w,L/L, (5.140)
vg = wyL, =w,LL,/L,

L=10in

@y = 200 r/min

%, FIGURE 5-67

Four-bar mechanism.
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(223
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™
w; FIGURE 5-68
Velocity analysis of mechanism shown in
D A Fig. 5-67.

The last equation gives the velocity of point E in terms of the input velocity and the
lengths L, L,, and L, . To obtain v, rotate the link AB around point 4 an angle
0, construct the mechanism in the new position, find L, and L,, and substitute in
Egs. (5.140) to find vz. Repeat for the admissible range of the angle 6. Connect the
resulting points [each point has coordinates (6, v, 0)] with a B-spline curve. Find
U5, max fTom the curve. To construct the mechanism at any angle 6, rotate AB about
A, the required angle. This defines point B. Point C is the intersection of two circles.
The first has a center at B and a radius of 15 in and the second has a center at D
and a radius equal to LL. Thus, the admissible range of angle of rotation (f) of link
AB for a certain set of dimensions is found when the above two circles do not
intersect.

With the above strategy in mind, the designer can choose various values for L
and LL in an attempt to achieve the design goal and the given design constraints.
The major commands needed are “rotate, measure distance, B-spline” commands in
addition to layer and utility (delete. . .) commands.

Original design 1 Design 2 Design 3
L=10in, LL=1044in |L=75in, LL=8.08in| L=10in,LL=13in
Vg max = 239.74 inf/s

Vg, max = 182.84 in/s Ve, max = 250.66 in/s

B, B'.B"

AF

360° range

FIGURE 5-69
Results for three design iterations.
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Distance travelled = 99.5134 in
Two revolutions

FIGURE 5-70
Locus of point E for design 3.

Figure 5-69 shows the results for two designs in addition to the original
Design 3 is the final design. Figure 5-70 shows the locus of point E for this design
and Fig. 5-71 shows the velocity curves of E for the three designs. Notice that for
the final design vg .., = 250.656 inch/s, which meets the design goal.

Maximum velocity

Maximum velocity = 250.6559

= 238.7427

Curve for
. design 1

Scale 1:8

=3 L I B B

Curve for
design 3

Velocity (in/s)

|
|
{
!
|
!
}
|
|
I
[

C Curve for
= design 2
O‘Jl\ll]l!l(llIlIlFJlirilllllllllllll
Angle of rotation (deg)
Scale 1:20
FIGURE 5-71

Velocity curves of designs 1, 2, and 3.
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PROBLEMS
Part 1: Theory

5.1. Find the equation and endpoints of each of the following lines:

P+ + P2 L
1

' Py

D

. .

Ly

(a) Parallel to L, at distance D and (b) Parallel to L,, passes through P,
bounded by points Py and P, and has length L

s
7
7
e

P¥

Py

(c) Tangent to two given circles

Pom

() Tangent to a given circle from
a given point Py

(d) Perpendicular to L, passes through
- P,,and bounded by P,

Pu‘@

(f) Tangent to a given ellipse from a
) given point P,

5.2. Find the length of the common perpendicular to two skew lines.
5.3. Find the radius and the center of the following circles:
(a) Tangent to a given circle and a given line with a given radius.
(b) Tangent to two lines and passing through a given point.
(¢) Passing through two points and tangent to a line.
(d) Tangent to a line, passing through a poiat, and with a given radius.
5.4. Find the center and the major and minor radii of an ellipse defined by two points
and two slopes.
5.5. Find the intersection point of two tangent lines at two known points on an ellipse.

5.6. Find the tangent to an ellipse:

.-~ - (a) Atany given point on its circumference.

(b) From a point outside the ellipse.

5.7. As Prob. 5.6 but for a parabola.

5.8. Figure P5-8 shows a cubic spline curve consisting.of two segments 1 and 2 with end
conditions Py, Py, Py, Py, and P,, P|,, P,, P;. The second subscripts in the
tangent vectors at P, refer to the segment number. If P, =R and P, = KR, where
K is a constant, prove that the curve can only be C! continuous at P, and C?
elsewhere.
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Segment 2

FIGURE P5-8

5.9.
5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.
5.17.
5.18.

5.19.

Find the normal vector to a cubic spline curve at any of its points.

For a cubic Bezier curve, carry a similar matrix formulation to a cubic spline.
Compare [Mg] and V for the two curves.

Find the condition that a cubic Bezier curve degenerates to a straight line connecting
P, and P,. :

Derive a method by which you can force a Bezier curve to pass through a given
point in addition to the starting and ending points of its polygon. Achieve that by
changing the position of only one control point, say P,.

Investigate the statement “each segment.of a B-spline curve is influenced by only k
control points or each control point affects only k curve segments.” Use n = 3, k = 2,
3,4. .

Find the equation of an open quadratic B-spline curve defined by five control points.

For an open cubic B-spline curve defined by n control points, carry a similar matrix
formulation to a cubic spline. Compare [Mg] and V with those of the cubic spline
and Bezier curves.

Hint: Start with n =5, that is, six control points, and then generalize the
resulting [M]. SRR, ro Toam -
As Prob. 5.14 but for a closed B-spline curve. s T
Derive Eqs. (5.122) and (5.123). - i -
Given a point Q and a parametric curve in the cartesian space, find the closest point
P on the curve to Q.

Hint: Find P such that (Q — P) is perpendicular to the tangent vector.

A cubic Bezier curve is to be divided by a designer into two segments. Find the
modified polygon points for each segment.

Part 2: Laboratory

5.20.

5.21.

5.22.

Obtain the three orthographic views (front, top, and right side) and a perspective
view looking along the Z axis at a distance 20 inches from the parts shown in Fig.
P5-20 (all dimensions in inches). Obtain final drawings of these views. Follow the
model clean-up and documentation procedure on your particular CAD/CAM
system. Obtain the standard six isometric views of each model. Clean up each view.
Using your CAD/CAM system, investigate the line, circle, ellipse, parabola, conics,
cubic spline, Bezier curve, and B-spline curve commands and their related modifiers.
Relate these modifiers to their theoretical background covered in this chapter.

Choose a mechanical element such as a gear and generate its geometric model.
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—2 Hols
0.56 @2 Holes 425

(c) Lathe leg

0.5R—4 Places

(g) Support bracket

FIGURE P5-20

0.3125
Drill spotface
0.15 x 0.08 deep

0.5

(f) Pipe bracket
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5.23. In Fig. P5-23, the similar links AB and CD rotate about the fixed pins at 4 and D.

Find the locus of point P for 0 < 6 < 180 for L = 7 and 3.5 inches. How does L
affect the locus?

All dimensions in inches

FIGURE P5-23

5.24. The slider crank mechanism shown in Fig. P5-24 is part of a machine. The sensor
comes in contact with the centerpoint of the connecting rod BC only when this point
Is in its extreme position. The sensor has to change position to meet the following
design requirements: )
Design objective (goal): sensor should move 0.5 in outward.
Degign constraints: a + b must be kept to a minimum to minimize the mechanism
weight (a and b have same cross section and same material).
Find the new lengths a and b.

FIGURE P5-24

Part 3: Programming

5.25. Base(.i on the the.ory presented in this chapter, write a program that takes the proper
user input and display lines, circles, ellipses, and parabolas.

5.26. An ellipse at a general orientation can be generated and displayed in two ways:
(a) Use Eq. (5.37) .to generate points ready for display directly.
(b) Use the equations x; = 4 cos u, y, = B sin u, z; = 0 (see Fig. 5-28) and use the

transformation
cosa sina 0| x |[x,
Ix y z 1= —sina cosa O | y. ||y
~ 0 0 1,z]fo
0 0 07 1dbL1

Program both ways and compare the CPU times of both cases.
5.27. As Prob. 5.26 but for a parabola [use Eq. (5.55)].
5.28. Write a program for a Hermite cubic spline connecting two points.
5.29. As Prob. 5.28 but for a cubic Bezier curve. '
5.30. As Prob. 5.28 but for both open and closed B-spline curves.
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CHAPTER

TYPES AND
MATHEMATICAL
REPRESENTATIONS
OF SURFACES

6.1 INTRODUCTION

Shape design and representation of complex objects such as car, ship, and air-
plane bodies as well as castings cannot be achieved utilizing wireframe modeling
covered in the previous chapter. In such cases, surface modeling must be utilized
to describe objects precisely and accurately. Due to the richness in information of
surface models, their use in engineering and design environments can be extended
beyond just geometric design and representation. They are usually used in
various applications such as calculating mass properties, checking for interference
between mating parts, generating cross-sectioned views, generating finite element
meshes, and generating NC tool paths for continuous path machining.

Creating surfaces in general has some quantitative data, such as a set of
points and tangents, and some qualitative data, such as intuition of the desired
shape and smoothness. Quantitative and qualitative data can be thought of as
hard and soft data respectively. Surface formulation must provide the designer
with the flexibility to use both types of data in a simple form that is suitable for
interactive use. Similar to curves, available surface techniques can interpolate or
approximate the given hard data. As will be seen in this chapter, the Bezier
surface is a form of approximation and the B-spline surface is a form of inter-
polation.

In addition to using surfaces to model geometric objects, they can also be
used to fit experimental data, tables of numbers, and discretized solutions of dif-
ferential equations. In all these cases, the multidimensional surface problem
arises. The problem can be stated as follows. Given positional data (points in
three-dimensional space) and a variable value at each point, how can the surface

259
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representing the variable distribution be constructed? Consider, for example,
constructing the pressure surface, or distribution, on an oblique airplane wing or
constructing the stress distribution in a mechanical part. The construction of
these-four-dimensional surfaces usually involves finding the proper contours of
;he given variable (pressure or stress) and then displaying them in a color-coded

orm.

) The choice of the surface form depends upon the application; that is, there
is no single solution for all problems. For example, the surface form used to
model a car body may not be adequate to model the human heart. The choice of
surface form may depend on manufacturing methods needed to produce the
surface. It is usually preferred to choose a surface that can be produced using
three-axis machining instead of five-axis machining to reduce the manufacturing
cost. However, all surface forms must be easy to differentiate to determine surface
tangents, normals, and curvatures. Polynomial functions are an obvious choice.
Polynomials of higher orders are not appropriate from a surface design point of
view due to their large number of coefficients which may make it difficult to
control the resulting surface or may introduce unwanted oscillations in the
surface. For most practical surface applications, cubic polynomials are sufficient.

It is desirable, if possible, to choose a surface mathematical description or
form that is applicable to both surface design and surface representation. Surface
representation involves using given data to display and view the surface. It can
tak.e place in n-space, as the pressure surface problem cited above shows. Surface
design involves using key given data and making interactive changes to obtain
the desired surface. Surface design usually takes place in three-dimensional space.
In this chapter, we concern ourselves with surface design only.

. The most obvious and inefficient way to describe a surface is to list suffi-
cient points on it. This approach is cumbersome and cannot be used to derive
any surface properties. Instead, it is common to employ some form of inter-
polation scheme and use fewer points. It is even more convenient if analytic
forms of surfaces exist all the time. When analytic forms are not available, sur-
faces are defined in patches that are connected together similarly to curves, which
can be defined in a piecewise manner. :

N Surface creation on existing CAD/CAM systems usually requires wireframe
entities as a start. A system might request two boundary entities (rails of the
surface) to create a ruled surface or might require one entity (generator curve) to
create a surface of revolution. All analytic and synthetic wireframe entities
covered in the previous chapter can be used to generate surfaces. In order to
visualize surfaces on a graphics display, a mesh, say m x n in size, is usually
displayed. The mesh size is controllable by the user. CAD/CAM systems must
provide their users with a wide range of surfaces and surface manipulations as
discussed in this chapter.

This chapter covers both theoretical and practical aspects of surfaces.
Throughout the chapter, related issues to constructing surfaces on CAD/CAM
systems are covered. Sections 6.2 and 6.3 are dedicated to some of these issues
which may be helpful to users. Sections 6.4 to 6.7 cover the mathematical repre-
sentations of most popular surfaces. Section 6.8 applies the chaptéi‘ material to
design and engineering applications.
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6.2 SURFACE MODELS

A surface model of an object is a more complete and less ambiguous representa-
tion than its wireframe model. It is also richer in its associated geometric con-
tents, which makes it more suitable for engineering and design applications. A
surface model can be used, for example, to drive the cutter of a machine tool
while a wireframe model cannot. Surface models take the modeling of an object
one step beyond wireframe models by providing information on surfaces connect-
ing the object edges. Typically, a surface model consists of wireframe entities that
form the basis to create surface entities. Surface description is usually tackled as
an extension to the wireframe representation. Analytic and synthetic surface
entities are available and provided by most CAD/CAM systems.

Surface modeling has been developing rapidly due to the shortcomings and
inconveniences of wireframe modeling. The former is considered an extension of
the latter. In general, a wireframe model can be extracted from a surface model
by deleting or blanking all surface entities. Databases of surface models are cen-
tralized and associative. Thus, manipulating surface entities in one view is auto-
matically reflected in other views. These entities can also be subjected to
three-dimensional geometric transformations.

Despite their similar look, there is a fundamental difference between surface
and solid models. Surface models define only the geometry of their corresponding
objects. They store no information regarding the topology of these objects. As an
example, if there are two surface entities that share a wireframe entity (edge),
neither the surfaces nor the entity store such information. There is also a funda-
mental difference between creating surface and solid models. To create a surface
model, the user begins by constructing wireframe entities and then connecting
them appropriately with the proper surface entities. For solids based on bound-
ary representation, either faces, edges, and vertices are created or solid primitives
are input which are converted internally by the software to faces, edges, and
vertices. Refer to the next chapter on solid modeling.

In constructing a surface model on a CAD/CAM system, the user should
follow the modeling guidelines discussed in Chap. 3. All the design tools provided
by CAD/CAM systems and covered in Part IV of the book are applicable to
surface models. Only geometric modifiers are meaningless and cannot be applied
to surface entities. From a practical point of view, it is more convenient to con-
struct a surface model in an isometric view to enable clear display and visual-
ization of its entities. Visualization of a surface is aided by the addition of
artificial fairing lines (called mesh) which criss-cross the surface and so break it
up into a network of interconnected patches. If wireframe entities are to be digi-
tized to generate surfaces the user must do so in an ordered manner to ensure
that the right surfaces are created. Figure 6-1 shows how the wrong ruled surface
is created if the surface rails are digitized near the wrong ends. The +’s in the
figure indicates the digitized locations. Another practical tip in constructing
surface models is the change in mesh size of a surface entity. The most obvious
way is to delete the surface entity and then reconstruct it with the desired mesh

size. A better solution is to simply change the size of the mesh and then regener-
ate the surface display. Figure 6-2 shows surfaces of revolutions with a mesh size
of 4 x 6 and Fig. 6-3 shows the regeneration of the surfaces with a 20 x 20 mesh
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(a) Wrong digitized locations

(b) Proper digitized locations

FIGURE 6-1
Construction of improper and proper ruled surfaces.

size. It should be mentioned here that the finer the mesh size of surface entities in
a moc.lel, the longer the CPU time to construct the entities and to update the
graphics display, and the longer it takes to plot the surface model. Finally, some
CAD/CAM systems do not permit their users to delete wireframe entities u’sed to
create surface entities unless the latter are deleted first.

Surface 'models have considerable advantages over wireframe models They
are .lcss ambiguous. They provide hidden line and surface algorithms t'o add
realism to the displayed geometry. Shading algorithms are only available for
surfac.e_ and 'solid models. From an application point of view, surface models can
be utilized in volume and mass property calculations, finite element modeling,
NC path g«?neration, cross sectioning, and interference detections. '

Despite the above-cited advantages, surface models have few disadvantages
Surfz.ice modeling does not lend itself to drafting background. It thereforé
requires more training and mathematical background on the user’s part. Surface

O

FIGURE 6-2
Surfaces of revolution with a 4 x 4 mesh size.
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FIGURE 6-3
Surfaces of revolution with a 20 x 20 mesh size.

models are generally more complex and thus require more terminal and CPU
time and computer storage to create than wireframe models. They are still ambig-
uous in some applications, as is the case when determining which of an object’s
surfaces define its volume. Surface models are sometimes awkward to create and
may require unnecessary manipulations of wireframe entities. Consider the
example of a surface with holes or cuts in it. Surface patches may have to be
created with the aid of intermediate wireframe entities to create the full surface.
Refer to Fig. 5-57 where the circle has to be divided to create the ruled surfaces.
Surfaces and wireframes form the core of all existing CAD/CAM systems.
Surface descriptions and capabilities are generalized to provide modeling flex-
ibilities. For example, Gordon surfaces are considered alternatives, with gener-
alization and improvements, to Bezier and Coons surfaces. Triangular Bezier and
Coons patches are available for the case of arbitrarily located input data. Addi-
tional triangular patches also exist. As a result, new surface possibilities are
created for those situations in which four-sided topology cannot be assumed.

6.3 SURFACE ENTITIES

Similar to wireframe entities, existing CAD/CAM systems provide designers with
both analytic and synthetic surface entities. Analytic entities include plane
surface, ruled surface, surface of revolution, and tabulated cylinder. Synthetic
entities include the bicubic Hermite spline surface, B-spline surface, rectangular
and triangular Bezier patches, rectangular and triangular Coons patches, and
Gordon surface. The mathematical properties of some of these entities are
covered in this chapter for two purposes. First, it enables users to correctly
choose the proper surface entity for the proper application. For example, a ruled
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FIGURE 6-4
Plane surface.

§urface is a linear surface and does not permit any twist while a B-spline surface
is a general surface. Second, users will be in a position to better understand
CAD/CAM documentation and the related modifiers to each surface entity
corr.njnand available on a system. The following are descriptions of major surface
entities provided by CAD/CAM systems:

1. Plc.zne surface. This is the simplest surface. It requires three noncoincident
points tob.deﬁne an infinite plane. The plane surface can be used to generate
cros_s-sectlonal views by intersecting a surface model with it, generate cross
sectlox}s for mass property calculations, or other similar applications where a
plane is needed. Figure 6-4 shows a plane surface.

Rail (boundary curve)

[ ] ]
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77/
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i

' ) FIGURE 6-5
Rail (boundary curve) Ruled surface.
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FIGURE 6-6
Surface of revolution.

2. Ruled (lofted) surface. This is a linear surface. It interpolates linearly between
two boundary curves that define the surface (rails). Rails can be any wireframe
entity. This entity is ideal to represent surfaces that do not have any twists or
kinks. Figure 6-5 gives some examples.

3. Surface of revolution. This is an axisymmetric surface that can model axisym-
metric objects. It is generated by rotating a planar wireframe entity in space
about the axis of symmetry a certain angle (Fig. 6-6).

4. Tabulated cylinder. This is a surface generated by translating a planar curve a
certain distance along a specified direction (axis of the cylinder) as shown in
Fig. 6-7. The plane of the curve is perpendicular to the axis of the cylinder. It

Directrix

e

FIGURE 6-7 _
Tabulated cylinder.

':vv{ Pl
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FIGURE 6-8
Bezier surface.

is used to generate surfaces that have identical curved cross sections. The word
“tabulated” is borrowed from the APT language terminology.

5. Bezier surface. This is a surface that approximates given input data. It is dif-
ferent from the previous surfaces in that it is a synthetic surface. Similarly to
the Bezier curve, it does not pass through all given data points. It is a general
surface that permits, twists, and kinks.(Fig. 6-8). The Bezier surface allows
only global control of the surface. »

6. B-spline surface. This is a surface that.can approximate or interpolate given
input data (Fig. 6-9). It is a synthetic surface. It is a general surface like the

Bezier surface but with the advantage of permitting local control of the
surface.

7. Coons patch. The above surfaces are used with either open boundaries or
given data points. The Coons patch is used to create a surface using curves
that form closed boundaries (Fig. 6-10).

8. Fillet surface. This is a B-spline surface that blends two surfaces together (Fig.
6-11). The two original surfaces may or may not be trimmed.

9. Offset surface. Existing surfaces can be offset to create new ones identical in
shape but may have different dimensions. It is a useful surface to use to speed

+ + +
+ .+
+ +
+ +
+ o +
+ o+
- . .
+
+ .ot
(a) Data points (h) B-spline surface
FIGURE 6-9

B-spline surface.
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up surface construction. For example, to create a hollow cylinder, the outer or
inner cylinder can be created using a cylinder command and the other one can
be created by an offset command. Offset surface command becomes very effi-
cient to use if the original surface is a composite one. Figure 6-12 shows an
offset surface.

FIGURE 6-10
Closed boundary Coons patch.

FIGURE 6-11
Fillet surface. /-

FIGURE 6-12
Offset surface.
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Example 6.1. Create the surface model of the guide bracket shown in Fig. 5-2.

Solution. Before creating the surface model, the wireframe model of the bracket
created in Example 5.1 is required and its database is assumed to be available for
this example. A quick look at Fig. 5-2 reveals that ruled surfaces and tabulated
cylinders are sufficient to construct the surface model. The following steps may be
followed to construct the surface model:

1. Retrieve the wireframe model database of the bracket. It might be more practical
to copy the wireframe model and use the copy to create the surfaces so that if the
database is corrupted during surface creation, the original database can be
copied again.

2. Select new layer(s) for surface entities to facilitate managing surface and wire-
frame entities.

3. Create surfaces on the right face of the model by using a ruled surface command.
Referring to Fig. 6-13q, the line P; P, is divided first into two entities at the
intersection point (P,) of lines P, P; and P, P,. The ruled surface command is
used twice to create two surfaces using lines P, P, and P; P, (identified by digi-
tizes dy and d, in Fig. 6-13a) as rails for the first surface and lines P, P, and P, P,
(d5 and d, in the figure) as rails for the other surfaces.

4. Use a mirror or duplicate command to copy these surfaces to create surfaces on
the left face of the model. }

5. Create ruled surfaces-on the front face of the top part of the model as shown in
Fig. 6-13a. Five surfaces are constructed. These surfaces use entities ds and dg; d,
and dg; dg and d,; d;, and d,,; and d,5 and d,, as rails. The small circle has to
be divided into five arc segments to create these surfaces.

6. Create the surface of the hole shown in Fig. 6-13a. Use a tabulated cylinder
command with the circle as the cylinder generator.

7. Follow a similar approach to construct all the surfaces of the model. During
construction, the user encounters either dividing existing entities or creating new
ones to define the appropriate rails of the various ruled surfaces. Figure 6-13b
shows the completed surface model while Fig. 6-13c shows a shaded image of the
surface model for better visualization.

The above example illustrates most of the experiences encountered in cre-
ating surface models on major CAD/CAM systems. The long construction time
and user inconveniences due to dividing or creating entities make surface models

- A
(c) Shaded image

FIGURE 6-13 )
Surface mode! of the guide bracket of Example 5.1.

(a) Intermediate construction
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somewhat difficult to create and give more appeal to solid modeling. However,
the major advantage of surface modeling is in its generality and capability to
handle any kind of surface including sculptured surfaces.

6.4 SURFACE REPRESENTATION

Surface representation is considered, in many aspects, an extension of curve rep-
resentation covered in the previous chapter. The nonparametric and parametric
forms of curves can be extended to surfaces as will be covered later in this
chapter. Similarly, the treatment of surfaces in computer graphics and

CAD/CAM requires developing the proper equations and algorithms for both .

computation and programming purposes. Moreover, surface description is
usually related to machining requirements to manufacture the surface. The
surface description must successfully drive a tool to generate its path. Chapter 20
covers more on machining,

Surfaces can be described mathematically in three-dimensional space by
nonparametric or parametric equations. There are several methods to fit non-
parametric surfaces to a given set of data points. These fall into two categories. In

the first, one equation is fitted to pass through all the points while in the second
the data points are used to develop a series of surface patches that are connected
together with at least position and first-derivative continuity. In both categories,
the equation of the surface or surface patch is given by

P=[x y z21"=[xy fluyI (6.1)

where P is the position vector of a point on the surface as shown in Fig. 6-14.
The natural form of the function f(x, y) for a surface to pass through all the given
data points is a polynomial, that is,

2=f5 ) =3 3 62)
m=0 n=0

where the surface is described by an XY grid of size (p + 1) x (g + 1) points.

P(x.y.2)
o

FIGURE 6-14
z Point P on a nonparametric surface patch.
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The nonparametric surface representation suffers from all the disadvan-
tages, when compared with parametric surface representation, that nonpara-
metric curves suffer from when compared with parametric curves. However,
nonparametric surfaces do have some advantages when it comes to solving
surface intersection problems, but these advantages do not warrant their use in
CAD/CAM.

The parametric representation of a surface means a continuous, vector-
valued function P(u, v) of two variables, or parameters, u and v, where the vari-
ables are allowed to range over some connected region of the uv plane and, as
they do so, P(u, v) assumes every position on the surface. The function P(y, v) at
certain u and v values is the point on the surface at these values. The most
general way to describe the parametric equation of a three-dimensional curved
surface in space is

P v)=[x y 21"=[x(wv) yuv) z(u v)]",

u <u<u

'min =

max> Umin <v< Umax (6'3)

As with curves, Eq. (6.3) gives the coordinates of a point on the surface as the
components of its position vector. It uniquely maps the parametric space (E? in u
and v values) to the cartesian space (E® in x, y, and z), as shown in Fig. 6-15. The
parametric variables u and v are constrained to intervals bounded by minimum
and maximum values. In most surfaces, these intervals are [0, 1] for both u and v.

Equation (6.3) suggests that a general three-dimensional surface can be
modeled by dividing it into an assembly of topological patches. A patch is con-
sidered the basic mathematical element to model a composite surface. Some sur-
faces may consist of one patch only while others may be a few patches connected
together. Figure 6-16 shows a two-patch surface where the u and v values are
[0, 1]. The topology of a patch may be rectangular or triangular as shown in
Fig. 6-17. Triangular patches add more flexibility in surface modeling because
they do not require ordered rectangular arrays of data points to create the
surface as the rectangular patches do. Both triangular and rectangular Coons and
Bezier patches are available.

Analogous to curves, there are analytic and synthetic surfaces. Analytic sur-
faces are based on wireframe entities and include the plane surface, ruled surface,
surface of revolution, and tabulated cylinder. Synthetic surfaces are formed from
a given set of data points or curves and include the bicubic, Bezier, B-spline, and
Coons patches. There are few methods to generate synthetic surfaces such as the
tensor product method, rational method, and blending method. The rational
method develops rational surfaces which is an extension of rational curves. The
blending method approximates a surface by piecewise surfaces.

The tensor product method is the most popular method and is widely used
in surface modeling. Its widespread use is largely due to its simple separable
nature involving only products of univariate basis functions, ustally polynomials.
It introduces no new conceptual complications due to the higher dimensionality
of a surface over a curve. The properties of tensor product surfaces can easily be
deduced from properties of the underlying curve schemes. The tensor product
formulation is a mapping of a rectangular domain described by the u and v
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FIGURE 6-15
Parametric representation of a three-dimensional surface.

values; e.g., 0 <u <1 and 0 < v < 1. Tensor product surfaces fit naturally onto
rectangular patches. In addition, they have an explicit unique orientation
(triangulation of a surface is not unique) and special parametric or coordinate
directions associated with each independent parametric variable.

There is a set of boundary conditions associated with a rectangular patch.
There are sixteen vectors and four boundary curves as shown in Fig. 6-18. The
vectors are four position vectors for the four corner points P(0, 0), P(1, 0), P(1, 1),
and P(0, 1); eight tangent vectors (two at each corner); and four twist vectors at
the corner points (see below for the definition of a twist vector). The four bound-
ary curves are described by holding one parametric variable fixed at one of its
limiting values and allowing the other to change freely. The boundary curves are
then defined by the curve equationsu =0, u = 1,9 =0,and v = 1.
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=0

Patch 2

FIGURE 6-16
z Two-patch parametric surface.

To generate curves on a surface patch, one can fix the value of one of the
parametric variables, say u, to obtain a curye in terms of the other variable, v. By
continuing this process first for one variable and then for the other using a
certain set of arbitrary values in the permissible domain, a network of two para-
metric families of curves are generated. Only one curve of each family passes
through any point P(u, v) on the surface. The positive sense of any of these curves
is the sense in which its nonfixed parameter increases. As mentioned earlier, the
user can specify a mesh size, say m x n, to display a surface on the graphics
display. That mesh size determines the number of curves in each family. The
curves of each family are usually equally spaced in the permissible interval of the
corresponding parametric variable.

(a) Rectangular patches (b) Triangular patches

FIGURE 6-17 7
Surfaces composed of rectangular and triangular patches.
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FIGURE 6-18

A parametric surface patch with its boundary conditions.

Geometric surface analysis forms an important factor in using surfaces for
other purposes than just displaying them. For example, knowing the tangent
vectors to a surface enables driving a cutting tool along the surface to machine it
and knowing the normal vectors to the surface provides the proper directions for
the tool to approach and retract from the surface. Differential geometry plays a
central role in the analysis of surfaces. The measurements of lengths and areas,
the specification of directions and angles, and the definition of curvature on a
surface are all formulated in differential terms. The parametric surface P(y, v) is
directly amenable to differential analysis. There are intrinsic differential charac-
teristics of a surface such as the unit normal and the principal curvatures and
directions which are independent of parametrization. These ‘characteristics
require introducing few parametric derivatives.

The tangent vector concept that is introduced in Chap. 5 can be extended
to surfaces. The tangent vector at any point P(u, v) on the surface is obtained by
holding one parameter constant and differentiating with respect to the other.
Therefore, there are two tangent vectors, a tangent to each of the intersecting
curves passing through the point as shown in Fig. 6-18. These vectors are given

by
P ox. dy. 0z

=T Tt i S U S s Ui S S O (64)
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along the v = constant curve, and

oP . Oy, 0
Pu(u:v)=-é;=%i+a_i'+‘a—zﬁ’ uminsusumax:vminsvsvmax(6'5)

along the u = constant curve. These two equations can be combined to give

ox oy i

P du ou Ou
i = 6.6
e o & 0

dv Ov Ov

These components of each unit vector are shown in Fig. 6-15. If the dot product
of the two tangent vectors given by Egs. (6.4) and (6.5) is equal to zero at a point
on a surface, then the two vectors are perpendicular to one another at that point.
Figure 6-18 shows the tangent vectors at the corner points of a rectangular patch
and at point P;;. The notation dP/0u|p,, for example, means that the derivative is
calculated at the point P;; defined by u = »; and v =v;. Tangent vectors are
useful in determining boundary conditions for patching surfaces together as well
as defining the motion of cutters along the surfaces during machining processes.
The magnitudes and unit vectors of the tangent vectors are given by

- (BT

6.7)
ax\* [(oy\* [oz\*
ri- (&) (@) ()
P P
d f,=——  §,=—" 6.8
an . Pl P, (63)

The slopes to a given curve on a surface can be evaluated (refer to Chap. 5),
although they are less significant and seldom used in surface analysis.

The twist vector at a point on a surface is said to measure the twist in the
surface at the point. It is the rate of change of the tangent vector P, with respect
to v or P, with respect to u, or it is the cross (mixed) derivative vector at the
point. Figure 6-19 shows the geometric interpretation of the twist vector. If we
increment u and v by Au and Av respectively and draw the tangent vectors as
shown, the incremental changes in P, and P, at point P, whose position vector is
P(u, v), are obtained by translating P,(u, v + Av) and P,(u + Ay, v) to P and
forming the two triangles shown. The incremental rate of change of the two
tangent vectors become APu/Av and APv/Au, and the infinitesimal rate of change
is given by the following limits:

6.9
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FIGURE 6-19
Geometric interpretation of twist vectors.

The twist vector can be written in terms of its cartesian components as

[ @x @y Pz T Px - %y Py %z
“= |\ Pudv ouow ouds| Ouds udv’ ouod

Ra
v

Unin S u< Umax > Umin <v< Umax (610)

The twist vector depends on both the surface geometric characteristics and its
parametrization. Due to the latter dependency, interpreting the twist vector in
geometrical terms may be misleading since P,, # 0 does not necessarily imply a
twist in a surface. For example, a flat plane is not a twisted surface. However,
depending on its parametric equation, P,, may or may not be zero.

The normal to a surface is another important analytical property. It is used
to calculate cutter offsets for three-dimensional NC programming to machine
surfaces, volume calculations, and shading of a surface model. The surface
normal at a point is a vector which is perpendicular to both tangent vectors at
the point (Fig. 6-18); that is,

7] )
Ni =—X—= P .
(u, v) P X % P, xP, (6.11)
and the unit normal vector is given by
. N P, xP,
= INI TR xR, ©12

The order of the cross-product in Eq. (6.11) can be reversed and still defines the
normal vector. The sense of N, or &, is chosen to suit the application. In machin-
ing, the sense of fi is usually chosen so that & points away from the surface being
machined. In volume calculations, the sense of fi is chosen positive when pointing
toward existing material and negative when pointing to holes in the part.
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The surface normal is zero when P, x P, = 0. This occurs at points lying
on a cusp, ridge, or a self-intersecting surface. It can also occur when the two
derivatives P, and P, are parallel, or when one of them has a zero magnitude.
The latter cases correspond to a pathological parametrization which can be
remedied. .

The calculation of the distance between two points on a curved surface
forms an important part of surface analysis. In general, two distinct points on a
surface can be comnected by many different paths, of different lengths, on the
surface. The paths that have minimum lengths are analogous to a straight line
connecting two points in euclidean space and are known as geodesics. Surface
geodesics can, for example, provide optimized motion planning across a curved
surface for numerical control machining, robot programming, and winding of
coils around a rotor. The infinitesimal distance between two points (i, v) and
(u + du, v + dv) on a surface is given by

ds? =P, P,du® +2P,-P,dudv + P, P, dv* (6.13)

Equation (6.13) is often called the first fundamental quadratic form of a surface
and is written as
ds® = E du® + 2F du dv + G dv? (6.14)
where
Eu,v)="?, P, Fu,v)=P, P, Gu,v)=P, P, (6.15)

E, F, and G are the first fundamental, or metric, coefficients of the surface. These
coefficients provide the basis for the measurement of lengths and areas, and the
specification of directions and angles on a surface.

The distance between two points P(u,, v,) and P(u,, v,), shown in Fig. 6-20,
is obtained by integrating Eq. (6.14) along 2 specified path {u = u(t), v = »{t)} on
the surface to give

by
S= J JEW? +2Fu'v + Gv* dt (6.16)
ta

where «' = du/dt and v’ = dv/dt. The minimum S is the geodesic between the two
points.

for o oy

17
Her

v
T %‘ Surface geodesics.
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The first fundamental form gives the distance element ds which lies in the
tangent plane of the surface at P(u, v) and, therefore, yields no information on
how the surface curves away from the tangent plane at that point. To investigate
the surface curvature, another distance perpendicular to the tangent plane at
P(u, v) is introduced and given by

1dr? =6 P, du® +28-P, dudo+i-P,, d? (6.17)

Similarly to Eq. (6.13), Eq. (6.17) is often called the second fundamenital quadratic

form of a surface and is written as :

1 dh? =L du* +2M du dv + N dv? (6.18)
where :

Lu,v)=8P,, Mu,vy=d-P,, Nu,v)=ha-P,, (6.19)

L, M, and N are the second fundamental coefficients of the surface and form the
basis for defining and analyzing the curvature of a surface.

A surface curvature at a point P(y; v) is defined as the curvature of the
normal section curve that lies on the surface and passes by the point. A normal
section curve is the intersection curve of a plane passing through the normal & at
the point and the surface. Obviously, there can exist a family of planes, and
therefore a family of normal section curves, that can contain f. The surface curva-
ture at a point on a normal section curve given by the form {u=u(t), v = v(t)}
can be written as T

_ Lu? + 2Mu'v’ + Nv'?
" Eu? + 2Fu'v + Gv?

and the radius of curvature at the point is p = 1/2". The sense of curvature must
be chosen. One convention is to choose the sign in Eq. (6.20) to give positive
curvature for convex surfaces and negative curvature for concave surfaces.

Few types of surface curvatures exist. The gaussian curvature K and mean
curvature H are defined by

(6.20)

LN - M?
T EG-—F?
6.21)
He EN + GL — 2FM
T 2AEG-F?Y

Equation (6.20) gives the surface curvature in any direction at point P(u, v).
However, it can be used to obtain the principal curvatures which are the upper
(maximum) and lower (minimum) bounds on the curvature at the point:

Hoax=H +JH* —K

6.22
Hwn=H—/JH* - K 622
The gaussian and mean curvatures can be written in terms of Egs. (6.22) as
K=4 max ‘%-min
(6.23)

H= %(fmax + xmin)
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FIGURE 6-21

Tangent plane Tangent plane to a surface.

The gaussian curvature can be positive (as in a hill), r.xegative (as‘ in a saddle
point), or zero (as in ruled or cylindrical surfaces) depending on the signs at A,
and 4 ;. Surfaces that have zero gaussian curvature everywhere. are ca!led
developable, that is, they can be laid flat on a plane withqut stretching, tearing,
or distorting them. Some CAD/CAM systems display gaussian curvature contour
maps to convey information about local surface shape. .

From a practical point of view, the principal curvatures are of primary
interest. For example, to machine a surface with a spherical cutter, it is 1mpc_)rtant
to ensure that the cutter radius is smaller than the smallest concave radius of
curvature of the surface if gouging is to be avoided.

Analogous to the family of planes that are perpendicular to a surface anfi
contain the normal f, a tangent plane to a surface at a point can be deﬁnec.i. It.lS
the common plane on which all the tangent vectors to thfe surt"ace at a point lie.
To develop the equation of a tangent plane, consider a point g in a tangent plane
to a given surface at a given point P, as shown in Fig. 6-21. The vectors P,.P,,
and Q — P lie on the plane. The normal # is normal to any vector in the plane.
Thus, we can write .

i(Q-P)=(P,xP) (Q—P)=0 (624)

which gives the equation of the tangent plane.

Example 6.2. The parametric equation of a sphere of radius R and a center at point
Py(xq, Yo, %) is given by

x =X+ Rcosucosv

AR
IA
=
IA

DIA

y=Yo+ Rcosusinv -

z=2zy+ Rsinu

"Find the sphere implicit equation.
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Solution. Equation (6.1) suggests a useful and systematic way of developing the
implicit equation of a surface from its parametric form. Implicit equations of sur-
faces are useful when solving surface intersection problems. Based on Eq. (6.1), the z
coordinate of a point on the sphere is to be rewritten as a function of x and y.
Squaring and adding the first two equations give

(x"xo)2 y— YO)

72 T =cos?u=1-—sin?u

which gives

o u =\/1 e ;;co)’ o ;zyO)z
By substituting sin u into the z coordinate equation, f(x, y) for a sphere becomes
z=2y +/R: — (x — x0)* — (¥ — yo)?
The sphere implicit equation can now be written as
P=[x y 20+ /R =(x—xf ~(~y)T"
It is obvious that the square of the z coordinate gives the classical sphere equation:

(x —xo)* + (y — yo) +(z — z0)* = R?

65 PARAMETRIC REPRESENTATION OF
ANALYTIC SURFACES

This section covers the basics of the parametric equations of analytic surfaces
most often encountered in surface modeling and design. The background provid-
ed in this section and the next one should enable users of CAD/CAM technology
to realize the limitations of each surface available to them for modeling and
design as well as cope with the documentation of surface commands.

The distinction between the WCS and MCS has been ignored in the devel-
opment of the parametric equations of the various surfaces to avoid confusion.
The transformation between the two systems is obvious and has already been
discussed in Chap. 5. In addition, the terms “surface” and “patch” are used
interchangeably in this chapter. However, in a more general sense a surface is
considered the superset since a surface can contain one or more patch.

6.5.1 Plane Surface

The parametric equation of a plane can take different forms depending on the
given data. Consider first the case of a plane defined by three points P,, P,, and
P, as shown in Fig. 6-22. Assume that the point P, defines 4 = 0 and v = 0 and
the vectors (P, — Py) and (P, — P,) define the u and v directions respectively.
Assume also that the domains for u and v are [0, 1]. The position vector of any
point P on the plane can be now written as

P, v) =Py +uP, —Py) +o(P, —P;), 0<u<1,0<v<1 (625
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i
u=20 P, ju=1
Y N P (1, v)
P, f B
- u
Py 5=

P

Py P,
X
FIGURE 6-22
z A plane patch defined by three points.

The above equation can be seen as the bilinear form of Eq. (5.11). Utilizing Egs.
(6.4) and (6.5), the tangent vectors at point P are

Pu,v)=P, —P, P,(u, v)=P,—P,, O<u<l1,0<v<1 (6.26)
and the surface normal is ’

P, —Po) x (P, — Pp)
|y —Pg) x (P, — Pg)|’

which is constant for any point on the plane. As for the curvature of the plane, it
is equal to zero [see Eq. (6.20)] because all the second fundamental coefficients of
the plane are zeros [see Eq. (6.19)].

Another case of constructing a plane surface is when the surface passes
through a point P, and contains two directions defined by the unit vectors £ and
§ as shown in Fig. 6-23. Similar to the above case, the plane equation can be
written as

iy, v) = 0<u<l,0<v<1 (6.27)

Py, v) = Py + uL,f + vL,§, O<u<l,0<v=<1l  (629)

This equation is also considered as the bilinear form of Eq. (5.17). The-equation
assumes a plane of dimensions L, and L, that may be set to unity.

The above two cases can be combined to provide the equation of a plane
surface that passes through two points P, and P; and is parallel to the unit
vector £. In this case, we can write

P, v) = P + ulP, —Po) + vL,f, O0<u<1,0<v<l (629

The last case to be considered is for a plane that passes througl.l a point P,
and is perpendicular to a given direction A. Figure 6-24 shows this case. The
vector fi is normal to any vector in the plane. Thus,

(P—Py)-h=0 (6.30)
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v=1L,
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FIGURE 6-23 FIGURE 6-24
A plane patch defined by a point and two . Aplane patch passing through point P,
directions. and normal to .

which is a nonparametric equation of the plane surface. A parametric equation
can be developed by using Eq. (6.30) to generate two points on the surface which
can be used with P, in Eq. (6.25). Planes that are perpendicular to the axes of a
current WCS are special cases of Eq. (6.30). For example, in the case of a plane
perpendicular to the X axis, fi is (1, 0, 0) and the plane equation is x = x,.

A database structure of a plane. surface can be seen to include its unit
normal #, a point on the plane P,, and u and v axes defined in terms of the
MCS coordinates. For example, if a plane passes through the points Py(0, 0, 0),
P(2, 0, 0), and P,(0, 0, 2) as shown in Fig. 6-25, the verification of the plane

P(2.0.0)

~_  FIGURE 625

X Plane surface construction.
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surface entities shows the entity is a plane passing through Py(0, 0, 0) and has a
unit normal of (0, —1, 0). In addition, the u and v axes are defined by the coordi-
nates (1, 0, 0) and (0, 0, 1) respectively.

Example 6.3. Find the minimum distance between a point in space and a plane
surface.

Solution. The minimum distance between a point and a plane is also the perpen-
dicular distance from the point onto the plane. Let us assume the plane equation is
given by

P =P, + uf + 1§, 0<u<1l,0<v<l1 (6.31)

This assumption can be made in the light of the database structure described above.
From Fig. 6-26, it is obvious that the perpendicular vector from point Q to the
plane is parallel to its normal . Thus, we can write

P=Q - Di ‘ (6.32)
By using Eq. (6.31) in (6.32), we get : e '
P, + uf + 06 = Q — D S e
Equation (6.33) can be rewritten in a matrix form as -
r, S n|lu Xg — Xo
r, s, nflv|=|Yo—Yo : (6.34)
r. s, n || D Zg — Zg
where r_, r,, and r, are the components of the unit vector f. Similarly, the com-

ponents of the other vectors are given in Eq. (6.34). Solving Eq. (6.34) (see Chap. 5)
gives the normal distance D and u and v, which can give the point P.

Q

FIGURE 6-26
Minimum distance between a point and
plane surface.
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6.5.2 Rauled Surface

A ruled surface is generated by joining corresponding points on two space curves
(rails) G(u) and Q(u) by straight lines (also called rulings or generators), as shown
in Fig. 6-27. The main characteristic of a ruled surface is that there is at least one
straight line passing through the point P(u, v) and lying entirely in the surface. In
addition, every developable surface is a ruled surface. Cones and cylinders are
examples of ruled surfaces and the plane surface covered in Sec, 6.5.1 is con-
sidered the simplest of all ruled surfaces.

To develop the parametric equation of a ruled surface, consider the ruling
u = y; joining points G; and Q; on the rails G(u) and Q(u) respectively. Using Eq.
(5.11), the equation of the ruling becomes

P(u;, v) = G; +v(Q; — G) : (6.35)

where v is the parameter along the ruling. Generalizing Eq. (6.35) for any ruling,
the parametric equation of a ruled surface defined by two rails is

Py, v) = Gu) + v[Qw) — GW)] = (1 — v)G(u) + vQ(),
0<u<1,0<v<l (636

Holding the u value constant in the above equation produces the rulings given by
Eq. (6.35) in the v direction of the surface, while holding the v value constant

P(u;,v)

z

FIGURE 6-27
Parametric representation of a ruled surface.
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yields curves in the u direction which are a linear blend of the rails. In fact, G(u)
and Q(u) are P(u, 0) and P(y, 1) respectively. Therefore, the closer the value of v to
zero, the greater the influence of G{(1) and the less the influence of Q(u) on the
» = constant curve. Similarly, the influence of Q(u) on the ruled surface geometry
increases when the v value approaches unity (see Fig. 6-1).

Based on Fig. 6-27 and Eq. (6.35), it is now obvious why digitizing the
wrong ends of the rails produces the undesirable ruled surface as shown in Fig.
6-1a. In addition, Eq. (6.36), together with Egs. (6.15), (6.19), and (6.20), shows
that a ruled surface can only allow curvature in the u direction of the surface
provided that the rails have curvatures. The surface curvature in the v direction
(along the rulings) is zero and thus a ruled surface cannot be used to model
surface patches that have curvatures in two directions.

6.5.3 Surface of Revolution

The rotation of a planar curve an angle v about an axis of rotation creates a
circle (if v = 360) for each point on the curve whose center lies on the axis of
rotation and whose radius r(u) is variable, as shown in Fig. 6-28. The planar
curve and the circles are called the profile and parallels respectively while the
various positions of the profile around the axis are called meridians.

The planar curve and the axis of rotation form the plane of zero angle, that
is, v = 0. To derive the parametric equation of a surface of revolution, a local

- coordinate system with a Z axis coincident with the axis of rotation is assumed

as shown in Fig. 6-28. This local system shown by the subscript L can be created
as follows. Choose the perpendicular direction from the point = 0 on the profile
as the X axis and the intersection point between X; and Z, as the origin of the
local system. The Y, axis is automatically determined by the right-hand rule.
Now, consider a point G(u) = P(u, 0) on the profile that rotates an angle v about
Z, when the profile rotates the same angle. Considering the shaded triangle
which is perpendicular to the Z, axis, the parametric equation of the surface of
revolution can be written as

P(u, v) = r(u) cos vh, + r.(u) sin vii, + z;(ui;,

L 0<u<1,0<v<2n (637)

If we choose z, () = u for each point on the profile, Eq. (6.37) gives the local
coordinates (x;, y., z;) of a point P(u, v) as [r() cos v, r,(u) sin v, u]. The local
coordinates are transformed to MCS coordinates before displaying the surface
using Eq. (3.3) where the rotation matrix is formed from #, fi,, and fi;, and the
position of the origin of the local system is given by P, (see Fig. 6-28).

The database of a surface of revolution must include its profile, axis of
rotation, and the angle of rotation as starting and ending angles. Whenever the
user requests the display of the surface with a mesh size m x n, the u range is
divided equally into (m — 1) divisions and m values of u are obtained. Similarly,
the v range is divided equally into n values and Eq. (6.37) is used to generate
points on the surface.
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Profile

FIGURE 6-28
Parametric representation of a surface of revolution.

6.54 Tabulated Cylinder

A tabulated cylinder has been defined as a surface that results from translating a
space planar curve along a given direction. It can also be defined as a surface that
is generated by moving a straight line (called generatrix) along a given planar
curve (called directrix). The straight line always stays parallel to a fixed given
vector that defines the v direction of the cylinder as shown in Fig. 6-29. The
planar curve G(u) can be any wireframe entities. The position vector of any point
P(u, v) on the surface can be written as

P(u, v) = G(u) + vi,, 0<u<u,, 0<v<v, (6.38)

From a user point of view, G(u) is the desired curve the user digitizes to
form the cylinder, v is the cylinder length, and #, is the cylinder axis. The repre-
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Directrix

z

FIGURE 6-29
Parametric representation of a tabulated cylinder.

sentation of G(u) is already available in the database at the time of creating it.
The cylinder length v is input in the form of lower and higher bounds where the -
difference between them gives the length. A zero value of the lower bound indi-
cates the plane of the directrix. The user inputs the cylinder axis as two points
that are used to determine fi, which is the unit vector along the axis.

As seen from Eq. (6.38), the database of a tabulated cylinder includes its
directrix, the unit vector fi,, and the lower and upper bounds of the cylinder. The
display of a tabulated cylinder with a mesh m x n follows the same approach as
discussed with surfaces of revolution.

6.6 PARAMETRIC REPRESENTATION OF
SYNTHETIC SURFACES

The arguments regarding the needs for synthetic curves discussed in Sec. 5.6 of
Chap. 5 apply here. Synthetic surfaces provide designers with better surface
design tools than analytic surfaces. Consider the design of blade surfaces in jet
aircraft engines. The design of these surfaces is usually based on aerodynamic and
fluid-flow simulations, often incorporating thermal and mechanical stress defor-
mation. These simulations yield ordered sets of discrete streamline points which




288 GEOMETRIC MODELING

must then be connected accurately by surfaces. Any small deviation in these aero-
dynamic surfaces can significantly degrade performance. Another example is the

creation of blending surfaces typically encountered in designing dies for injection -

molding of plastic products.

For continuity purposes, the parametric representation of synthetic surfaces
is presented below in a similar form to curves. Surfaces covered are bicubic,
Bezier, B-spline, Coons, blending offset, triangular, sculptured, and rational sur-
faces. All these surfaces are based on polynomial forms. Surfaces using other
forms such as Fourier series are not considered here. Although Fourier series can
approximate any curve given sufficient conditions, the computations involved
with them are greater than with polynomials. Therefore, they are not suited to
general use in CAD/CAM.

6.6.1 Hermite Bicubic Surface

The parametric bicubic surface patch connects four corner data points and uti-
lizes a bicubic equation. Therefore, 16 vector conditions (or 48 scalar conditions)
are required to find the coefficients of the equation. When these coefficients are
the four corner data points, the eight tangent vectors at the corner points (two at
each point in the u and v directions), and the four twist vectors at the corner
points, a Hermite bicubic surface patch results. The bicubic equation can be
written as

Py, v) = z ZC,Ju 0<u<1l,0=<v<1 (6.39)
i=0 j=
This equation can be expanded in similar ways, as given by Egs. (5.75) and (5.76).
Analogous to Eq. (5.77), the matrix form of Eq. (6.39) is

P, v)=UT[C]V, O0<u<l0<v<l (6.40)

where U=[u® u®> u 115, V=[v® v* v 1]%, and the coefficient matrix
[C] is given by
C33 C3Z C31 C30
C23 CZZ CZI CZO
cl=|. 6.41
[=1cyy o cu o (@41

C03 CDZ COl COO

In order to determine the coefficients C;, consider the patch shown in Fig.
6-18. Applying the boundary conditions into Eq. (6.40), solving for the coeffi-
cients, and rearranging give the following final equation of a bicubic patch:

P, v) = UTITMI[BI[Mg4]"V, - 0<u<1,0<v<l1 (6.42)

where [My] is given by Eq. (5.84) and [B], the geometry or boundary condition
matrix, is

Py Py, ' Poo  Poos
P P,, . P, P, :
[B] = |3 0---tiq-— o0 __ il o (643)
Pioo Puos X Pioo Pusor
PulO Pull i Puvlo Puull
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The matrix [B] is partitioned as shown above to indicate the grouping of the
similar boundary conditions. It can also be written as

[Pl | [P
1=t o) (644

where [P], [P,], [P,], and [P,,] are the submatrices of the corner points, corner
u-tangent vectors, corner v-tangent vectors, and the corner twist vectors respec-
tively.

The tangent and twist vectors at any point on the surface are given by

P,(u, v) = UT[My]“[BI[Mg]"V (6:45)
Py(u, v) = UT[M4][BI[Mg]""V (6.46)
P,,(u, v) = UT[Mg]"[BI[Ms]""V (6:47)

where [M4]* or [Mg]" is given by Eq. (5.88).

Similar to the cubic spline, the bicubic form permits C* continuity from one
patch to the next. The necessary two conditions are to have the same curves (C°
continuity) and the same direction of the tangent vectors (C! continuity) across
the common edge between the two patches The magnitude of the tangent vectors
does not have to be the same.

Before writing the continuity COndlUODS in terms of the [B] matrix, let us
expand Egs. (6.42) and (6.45) to (6.47) to see what influences the position and
tangent vectors. Equations (6.42) and (6.45) to (6.47) give

Fy(v)
Fy(v)
F3(v)
Fuv)

P, v) =[F(y) Fy(w) Fsw) F.w]IB] (6.48)

Fi(v)
Fy(v)
F(v)
| Fa() |

P(u,v) =[G,() G, Gs(u) G.w)]ILB] (6:49)

Gy(v) ]
G,(v)
G3(v)
| Galv) |

Gy(v)
G(v)
G3(v)
G4(v)

Pyu, v) = [Fi(w) Fyw) Fsu) F.w]lB] (6.50)

P u,v) =[G Gyu) Gsu) Guw]lB] (6.51)
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where
o Fix)=2x3—3x2+1
Fy(x) = —2x® + 3x?

U R 6.52)
_ S s Fy)=x3-2x*4+x ‘ <
' F (x) =x* —x*
and '
oo G,(x) = 6x2 — 6x
S me ot Gyx) = —6x2 4 6x
' S ‘ (6.53)
Gy(x) =3x2 —4x + 1
Gulx) = 3x* — 2x
For u = 0 and u = 1 edges these equations become
(PO, 0| [F.0]
P(1, v) Fy(v)
=[B 6.54
r0.0 |~ P o) (639
_Pu(17 U)_ . _F4(U)_
Similarly, for v = 0 and v = 1 edges we can write
[P, 0]  [F®]
P, 1) | Fyw)
P 0|~ PN Fw (33
L P.(u, 1) ] | Falu) |

Equation (6.54) shows that the corner v-tangent and twist vectors affect the posi-
tion and tangent vectors respectively all along the u =0 and u = 1 edges except
at v = 0 and 1 where F; and F, are both zero.

To write the blending conditions for C' continuity between two patches,
consider the surface shown in Fig. 6-16. These conditions to connect patch 1 and
patch 2 along the u edges are

[P(O’ v)]palch 2= [P(I: U)]patch 1
[PII(O’ U)] patch 2 = K [Pu(la U)]patch 1 Cl continuity

where K is a constant. Equation (6.56) can be interpreted as blending an infinite
number of cubic spline segments on each patch (each corresponding to a particu-
lar v value) with C* continuity across the u edge. Utilizing Eq. (6.54), Eq. (6.56)
can be expressed in terms of the rows of the [B] matrix as shown in Fig. 6-30.
The figure shows the constrained elements of each matrix only. Empty elements
of each matrix are unconstrained and can have arbitrary values. It is left to the
reader to find similar matrices to join the two patches at the v =1 and v =0
. edges or any other combination.

The Ferguson surface (also called the F-surface patch) is considered a
bicubic surface patch with zero twist vectors at the patch corners, as shown in

C° continuity )
(6.56)
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[Blpaten ¢ [Blpaceh 2

Py | Pu | Puo | Pou

Po | Py | Powo | Pont

K Puio|K Py |KPuyioK Puo]  FIGURE 6-30

Constrained elements of boundary matrix

Puio | Puit | Puvio | Puotr [B] to blend two bicubic patches along

a uedge.

Fig. 6-31. Thus, the boundary matrix for the F-surface patch becomes

Poo  Poi 1 Pooo Poos

i
Pio__Pu i Puo Py (6.57)
Puoo Puos !

Pulo Pull : 0 0

[
=]
—
I
|
|
|
1
)
I
|
|
n
[
o

This special surface is useful in design and machining applications. The tangent
vectors at the corner points can be approximated in terms of the corner positions
using the direction and the length of chord lines joining the corner points. Hence,
the designer does not have to input tangent vector information and the computa-
tions required to calculate the surface parameters are simplified. This is useful if
tool paths are to be generated to mill the surface.

The characteristics of the bicubic surface path are very similar to those of
the cubic spline. The patch can be used to fit a bicubic surface to an array of data

l’tll”
Puio

‘ FIGURE 6-31
z The F-surface patch.
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points homomorphic to an m x n rectangular grid. The control of the resulting
surface is global and is not intuitively based on the input data. In addition, the

requirement of tangent and twist vectors as input data does not fit very well the

design environment because the intuitive feeling for such data is usually not clear.

Example 6.4. Show that a bicubic surface patch degenerates to a cubic spline if the '

four corner points of the patch are collapsed to two. '

Solution. Consider the surface patch shown in Fig. 6-18. Let us assume that the
v =1 edge coincides with the v =0 edge. In this case, the corners Py, and Py,
coincide and so do the corners P,, and P,,. All the derivatives with respect to v are
set to zero and the u-tangent vectors at the coincident corners are equal to one
another. Finally let us choose the value of v to equal 1. Substituting all these values
into Eg. (6.48), we obtain

Poo Py 0 O)f1
. P, P, 0 0]l0

= F
Pl ) =[F,6) Fa) Fo@ F@ll ™ o 0 il
PulO PulO 00 0

Expanding the equation gives
P(u, 1) = Qu® — 3u? + NPy + (—2u® + 3u?)P,, + (1® — 2u* + WP,
+ (@ — )P,y
Dropping the reference to the v variable in this equation gives
P(u) = (24 — 3u + VP, + (—2u® + 3u?)P, + (1 — 2u? + WP, + (u® — u?)P,,

which is identical to Eq. (5.81) developed in Chap. 5. Also, notice that substituting
v = 11n Eq. (6.39) results in Eq. (5.74).

Example 6.5. Sometimes it is useful to reformulate a given surface equation in terms
of the bicubic form given by Eq. (6.42). What is the equivalent bicubic patch to a
plane given by Eq. (6.28)?

Solution. The general procedure to achieve reformulation of a surface form to a
bicubic form is to use Eq. (6.39) and its derivatives to find P(y, v), P, (4, v), P (1, v),
and P,(u, v) in terms of the C;; coefficients. If the boundary values of u and v (0 and
1) are substituted into the resulting expressions, the boundary conditions (elements
of [B]) of the patch can be written in terms of these coefficients. The resulting
general functions take the form:

B,.=f (Cij)
where B, is an element of [ B].
If the equation of a given surface is compared to Eq. (6.39), the corresponding

set of C;; coefficients are obtained which can in turn be substituted into the above
equation to provide [B] of the equivalent bicubic patch.
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Let us apply the above general procedure to the plane given by Eq. (6.28).
Comparing this equation to Eq. (6.39) gives

Coo =Py
Co=L,"t
Coy=L,8

and all the othér coefficients are zeros. The [B] matrix then becomes

P, Po+L,5 L8 L,

Y Al ~ A

(8] = | PofLuf Pot LEF LS LS LnS
Lt L.t ! 0 0

L, L,¢ 1o 0

Example 6.6. A bicubic surface patch passes through the point Py, and has tangent
vectors at the point as P,y and P,g,. Show that the patch is planar if the other
corner vectors are defined as linear functions of P,q, and P,q, and the corner twist
vectors are zeros.

Solution. Figure 6-32 shows the above defined bicubic patch. The corner position
and tangent vectors can be defined by the following linear functions:

Po| [t a b W
Po; 1 a, b,
Py, 1 a; by
Puio 0 a, byl Poo
Poi|=]0 a5 bs]| Puo (6.58)
Py 0 ag be|{Puoo
P, 0 a; b
Poo1 0 ag bg
_Pvl 1] L 0 a b9_
Substituting the above equation into Eq. (6.43) we get
Poo Poo + a; Pugo + 52 Poo | Pyoo agPyoo + bgPugo
(5] = | o @Pumo + biPron Poo ¥ 43P + b3 Puog | 87Pugq + b1 Puoo_ % Pron + Do Puno
Puoo asPuo + bsPoo 0 0
a,Pooo + bsPyoo agPuo0 + bsPoo 0 0
(6.59)

If the bicubic patch whose geometry matrix [B] is given by Eq. (6.59) is planar, the
following equation can be written for any point on the patch:

Noo * [P, v) —Pgol =0 (6.60)

which states that the normal vector at point Py, must be perpendicular to any
vector [P(#, v) — Pgo] in the plane, as shown in Fig. 6-32. To prove that Eq. (6.60) is
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z

FIGURE 6-32
A bicubic plane patch.

valid for any point on the patch under investi,
(6.48) and reduce the result to obtain

P(u, v) = Poo[F(w)F,(v) + F(u)F,(v) + F,()F
+ Pygola Fo(WF ((v) + F3w)F,(v) + a,
+ a3 F,(WF ,(v) + as F3(u)F ,(v)
+ a5 F5(wF3(v) + ag F1()F 4(v) 4
+ Pooolby Fo)F (v) + by F4(u)F,(v) + b, F
+ by Fy(@)F () + bg F4F,(0) + F
+ bg F1(u)F 4(v) + bo F(w)F 4(v)]

The coefficient of Py, in the above equation is equal to w
The i:oefﬁcwnts of P, and P,,, are functions of u and ¢
functions are f (4, v) and g(u, v) respectively, the above equation

P, v) —Poo = f(u, 9)Pyo0 + 91 1)P00
The normal vector Ny, can be written as
Noo = P00 X Puoo
Substitute Eqgs. (6.61) and (6.62) into the left-hand side of Eq. (6.60).
(Puoo X Puoo) " [f (w, 0)P 400 + 91, 1)P00]
=/ v)Puoo X Pyoo) * Puoo + g1, t)Pyoo X Pyoo) "Fugo  (6.63)

TYPES AND MATHEMATICAL REPRESENTATIONS OF SURFACES 295,

The right-hand side of this equation is equal to zero regardless of the values of u
and v. Therefore, Eq. (6.60) is valid for any point and the bicubic patch is planar.

The above technique can be generalized to test for planarity/nonplanarity
of a bicubic patch based on its geometry matrix [B]. Let us define the matrix [S]
as

[S]1 = [MyI[BI[MA]" (6.64)

f a bicubic patch is to be planar, the elements s;; of [S] must satisfy the following
suation:

Naw & 3 Goo6=p+ oo )

i=1 j=1

Sijz .
“w § T il Km0 69

T 00» Nyoo» and N_qq are the components of the normal vector Ng, and K

ib ’
Y
K = NOO * Poo (6.66)

al implication of this example is the ability to construct planes with
daries as opposed to straight boundaries, discussed in Sec. 6.5.1.

Surface

-t Bezier surface is an extension of the Bezier curve in two para-
u and v. An orderly set of data or control points is used to build
wctangular surface as shown in Fig. 6-33. The surface equation

FIGURE 6-33
A 4 x 5 Bezier surface.
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can be written by extending Eq. (5.91); that is,

P, v)=Y Y P,B (B ), O0<u<l,0<v<l (6.67)
0

i=0 j=

where P(u, v) is any point on the surface and P;; are the control points. These
points form the vertices of the control or characteristic polyhedron (shown
dashed in Fig. 6-33) of the resulting Bezier surface. The points are arranged in an
(n + 1) x (m + 1) rectangular array, as seen from the above equation.'In compari-
son with Eq. (5.94) of the Bezier curve, expanding Eq. (6.67) gives

P(u, v) = Pyo(l — )1l — o)™ + P, ,C(n, 1)C(m, Duv(l — w)* " (1 — vy~ !
+ P,, C(n, 2)C(m, uv*(1 — )" 21 — )™ % + -~
+ Ppe tym—1yCln, n — HCm, m — D~ ™1 — u)(1 — v)
+ P, u"o™
[+ Pio Cln, Du(l — w)" (1 — o)™ + Py, C(m, V(1 — w)"(1 — o)™~ !
+ Py Cln, 2u(L — w)* ™ %(1 — v)™ + Py, Clm, 20*(1 — u)"(1 — vy"~2
+ 0+ Pou'(l —0)" + Po, v"(1 — w)”
+ 4+ Pl iym—2Cn, n — 1)C(m, m — Qu ™2 (1 — u)(l — v)?
+ P aym-1yClm, n — 2)Cm, m — Du"~ 2™~ 11 — w)*(1 — v)

L+ Py— 1y €1, 1 — D " 10™(1 — 0) + P yu™v™ (1 — v) (6.68)

Symmetric
terms in
wand v

Nonsymmetric

terms in
uwand v

The characteristics of the Bezier surface are the same as those of the Bezier
curve. The surface interpolates the four corner control points (see Fig. 6-33) if we
substitute the (u, v) values of (0, 0), (1, 0) (0, 1), and (1, 1) into (6.68). The surface is
also tangent to the cormer segments of the control polyhedron. The tangent
vectors at the corners are:

Puoo = n(P o — Pyo) P =nP, — P(n—l)O) along v = 0 edge
PuOm = n(le - POm) Punm = n(Pmn - P(n-l)m) along v=1 edge
P00 = m(Po; — Poo) Poom = mMPom — Popm_1)) along u = 0 edge
P =mP, —P,) Powm = mPup — Prn-1) along u = 1 edge

(6.69)

In addition, the Bezier surface possesses the convex hull property. The convex
hull in this case is the polyhedron formed by connecting the furthest control
points on the control polyhedron. The convex hull includes the control poly-
hedron of the surface as it includes the control polygon in the case of the Bezier
curve.

The shape of the Bezier surface can be modified by either changing some
vertices of its polyhedron or by keeping the polyhedron fixed and specifying
multiple coincident points of some vertices. Moreover, a closed Bezier surface can
be generated by closing its polyhedron or choosing coincident corner points as
illustrated in Fig. 6-34.
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(b) Closed v edges (polygon and 4 x 4 surface mesh)

FIGURE 6-34
Closed Bezier surface.
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The normal to a Bezier surface at any point can be calculated by substitut-
ing Eq. (6.67) into (6.11) to obtain

SER 33; ,.(u)

N(y, v) = Z Z

aB 2L m\T) m(v)
ov

J'.M(U) Z, ZQ lek n( )

=3 5 5 3T n 08,0 P py xRy 670

When expanding this equation, it should be noted that P;; x P, = 0ifi=k
andj =, and that P;; x Py, = —Py x Py;.
As with the Bezier curve, the degree of Bezier surface is tied to the number

of control points. Surfaces requiring great design flexibility need a large control

point array and would, therefore, have a high polynomial degree. To achieve
required design flexibility while keeping the surface degree manageable, large sur-
faces are generally designed by piecing together smaller surface patches of lower
degrees. This keeps the overall degree of the surface low but requires a special
attention to ensure that appropriate continuity is maintained across patch
boundaries. A composite Bezier surface can have C° (positional) and/or C*
(tangent) continuity. A positional continuity between, say, two patches requires
that the common boundary curve between the two patches must have a common
boundary polygon between the two characteristic polyhedrons (see Fig. 6-35a).
For tangent continuity across the boundary, the segments, attached to the
common boundary polygon, of one patch polyhedron must be colinear with the
corresponding segments of the other patch polyhedron, as shown in Fig. 6-35b.
This implies that the tangent planes of the patches at the common boundary
curve are coincident.

In a design environment, the Bezier surface is superior to a bicubic surface
in that it does not require tangent or twist vectors to define the surface. However,
its main disadvantage is the lack of local control. Changing one or more control
point affects the shape of the whole surface. Therefore, the user cannot selectively
change the shape of part of the surface.

Common boundary polygon

~=T~
T TTTT /r-/r/ Lo
< N\ ) [ -y | ‘ | \‘l
S A A S . LTy ! L
T IR A S B S
| \ e I | 1
| | I I | ! I
i [ A S i [ | | i ] l
LT Ao 1 o T
% ! / \\l/ | I ; 1 !
\ 1
SR S, Lo\ \ | | I I
~ 1 { -
— -~ AL ~ \. — W, N ~ J
Patch 1 Patch 2 Patch 1 Patch 2

(a) €° continuity (b) C' continuity

FIGURE 6-35
Composite Bezier surface.
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Example 6.7. Find the equivalent bicubic formulation of a cubic Bezier surface
patch.

Solution. This equivalence is usually useful for software development purposes
where, say, one subroutine can handle the generation of more than one surface. It is
also useful in obtaining a better understanding of the surface characteristic.

Figure 6-36 shows a cubic Bezier patch. Substituting n =3 and m =3 into
Eq. (6.67), the patch equation is

3 3
P, v)=Y Y P,B,  wB;s0), 0<u<l,0<v<l (6.71)
i=0 j=0

This equation can be expanded to give
3
P(u, v) = 3 B; s)[Pio Bo, 3(v) + Py By, 5(t) + Piy B 3(t) + Pi3 By 5(0)]
i=0

= By, 35(4)[Poo Bo, 3(0) + P03 By 3(0) + Poz B; 5(0) + Po3 B, 5(0)]
+ By, 3(W)[P1o Bo, 30) + P11 By, 3(0) + P13 By 5(0) + P13 By 5(v)]
+ B, 3(u)[P20 Bo, 3(v) + P21 B, 5(v) + P23 By 5(v) + P33 B; 5(0)]
+ By, 3W)[P30 Bo, 3(0) + P31B;, 3(0) + P3; B 3(t) + P33 B; 5(0)]
This equation can be written in a matrix form as

Poo Poy Por Pos By, 5(v)

P Py, Pyl By 5
P(s0) = [Bo. ) Bisw) Bas) Bis@ll p® o 57 pilp )

Py, Py Py Pis Bs.s(v)

©6.72)
1 —v
3u(l — v)®
or Pw,v)=[1—1’ 3ul—u? 3uil-—w u?]IP] 3:;(2 a _vl)
I
or Py, v) = UTIMI[PIIM;ITV (6.73)

Po3(0.1) Pa(l.1)

*

i Pa(1.0
n 30( l)l
P"O(O"O)k—i —

(a) Parametric space

FIGURE 6-36
A cubic Bezier patch.

(b) Cartesian space
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where the subscript B denotes Bezier and

[P]1=
PZO PZI PZZ P23
P30 P31 P32 P33
-1 3 -3 1
: 3 -6 3 0
and Mgl = (6.74)

and the U and V vectors are [u®> #> u 1]7 and [»® v® v 1]7 respectively.
Notice that [Mg] given by Eq. (6.74) is the same matrix for the cubic Bezier curve
(see Prob. 5.10 in Chap. 5).-

Equating Eq. (6.73) with (6.42) gives

UTMI[BIIM 1"V = UM J[PI[M ]V
or  IMIBIIM]" = [MSIPIM ] -
Solving for [B] gives ) -

[B] = Mal  IMAPIMTMGT™ 0

Using Eq. (5.86) for [M ], this equation can be reduced to give ) - .

Poo Pos ) E 3(Poy — Poo) 3(Po; — Pyy)
PJO P33 ' 3(P31 - on) 3(P33 - P:z)

3(P30 - on) 3(P33 - P23) : 9(P20 - Pll e PBO + P3l) 9(PZZ - P23 - P32 + P33)
' (6.75)

Comparing this equation with Eq. (6.43) for the bicubic patch reveals that the
tangent and twist vectors of the Bezier surface are expressed in terms of the vertices
of its characteristic polyhedron.

" Note: equation (6.72) offers a concise matrix form of Eq. (6.67) for a cubic
Bezier surface. This form can be extended to an (n + 1) x (m + 1) surface as follows:

Poo Po * Poy |[Bo.no)
P, )= [Bo ) By - B, 20 T T Pl Bl
P P o Po| B n)

(6.76)

6.6.3 B-Spline Surface

The same tensor product method used with Bezier curves can extend B-splines to
describe B-spline surfaces. A rectangular set of data (control) points creates the
surface. This set forms the vertices of the characteristic polyhedron that approx-
imates and controls the shape of the resulting surface. A B-spline surface can
approximate or interpolate the vertices of the polyhedron as shown in Fig. 6-37.

(a) Patch approximates data points

(b) Patch interpolates data points

FIGURE 6-37
4 x 5 B-spline surface patches.
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The degree of the surface is independent of the number of control points and
continuity is automatically maintained throughout the surface by virtue of the
form of blending functions. As a result, surface intersections can easily be
managed.

A B-spline surface patch defined by an (n + 1) x (m + 1) array of control
points is given by extending Eq. (5.103) into two dimensions:

V< b, (677)

IA

P(us !7) = Z Z i, k(u) 1(0)5 O sux< umax’ 0
i=0 j=0

All the related discussions to Egs. (5.104) and (5.105) apply to the above equation.
Equation (6.77) implies that knot vectors in both u and v directions are constant
but not necessarily equal. Other formulations could allow various knot vectors in
a given direction to increase the flexibility of local control.

B-spline surfaces have the same characteristics as B-spline curves. Their
major advantage over Bezier surfaces is the local control. Composite B-spline
surfaces can be generated with C® and/or C! continuity in the same way as com-
posite Bezier surfaces.

Example 6.8. Find the equivalent blCllblC formulation of an open and closed cubic
B-spline surface.

Solution. Most of the results obtained in-Examples 5.21 and 5.22 can be extended to
a cubic B-spline surface. First, let us find the matrix form of Eq. (6.77). This equation
is identical in form to the Bezier surface equation (6.67). Thus, by replacing the
Bernstein polynomials in Eq. (6.76) by the B-spline functions yields the matrix form
of Eq. (6.77) as

Poo Poy -+ Pop || No )
Pl i) = INosd Nys) - Ny lf 20 Fr 777 Fam NGO g,
Py Py o P | Na V)
or
No, ()
P, o) = [Noa@ Nis) - N,uIel 679)
N, )

where [P] is an (n + 1) x (m + 1) matrix of the vertices of the characteristic poly-
hedron of the B-spline surface patch. For a 4 x 4 cubic B-spline patch, Eq. (6.78)
becomes

Poo Por Pp; Py No, 4(v)

Pio Pyy Py Pia|[ Ny )
P(u, v) =[Ny o() N, () N, 4(u) N (u '
(1, v) = [No,4(t) Ny a) Ny ) Nj )] P Py Py Py, || Ny )

Pyo P3y; Py Pag [ N; 40)

For the open patch, the B-spline functions are the same as the Bernstein poly-
nomials of the previous example (refer to Example 5.21) and the equivalent bicubic
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formulation results in Eq. (6.75). For, say, a 5 x 6 open cubic B-spline patch, we get

No,4(”)
Nx 40
N3, 4(v) O<ux<2,
N, | 0<v<3
N4,4(U)
N5,4(U)

P(w,v) = [No 4®) Ny 4@) Nas@) Nsu@) N ILPH

where

[P1=|Pyp Py Py, Pyy Py P

All the B-spline functions shown in this equation are calculated by following the
procedure described in Example 5.21. After this is done, the above equation can be

" reduced to
Pll(u! D)’ : Pll(u’ U), : P13(u, U))
OSuSI,:OSusl,: O<ux<l,
0svsiilsesaizcoss
-I-’z-lzu:;:—:—l;z—z(;‘: o), i Py, v),
l<u<2i1<u<2i l<u<?,

0<v<l 1<v<2: 2<v<3

[UT[MS][Pn][Ms]TV | UTIMGILP, ] IM]TY | UT[Ms][Pu][Ms]TV:I

UTIMI[P, M 1TV { UTIMGI [P, IM]TV | UTEMIIP,, 1M1V
(6.80)

where [P,,], [P1,], -.-, [P,3] are partitions of [P]. Each partition is 4 x 4 and is
different from its neighbor (moving in the row direction of [P]) by one row or by
one column (moving in the column direction of [P]). The general form of any parti-
tion is given by

Pi_ng-v Pe-1y Pu-ngrn Po-nyen

[P.]= Pyj-1 P, Pyjvny Pyira

Y P(i+ DNG-1) P(i+ 1)j P(i+ 1G+1) P(i+ DGE+2)

P(i+2)(j— 1) P(i+ 2)j P(i+2)(j+ 1) P(i+2)(j+2)

The matrix [Mg] is the same as for cubic B-spline curves (see Prob. 5.15 in Chap. 5).
It is given by

-1 3 =3 1
1{ 3 -6 3 0 ‘
== . 6.81
[M;s] cl-3 o 3 o (6.81)
1 4 1 0

Equation (6.80) can be written in a more concise form as
P;fu, v) = UT[M;][P,JIM]TV
1<i<2,1<j<3(—-)<u<i,(j—-1)<v<j (682
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Equating the above equation with the bicubic equation, the equivalent [B;;] matrix

becomes

[Bi] = [Ma] ' [IMSILP;AIM] [Mp]™ (6.83)
Notice that the above procedure can be extended to an n x m cubic B-spline
surface.

A similar procedure can be followed for a closed cubic B-spline patch. The
difference comes in the form of the B-spline functions. For a 4 x 4 cubic B-spline
patch closed in the u direction, the v direction, or both directions, the following
three equations can be written respectively:

P(u, v) = [Ng 4((u + 4) mod 4), Ny ,((u + 3) mod 4),

No, 4((u + 2) mod 4), Ny 4((u + 1) mod 4)]
Ny, 4(v)
N 1, 4(v)

N2, 4v)
N3, )

x [P]

Ny, 4((v + 4) mod 4)
Ny, o((v + 3) mod 4)
No, 4((v + 2) mod 4)
Ny, 4((v + 1) mod 4)

and Py, v) = [No_4(u + 4) mod 4), Ny ,((u + 3) mod 4),
Ny 4((u + 2) mod 4), Ny 4((u + 1) mod 4)]

"Ny, (v + 4) mod 4)
No, 4((v + 3) mod 4)
No, 4((v + 2) mod 4)
Ny, 4(v + 1) mod 4)

P(u, v) = [No o) Ny 40) Ny 4u) Ny k(]0F]

x [P]

The closed B-spline functions have been evaluated in Example 5.22. Investigating
Egs. (5.118) reveals that there are four different expressions for the matrix [B] [see
Eq. (6.83) above] depending on the value of u, v, or u and v. For, say, a 5 x 6 closed
cubic B-spline patch, the above procedure is repeated but with the functions
[No, ((u + 5) mod 5), Ny _4{(u + 4) mod 5), No, 4(u + 3) mod 5), Ny, 4((u + 2) mod 5),
No, o(u + 1) mod 5)] and [N, ,(u + 6) mod 6), N 4((u + 5) mod 6), Nq_,(u + 4)
mod 6), Ny 4(u + 3) mod 6), Ny ,((u + 2) mod 6), Ny_4((u + 1) mod 6)]. The control
point matrix [P} is a 5 x 6 matrix as in the case of the open patch.

6.6.4 Coons Surface

All the surface methods introduced thus far share one common philosophy; that
is, they all require a finite number of data points to generate the respective sur-
faces. In contrast, a Coons surface patch is a form of “transfinite interpolation”

which indicates that the Coons scheme interpolates to an infinite number of data-

points, that is, to all points of a curve segment, to generate the surface. The
Coons patch is particularly useful in blending four prescribed intersecting curves
which form a closed boundary as shown in Fig. 6-38. The figure shows the given
four boundary curves as P(u, 0), P(1, v), P(y, 1), and P(0, v). It:is assumed that u
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P(u.l)

P(0.v)

P(l.v)

/C

p——r

P(u.0)

1

(a) Parametric space (b) Cartesian space

FIGURE 6-38
Boundaries of Coons surface patch.

and v range from 0 to 1 along these boundaries and that each pair of opposite
boundary curves are identically parametrized. Development of the Coons surface
patch centers around answering the following question: what is a suitable well-
behaved function P(u, v) which blends the four given boundary curves and which
satisfies the boundary conditions, that is, reduces to the correct boundary curve
whenu=0,u=1,v=0,andv =1?

Let us first consider the case of a bilinearly blended Coons patch which
interpolates to the four boundary curves shown in Fig. 6-38. For this case, it is
useful to recall that a ruled surface interpolates linearly between two given
boundary curves in one direction as shown by Eq. (6.36). Therefore, the super-
position of two ruled surfaces connecting the two pairs of boundary curves might
satisfy the boundary curve conditions and produces the Cooms patch. Let us
investigate this claim. Utilizing Eq. (6.36) in the v and u directions gives respec-
tively

Pu,v)=(01- u)P(O, v) + uP(1, v) (6.84)

and P,(u, v) = (1 — v)P(u, 0) + vP(y, 1) R e (6.85)
Adding these two equations gives the surface ,

Py, v) = P,(u, v) + P,(u, v) (6.86)

The resulting surface patch described by Eq. (6.86) does not satisfy the boundary
conditions. For example, substituting » = 0 and 1 into this equation gives respec-
tively )

P(u, 0) = P(u, 0) + [(1 — w)P(0, 0) + uP(1, 0)] (6.87)
P(u, 1) = P(y, 1) + [(1 — w)P(0, 1) + uP(1, 1)] (6.88)

These two equations show that the terms in square brackets are extra and should
be eliminated to recover the original boundary curves. These terms define the
boundaries of an unwanted surface P4(u, v) which is embedded in Eq. (6.86). This
surface can be defined by linear interpolation in the v direction, that is,

Pi(u, v) = (1 — )[(1 — w)P(0, 0) + uP(1, 0)] + v[(1 — wP(O, 1) + «P(1, 1)] (6.89)
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Subtracting P5(u, v) (called the “correction surface”) from Eq. (6.86) gives
P(u, v) = P,(u, v) + P,(u, v) — P3(u, v) (6.90)
or P(u3 U) = Pl(“: U) @ Pz(ll, U) (6'91)

where @ defines the “boolean sum” which is P, + P, — P5. The surface P(u, v)
given by the above equation defines the bilinear Coons patch connecting the four
boundary curves shown in Fig. 6-38. Figure 6-39 shows the graphica] representa-
tion of Eq. (6.91) and its matrix form is
0 _1PwO Pah —1
Pu,v)=-[—-1 (1—u u]]POv) P00 PO | 1—-0v| (692
P(1,v), P(1,0) P(1,1) v

The left column and the upper row of the matrix represent P,(u, v) and P,(u, v)
respectively while the lower right block represents the correction surface P3(u, v).
The functions —1, 1 —u, u, 1 — v, and v are called blending functions because
they blend together four separate boundary curves to give one surface.

The main drawback of the bilinearly blended Coons patch is that it only
provides C° continuity (positional continuity) between adjacent patches, even if
their boundary curves form a C! continuity network. For example, if two patches
are to be connected along the boundary curve P(1, v) of the first patch and P(0, v)
of the second, it can be shown that comtinuity of the cross-boundary derivatives

P(u.1)

P(0.0) P(Lv)
v
. !
\ TS o)
—_— U
Py(u,v) + Pa(u,v)

(1-u)P(0.1) - u P(L.1)

v

!

—_— U
(1-u)P(0.0) + u P(1.0)

~ Py(u,v) P(u,v)

FIGURE 639
Bilinearly blended Coons patch (boolean sum).
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P, (1.v) -m-
P. (1.0) ﬁ \

FIGURE 6-40 FIGURE 641
Cross-boundary derivatives. A composed Coons surface formed by a
network of C* boundary curves.

(Fig. 6-40) P (1, v) and P,(0, v) of the two patches cannot be made equal (see
Prob. 6.10 at the end of the chapter).

Gradient continuity across boundaries of patches of a composite Coons
surface is essential for practical applications. If, for example, a network of C!
curves is given as shown in Fig. 6-41, it becomes very desirable to form a com-
posite Coons surface which is smooth or C* continuous, that is, it provides con-
tinuity of cross-boundary derivatives between patches. Investigation of Eq. (6.92)
shows that the choice of blending functions controls the behavior of the resulting
Coons patch. If the cubic Hermite polynomials F,(x) and F,(x) given in Eq. (6.52)
are used instead of the linear polynomials (1 — u) and u respectively, a bicubically
blended Coons patch results. This patch guarantees C' continuity between
patches. Substituting F,(x) and F,(x) into Egs. (6.84) and (6.85) gives

P, (4, v) = u® — 3u® + )P0, v) + (—2u® + 3u?)P(1, v) (6.93)
P, v) = (20° — 30* + )Py, 0) + (—20° + 30)P(y, 1) (6.94)

Similar to the bilinear patch, the boolean sum P, ® P, can be formed and the
matrix equation of the bicubic Coons patch becomes
0 1Pw0) Pu 1)l —1
_____ Bl e At Sl
Pu,v)= —[—1 Fi) F,W]| PO v)! PO 0) PO 1| F,l)| (695)
P(l,v) | P(1,0) P(1, 1) [ Fo(v)
As can easily be seen from Egs. (6.92) and (6.95), the correction surface is usually
formed by applying the blending functions to the corner data alone.
To check continuity across patch boundaries, let us consider patch 1 and
patch 2 in Fig. 6-41. For C° and C! continuity we should have

[P(O: U)]patch 2= [P(l’ v)]palch 1 (6'96)
[Pu(o7 v)]patch 2= [Pu(l’ v)]pa(ch 1 (697)

C° continuity is automatically satisfied between the two patches because they
share the same boundary cufve. For C! continuity, differentiating Eq. (6.95) with
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respect to u, using G,(x) and G,(x) in Eq. (6.53) for the derivatives of F; and F,,
and noticing that G,(0) = 17,(0) = G (1) = G,(1) = 0, we can write

P,(u, v) = F;(0)P,u, 0) + F,(0)P,(u, 1) (6.98)

At the common boundary curve between the two patches, this equation becomes
[P0, t)]paen 2 = F1(0)P,(0, 0) + F,(0)P,(0, 1) (6.99)
and [P.1, v)]l,'atch 1 =F(0P,1, 0) + F,0)P,1, 1) s (6.100)

Based on Eqgs. (6.99) and (6.100), Eq. (6.97) is satisfied if the network of boundary
curves is C' continuous because this makes [P0, 0)] a2 and [P0, 1)] a2
equal to [P,(1, 0] a1 and [P,(1, 1)]acn 1 respectively. Therefore, continuity of
cross-boundary derivatives is automatically satisfied for bicubic Coons patches if
the boundary curves are C! continuous.

The bicubic Coons patch as defined by Eq. (6.95) is easy to use in a design
environment because only the four boundary curves are needed. However, a
more flexible composite C* bicubic Coons surface can be developed if, together
with the boundary curves, the cross-boundary derivatives P, 0, v), P (1, v),
P,u, 0), and P(u, 1) are given (see Fig. 6-40). Note that at the corners these
derivatives must be compatible with the curve information. Similar to Eq. (6.93)
and (6.94), we can define the following cubic Hermite interpolants:

P, (4, v) = F, (WP, ) + F,)P(1, v) + F3P,(0, 1) + Fy@)P,(1, 1) (6.101)

and " P,(u, v) = F,(t)P(y, 0) + F,(0)P(u, 1) + F3(v)P,(u, 0) + F,(0)P,(u, 1) (6.102)

where the functions F, to F, are given by Eq. (6.52). Forming the boolean sum
(P, @ P,) of the above two equations results in the bicubic Coons patch that
incorporates cross-boundary derivatives. The introduction of the cross-boundary
derivatives causes the twist vectors at the corners of the patch to appear (see
Prob. 6.11 at the end of the chapter). The matrix equation of this Coons patch
can be written as

P, v)= —[—~1 F,) Fyw) Fi) F,w]
0 'Pw0) Pul)! Pw0) Pl -1

B0, 9 PO, 0) PO 1) P00 PO D || F
x| B(Loy) i P(LO) PL1IPLO PLD | F)| (6103

P,0,0) | P0,0) P,0,1)]P,0,0) PO 1) || Fs0)
Pu(l! U) : Pu(]-a O) Pu(l’ 1) ‘l Puv(l’ 0) Puu(l’ 1) F4(v)

The upper 3 x 3 matrix determines the patch defined previously by Eq. (6.95).
The left column and the upper row represent P,(u, v) and P,(u, v) respectively,
while the lower right 4 x 4 matrix represents the bicubic tensor product surface
- discussed in Sec. 6.6.1 [see Eq. (6.43)]. Equation (6.103) shows that every
bicubically blended Coons surface reproduces a bicubic surface. On the other
hand, bicubically blended Coons patches cannot be described in general by
bicubic tensor product surfaces. Thus, Coon formulation can describe a much
richer variety of surfaces than do tensor product surfaces.
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Example 6.9. Show that if the boundary curves of a bilinear Coons patch are co-
planar, the resulting patch is also planar.

Solution. We need to show that the surface normal at any point on the surface is
normal to the plane of the boundary curves. Based on Eq. (6.90), the surface tangent
vectors are

P(u, v) = [P,(u, 0) + P(1, v) — P(0, v) + P(0, 0) — P(L, 0)]
+ 0[P (u, 1) — P,(u, 0) + P(1, 0) — P(0, 0) — P(1, 1) + P(0, 1)]
=A+vB
and Py, v) = [P0, v) + P(, 1) — P(y, 0) + P(0, 0) — P(0, 1)]
+ u[P,(1, v) — P,(0, v) — P(0, 0) + P(0, 1) + P(1, 0) — P(1, 1)]
=C +uD

1t can easily be shown that P,(u, v) and P,(4, v) lie in the plane of the boundary
curves. Considering P,(u, v), the vectors P,u, 0), P(1, v) - P(0, v) and P(0, 0)
—P(1, 0) lie in the given plane. By investigating the coefficient of v, the vectors
P,(u, 1), P,(u, 0), P(1, 0) — P(0, 0), and P(0, 1) — P(1, 1) also lie in the given plane.
Therefore, vectors A and B lie in the plane. Consequently, the tangent vector
P,(u, v) to the surface at any point (u, v) lies in the plane of the boundary curves.
The same argument can be extended to P(u, v).
The surface normal is given by

N(u, v) =P, x P, = (A + vB) x (C + uD)

which is perpendicular to the plane of P, and P, and, therefore, the plane of the
boundary curves. Thus for any point on the surface, the direction of the surface
normal is constant (the magnitude depends on the point) or the unit normal is fixed
in space. Knowing that the plane surface is the only surface that has a fixed unit
normal, we conclude that a bilinear Coons patch degenerates to a plane if its
boundary curves are coplanar. Thus, this patch can be used to create planes with
curved boundaries similar to the bicubic surface covered in Example 6.6. Note,
however, that a bicubic Coons patch or any other patch that has nonlinear blending
functions does not reduce to a plane when all its boundaries are coplanar.

6.6.5 Blending Surface

This is a surface that connects two nonadjacent surfaces or patches. The blending
surface is usually created to manifest C® and C' continuity with the two given
patches. The fillet surface shown in Fig. 6-11 is considered a special case of a
blending surface. Figure 6-42 shows a general blending surface. A bicubic surface
can be used to blend patch 1 and patch 2 with both C°® and C! continuity. The
corner points P,, P,, P;, and P, of the blending surface and their related
tangent and twist vectors are readily available from the two patches. Therefore,
the [B] matrix of the blending surface can be evaluated. A bicubic blending
surface is suitable to blend cubic patches, that is, bicubic Bezier or B-spline
patches.

For patches of other orders, a B-spline blending surface may be generated
in the following scenario. A set of points and their related v-tangent vectors
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FIGURE 6-42
A blending surface.

beginning with P, and ending with P, can be generated along the v = 1 edge of
patch 1. Similarly, a corresponding set can be generated along the v = 0 edge of
patch 2. Cubic spline curves can now be-created between the two sets. These
curves can be used to generate an ordered rectangular set of points that can be
connected with the B-spline surface which becomes the blending surface. Some
CAD/CAM systems allow users to connect a given set of curves with a B-spline
surface directly. In the case of the fillet surface shown in Fig. 6-11, a fillet radius
is used to generate the surface. Here, the rectangular set of points to create the
B-spline surface can be generated by creating fillets between corresponding
v = constant curves on both patches. In turn, points can be generated on these
fillets.

6.6.6 Ofiset Surface

If an oriéinal patch and an offset direction are given as shown in Fig. 6-12, the
equation of the resulting offset patch can be written as:

Py, 0)otrser = Plw, 0) + i, v) d(u, v) (6.104)

where P(u, v), ii(y, v), and d(u, v) are the original surface, the unit normal vector at
point (u, v} on the original surface, and the offset distance at point (u, v) on the
original surface respectively. The unit normal fi(u, v) is the offset direction shown
in Fig. 6-12. The distance d(u, v) enables generating uniform or tapered thickness
surfaces depending on whether d(u, v) is constant or varies linearly in , v or both.

6.6.7 Triangular Patches

Triangular patches are useful if the given surface data points form a triangle or if
a given surface cannot be modeled by rectangular patches only and may require
at least one triangular patch. In tensor product surfaces, the parameters are u and
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FIGURE 6-43
Representation of a triangular patch.

v and the parametric domain is defined by the unit square of 0 <u <1 and
0 < v < 1. In triangulation techniques, three parameters u, v, and w are used and
the parametric domain is defined by a symmetric unit triangle of 0 <u < 1,
0<v<l1,and 0 <w < 1, as shown in Fig. 6-43. The coordinates u, v, and w are
called “barycentric coordinates.” While the coordinate w is not independent of u
and v (note that u + v + w =1 for any point in the domain), it is introduced to
emphasize the symmetry properties of the barycentric coordinates.

The formulation of triangular polynomial patches follows a somewhat
similar pattern to that of tensor product patches. For example, a triangular
Bezier patch is defined by

Plu,o,w= 3 PypB i t,v,w), 0<u<l,0<v<1,0<w<l (6105
Lk

where i, j, k>0, i+ j + k=n and n is the degree of the patch. The B ; , , are
Bernstein polynomials of degree n:

B ulpiwk (6.106)

nl
bk =
The coefficients P; ; ; are the control or data points that form the vertices of the
control polygon. The number of data points required to define a Bezier patch of
degree n is given by (n + 1)}n + 2)/2. Figure 6-44 shows cubic and quartic tri-
angular Bezier patches with their related Bernstein polynomials. The order of
inputting data points should follow the pyramid organization of a Bernstein
polynomial shown in the figure. For example, 15 points are required to create a
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FIGURE 6-44
Triangular Bezier patches.

quartic Bezier patch and must be input in five rows. The first row has five points
(n + 1) and each successive row has one point less than its predecessor until we
reach the final row that has only one point. This pattern of input can be achieved
symmetrically from any direction as shown. Note that the degree of the triangu-
lar Bezier patch is the same in all directions, in contrast to the rectangular patch
which can have n- and m-degree polynomials in u and v directions respectively.
However, all the characteristics of the rectangular patch hold true for the triangu-
lar patch.

A rectangular Coons patch can be modified in a similar fashion as
described above to develop a triangular Coons patch. It is left to the reader, as an
exercise, to extend the above formulation to a triangular Coons patch.

6.6.8 Sculptured Surface

Any of the surface patches introduced thus far is ‘seldom ‘enough by itself to’

model complex surfaces typically encountered in design and manufacturing appli-
cations. These complex surfaces aré known as sculptured or free-form surfaces.
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They arise extensively in automotive die and mold-making, aerospace, glass,
cameras, shoes, and appliance industries—to name a few.

A sculptured surface is defined as a collection or sum of interconnected and
bounded parametric patches together with blending and interpolation formulas.
The surface must be susceptible to APT, or other machining languages, pro-
cessing for NC machine tools. The analytic and synthetic patches described thus
far can be used to create a sculptured surface. From a modeling viewpoint, a
sculptured surface-can be divided into the proper patches which can be created to
produce a C° or C! continuous surface. The two-patch surfaces (e.g., Fig. 6-16)
discussed throughout this chapter thus far are considered sculptured surfaces. :

6.6.9 Rational Parametric Surface

The rational parametric surface is considered a very general surface. The shape of
the surface is controlled by weights (scalar factors) assigned to each control point.
A rational surface is defined by the algebraic ratio of two polynomials. A rational
tensor product surface can be represented as

f; P, hy; F{W)F fv)

i=0

gM=

Py, v) ="

(6.107)

m

Z ij i(u)F j(v)

uM=

where h;; are the weights assigned to the co_ntrol points. Rational bicubic, Bezier,
and B-spline surfaces are available. The discussion regarding rational curves
covered in Sec. 5.6.4 can be extended to rational surfaces.

6.7 SURFACE MANIPULATIONS

As with curves, surface manipulation provides the designer with the capabilities
to use surfaces effectively in design applications. For example, if two surfaces are
to be welded by a robot, their intersection curve provides the path the robot
should follow. Therefore, the robot trajectory planning becomes very accurate.
This section covers some useful features of surface manipulations.

6.7.1 Displaying

The simplest method to display surfaces is to generate a mesh of curves on the
surface by holding one parameter constant at a time. Most surface commands on
CAD/CAM systems have a mesh size modifier. Using this size and the surface
equation, the curves of the mesh are evaluated. The display of these curves
follows the same techniques discussed in Sec. 5.7.1. For example, to display a
Bezier surface of mesh size 3 x 4, three curves that have constant v values (v =
0,1, 1) and four curves that have constant u values (u = 0, 4, %, 1) are evaluated
using Eq. (6.67) and displayed. This method is not very efficient as fine details of
the surface may be lost unless the mesh is very dense, in which case it becomes
slow and expensive to generate, display, and/or update the surface. This method
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of displaying a surface by a mesh of curves is sometimes referred to as a wire-
frame display of a surface.

To improve the visualization of a surface, surface normals can be displayed
as straight lines in addition to the wireframe display. If the lengths of these
straight lines are made long enough, any small variation in surface shape
becomes evident. Another good method to use to display surfaces is shading
Shading techniques are discussed in more detail in Chap. 10. Various surfaces can
be shaded with various colors. Surface curvatures and other related properties
can also be displayed via shading. If surfaces are nested, inner shaded surfaces
can be viewed by using X-ray and transparency techniques.

6.7.2 Evaluating Points and Curves on Surfaces

Generating points on surfaces is useful for applications such as finite element
modeling and analysis. The “generate point on” command or its equivalent, pro-
vided by CAD/CAM systems and mentioned in Sec. 5.7.2, is also available for
surfaces. The obvious method of calculating points on a surface is by substituting
their respective u and v values into the surface equation. The forward difference
technique for evaluating points on curves described by Eq. (5.121) can be
extended to surfaces by using the equation-for constant values of v. If the specific
v value is substituted into the surface-equation, Eq. (5.121) results. Therefore,
Egs. (5.122) and (5.123) can be applied to generate the points for the given v
value. This procedure can be repeated for all v values to generate the desired
points on the surface.

Similarly to curves, evaluating a point on a surface for given u and v values
is the direct point solution, which consists of evaluating three polynomials in u
and v, one for each coordinate of the point. The inverse problem, which requires
finding the corresponding u and v values if the x, y, and z coordinates of the
point are given, arises if tangent vectors at the point are to be evaluated or if two
coordinates of the point are given and we must find the third coordinate. The
solution of this problem (the inverse point solution) requires solving two nonlin-
ear polynomials in 4 and v simultaneously via numeric methods (see Prob. 6.12 at
the end of the chapter). )

6.7.3 Segmentation

The segmentation problem of a given surface is identical to that of a curve, which
is discussed in Sec. 5.7.4. Surface segmentation is a reparametrization or param-
eter transformation of the surface while keeping the degree of its polynomial in u
and v unchanged.

Let us assume a surface patch is defined over the range u = u,, u, and
v = vg, U,, and it is desired to split it at a point P, defined by (u,, v,) as shown in
Fig. 6-45. If the point is defined by its cartesian coordinates, the inverse point
solution must be found first to.obtain u, and »,. Let us introduce the new param-
eters u' and v! such that their ranges are (0, 1) for each resulting subpatch (see
Fig. 6-45).
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The parameter transformation takes the form:

ul = ugy + (uy — uolu

o' = vy + (0 — vo)u} for subpatch 1 (6.108)

Similar equations can be written for the other subpatches. Notice that u'* =0, 1
and v! =0, 1 correspond to the proper values of u and v for the subpatch. If the
surface is described by a polynomial, Eq. (5.133) and a similar one for v can be
used to facilitate substitutions in the surface equation.

If the surface is to be divided into two segments or subpatches along the
u = u, or v = v, curve instead of four segments, Eq. (6.108) becomes

1

ul =t + (g — uolu for the first segment (6.109)
vt =0y + (U, — Vo)V

if segmentation is done along the u = u,; curve, and

1 — —_
. o + (4, — ol for the first segment (6.110)
vt =10y + (v; — Vo)V

if segmentation is done along the v = v, curve.

Example 6.10. A bicubic surface patch is to be divided by a designer into four
subpatches. Find the boundary conditions of each of the resulting subpatches.

Solution. Using Eq. (5.133) in its matrix form found in Example 5.23, Eq. (6.42) can
be written as

P(u, ) = UM [TI'[Mg][BIIMy] [T]7V! = P*', ')
This equation can be rewritten in the form of Eq. (6.42) as
P*u', v') = U'T[Mg][Mg] " [TIIMa](BIIMA] [ TT Mgl ' [Mg]"V?
= UMM g][B]*[Mu]"V*
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where
[B1* = [My] ' [TI'IMIIBIIM] [T M1~
= [M] ' [TTIIME](BI[(Mg] " [T IMA1]"
or [B1* = [41*[B][4]" (6.111)
where [A] = [My] [TJ[My]. Using Egs. (5.84) and (5.86) and the [T] matrix

from Example 5.23, [A]" is given by .

000 1]fag 0 o off 2 -2 1 1
LA 1 1lf o a2 o of-3 3 —2 -1
00100 0 Ap ol 0 0 1 o0
32100 o o 1]f 1t o o o

The above diagonal [T] matrix resulted from assuming u, = 0. Similarly, we
assume v, = 0. These assumptions do not restrict the solution method but they
rather simplify the matrix manipulations (the reader can re-solve Example 5.23 with
u, =0 for clarification of this point if necessary). Performing the above matrix
multiplications and utilizing Eqs. (6.52) and (6.53) in the result, we obtain

1 0 0 0
[A] = F (Auy) Fo(Aug) F3(Aug) F ((Auy)
i 0 0 Au, 0

Aug Gi{Aug)  Aug GoAug)  Aug Gy(Aug)  Aug Gy(Aug)

The matrix [A]°" is obtained from the above matrix by replacing Au, by Av, and
transposing the result to get

Fi(Avg) 0 Av, Gy(Avg)
FyAvg) 0 Avy Gy(Avy)
F3(Avo) Avy  Avg G(Ang)
. FyAvy) 0 Av, Gy(Avy)

Substituting [4]* and [A]"" into Eq. (6.111) gives the geometry or boundary
condition matrix for subpatch 1 shown in Fig. 6-45. To reduce the results into a
useful form, the cubic polynomial interpolation given by Egs. (5.81) and (5.82) must
be recognized during matrix multiplications. In Eq. (6.111), assume [A]“[B] = [D].
Thus, the elements of [D] are

(417" =

o O -

(=]

di; =Py
d,; =Py,
d;3 =Py
dys =Py,

dyy = Poo F(uy) + Pro F(uy) + Pogo Fa(uy) + Puyo Fa(uy)

We have substituted u, for Au, based on the assumption that u, = 0. The right-
hand side of the above equation is a cubic spline of the form given by Eq. (5.81)
evaluated at u,. It interpolates the boundary conditions at the corners Py, and Py,
of the original patch. Therefore: : :

d;, =Py, o)ﬁ
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This point is shown in Fig. 6-46. Repeating this interpretation process and referring
to Fig. 6-46, we obtain

dy, =Po Fy(uy) + Py Falty) + PuosFa(ug) + Py i Foluy) = Pluy, 1)
dy3 = Pooo F1(t)) + Pyio Faltty) + Puyoo F3(y) + Puyro Faluy) = Py, 0)

In the above equation, it is obvious that the cubic polynomial interpolates the
v-tangent vector between the corners Pog and Py

dyy = Poor Filuy) + Puy Fat)) + Poyor Faly) + Puyy i Faluy) = Py, 1)
dyy = AugP oo ’
ds; = Aug Pooy
dy3 = Aug P o0
d3y = AP0,
dyy = Aug[Poo G1{1;) + P1o Galuy) + Puoo Galur) + Puyo Galws)]
Using Eq. (5.82), we can write
dyy = AugP(uy, 0) )
d,; = Auo[Poy Gi(tty) + Py Goluy) + Puoy Galuy) + Puyy Ga(ur)] = Aug Pofuy, 1)
s = Aug[P,o0 G(t1y) + Pyyo Goltdy) + Puyoo Galtts) + Puyio Galtn)] = Auo Py, 0)
4oy = Aug[P,o1 G1uy) + Puyy Goty) + Pooor Galtt) + Puoys Ga(y)] = At Pofuy, 1y
Returning to Eq. (6.111), the elements of [B]* result from multiplying [D] and
(A"
bf; =Poo
b%, = Pyo F1(v3) + PoyFa(v;) + Pooo F3(v1) + Puo1 Falv) = P(O, v,
bfs = Ao Puoo
bty = Avo[Poo G1(vy) + PoyG2(01) + Puoo Ga(vy) + Puor Galvy)] = Avg PO, v1)
b, = P(u;, 0) :
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b3, = P(u;, 0)F 1(v,) + Pluy, 1)F4(v,) + Puy, 0F3(v;) + P,(ug, DF4(v;)
=P, v)) =P,
b3 = Aoy P,(u,, 0)

b3, = Avo[P(u,, 0)G,(v;) + P(uy, 1)G,(v,) + P(uy, 0)Gs(vy) + Pyu,, 1)G4(vy)]
= Avg P (uy, v;)

b3, = Aug P oo ) §

b3, = Aup[P oo F1(v1) + Puo i F2(v1) + Poyoo F3v1) + Poyor Falvy)]
= Au, P 0, v,)

b33 = Auy Avg Pyg0

b3, = Aug Avg[P,00 G1(v1) + P o1 Go(v1) + Puyoo Galvs) + Poyoy Gavy)]
= Auy Ay P[0, v,)

b%, = Auy P (u,, 0)

b3, = Aug[P,(uy, 0)F1(v;) + Py(uy, DF,(u,) + P, (uy, 0F5(v,) + Py, DF 4(0,)]
= Auy P (uy, vy)

7 b¥; = Aug Avy P, (u,, 0) .

b, = Aug Avg[P(uy, 0)G,(v)) + Pu, 1)Gyv,) + Py(uy, 0)Gs(vy) + Puuy, 1Go(v,)]
= Aug Avo P, (uy, v,) .

The boundary condition matrix [B]* for subpatch 1 takes the form:

Py PO, vy) Avg Poo Av, P,(0, vy)
[B]* = |-- ?(_"_1’_0_) _____ P, v) | - -év_"_P_"(l‘i’_Oz - AvoPyuy, vy
AugPyoo AugP0, v;) | Aug Aoy Pyyg0 Aug A”o‘P;w_(O., _UI)—

Aug P (u;, 0)  AugP,(uy, vy) | Aug Avg Py, 0)  Aug Avg P, (uy, vy)

This result is consistent with Example 5.23. The corner points of subpatch 1 are
those evaluated from the original patch. However, the subpatch tangent vectors
have a factor of Au, or Av, multiplying those obtained from the original patch
There is also a factor of Au, Av, associated with the twist vectors. These factors'
ensure the adherence to the shape of the original patch. It is obvious that surface
normals do not reverse directions. The [B] matrices for the other three subpatches
can now easily be written by substituting the proper Au, Av, and the vectors into the
above matrix. :

If the original patch is to be divided into two segments along either the u = uy

or v = v, curve, the two boundary condition matrices can be written in a similar
way.

6.7.4 Trimming

Trimming of surface entities is useful for engineering applications. It helps elimi-
nate unnecessary calculations on the user’s part. Surface trimming can be treated
as a segmentation or intersection problem. If the surface is to be trimmed
between two point trimming boundaries, we then have a segmentation problem
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FIGURE 647
Surface trimming.

at hand. If, on the other hand, a surface is to be trimmed to another surface, the
intersection curve of the two surfaces must be found first and then the desired
surface is trimmed to it. Figure 6-47 shows an example of trimming surfaces. A
Bezier surface (identified by the digitize d,) is trimmed between the two points
identified by the two digitizes d, and d;.

6.7.5 Intersection

The intersection problem involving surfaces is complex and nonlinear in nature.
It depends on whether it is a surface/curve or surface/surface intersection as well
as on the representation, parametric or implicit, of the involved surfaces and/or
curves. In surface-to-curve intersection, the intersection problem is defined by the

equation
P(u, v) — P(w) =0 (6.112)

where P(u, v) = 0 and P(w) = 0 are the parametric equations of the surface and
the curve respectively. Equation (6.112) is a system of three scalar equations,
generally nonlinear, in three unknown u, v, and w. There are efficient iterative
methods that can solve Eg. (6.112) such as the Newton-Raphson method. The
detailed solution of Eq. (6.112) is left to the reader as an exercise.

The problem of surface-to-surface intersection is defined by the equation

P(u, v) — P(t, w) = 0 (6.113)

where P(u, v) =0 and P(t, w) =0 are the equations of the two surfaces. The
vector equation (6.113) corresponds to three scalar equations in four variables u,
v, t, and w. To solve this overspecified problem, some methods hold one of the
unknowns constant and therefore reduce the original surface/surface intersection
problem into a surface/curve intersection. Other methods introduce a new con-
strained function of the four variables. In both approaches, the solutions are
iterative and may yield any combination of curves (closed or open) and isolated
points. Solutions for sculptured surfaces usually employ curve-tracing, subdivi-
sion (divide-and-conquer method), or a combination of both techniques. Some of
these solutions assume a given class of surface types, such as Bezier or B-spline
representation. Figure 6-48 shows an example of surface/surface intersection.
Some CAD/CAM systems implement the special case of a plane intersecting a
surface as a “cut plane” command.
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intersection

FIGURE 6-48
Surface/surface intersection.

6.7.6 Projection

Projecting an entity onto a plane or a surface is useful in applications such as
determining shadows or finding the position of the entity relative to the plane or
the surface. Entities that can be projected include points, lines, curves, or surfaces.
Projecting a point onto a plane or a surface forms the basic problem shown in
Fig. 6-49a. Point P, is projected along the direction r onto the given plane. It is
desired to calculate the coordinates of the projected point Q. The plane equation,
based on Eq. (6.28), can be written as follows:

Py, v)=a+ ub + ve (6.114)

Pl)

(a) Planar surface

FIGURE 6-49
Projecting a point onto a surface.

b) Généré{ surface
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where the vectors a, b, and ¢ are shown in Fig. 6-49a. The equation of the projec-
tion line is given by

P(w) = P, + wi (6.115)

The projection point Q is the intersection point between the line and the plane;
that is, the following equation must be solved for u, v, and w:

P(u, v) — P(w) =0 (6.116)
or a+ ub +ve =P, + wi (6.117)
To solve for w, dot-multiply both sides of the above equation by (b x ¢) to get
bxc)-a=((xc) P, +wb (6.118)
since (b x ¢) is perpendicular to both b and ¢. Equation (6.118) gives .
_bx9-@a-Py)

bxo-f (6.119)
Similarly, we can write
_exi)-(Po—2)
u= ——————-—(c <9 -b (6.120)
_(bxf)-(Po—a)
and v= —_——(b XD c (6.121)

The projection point Q results by subs@itliting Eq. (6.119) into (6.115) or Egs.
(6.120) and (6.121) into (6.114).

If point P, is to be projected onto a general surface as shown in Fig. 6-49b,
Eq. (6.114) is replaced by the surface equation and Eq. (6.116) becomes a nonlin-
ear equation similar to Eq. (6.112).

The above approach can be extended to projecting curves and surfaces onto
a given surface as shown in Figs. 6-50 and 6-51. The projection of a straight line
passing by the two endpoints P, and P, (see Fig. 6-50a) along the direction £
involves projecting the two points using Egs. (6.119) to (6.121) and then connect-
ing Q, and Q, by a straight line which, of course, must lie in the given plane.

The projection of a general curve P(s) onto a plane (Fig. 6-50b) or a general
surface (Fig. 6-50c) requires repetitive solution of Eq. (6.112). One simple strategy

ol T

P(S)l’\rrﬂl'f

—_— U
(a) Line onto a plane (b) Curve onto a plane (c) Curve onto a general surface

FIGURE 6-50
Projecting a curve onto a surface.
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Plu.vy)

FIGURE 6-51
Projecting a surface onto a surface.

is to generate a set of points on P(s), project them onto the given plane or surface,
and then connect them by a B-spline curve to obtain the projection curve Q(t).

The projection of a surface P(u4, v,) onto a surface P(u, v) (Fig. 6-51) can be
seen as an extension of the above strategy. A set of points is first generated on the
surface P(uy, v,). Utilizing Eq. (6.112), this set is projected onto the surface P(u, v).
The projection points are then connected by a B-spline surface to produce the
projection surface Q(s, t). Note here that the greater the number of projection
points, the closer the surface Q(s, t) to the surface P(u, v).

6.7.7 Transformation

The homogeneous transformation of surfaces is an extension of those of curves.
Transformations offer very useful tools to designers while creating surface
models. Functions such as translation, rotation, mirror, and scaling are offered by
most CAD/CAM systems and are based on transformation concepts. To trans-
form a surface, points on the surface may be evaluated first, transformed, and
then the surface is redisplayed in the new transformed position and/or orienta-
tion. Other methods may exist. More on transformation is covered in Chap. 9.

6.8 DESIGN AND ENGINEERING APPLICATIONS'

The following examples show how surface functions offered by CAD/CAM
systems and their related theory covered in this chapter are used for engineering
and design applications. The reader can work these examples on a CAD/CAM
system. The reader is also advised to expand the line of thinking presented here
into other applications of interest.

Example 6.11. Figure 6-52 shows a set of data points whose coordinates are mea-
sured directly from a given closed surface. Reconstruct the surface from the data
points.
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¥ FIGURE 6-52
+ Data points.

Solution. A B-spline surface is the proper surface to connect the above given set of
data points. “B-spline surface” commands provided by most CAD/CAM systems
allow users to create B-spline surfaces by connecting a set of data points as
described in Sec. 6.6.3 or by connecting a set of B-spline curves. In the latter case,

" the CAD/CAM system is actually using the points that define the spline curves for

the surface definition. Therefore, the splines must have been created with the same
number of points and in the same order, that is, connect points from left to right or
right to left; otherwise the resulting surface will be twisted.
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View A-4

(b) Using twelve B-spline curves

FIGURE 6-53
Constructing a B-spline surface from a given set of points.
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The data points shown in Fig. 6-52 can be seen to form four B-spline curves
which can then be used to reconstruct the surface (see Fig. 6-53a). They can also be
interpreted as points on 12 cross sections of the surface, four points per cross
section. In this case, the surface is shown in Fig. 6-53b. In both figures, the points
are connected in the order shown by arrows to create the splines and the splines are
digitized in the order shown to create the surface. In Fig. 6-53b we used the same
tangents at the beginning and end points of each spline to force C* continuity. If we
had not used it, we would have obtained an identical surface to that shown in
Fig. 6-53a. ’ 8

Example 6.12. Figure 6-54 shows a surface whose cross sections are circular. Con-
struct the surface.

Solution. This is an axisymmetric surface. The most efficient way to construct it is
to choose an MCS as shown in Fig. 6-54 and create points a, b, ¢, and d. These
points are then copied using a mirror command to generate points b, ¢/, and d'. The
seven points are connected with a B-spline curve. Utilizing a surface of revolution
command, this curve can be rotated 360° about the Y axis to generate the required
surface (see Fig. 6-55).

Another way of constructing the surface is to replace the circular cross sec-
tions by B-spline curves which can be connected with a B-spline surface. Figure 6-56
shows the B-spline surface where 36 points are used to represent each circle.

Both ways of constructing the surface are compared by superposing them as
shown in Fig. 6-57. As can be seen, while each surface has its unique database, both
ways yield identical surfaces.

2.5

e— N
e

All dimensions
in inches

FIGURE 6-54
Circular cross sections of a surface.
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Axis of revolution

B- spline

FIGURE 6-55
Surface of revolution of Example 6.12.
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FIGURE 6-56
B-spline surface of Example 6.12.

FIGURE 6-57
Comparison of both ways of constructing the surface of
Example 6.12.
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e 3.000——| FIGURE 6-58
Pipeline design.

Example 6.13. Two pipes whose axes form an angle 6 are shown in Fig. 6-58. Each
pipe has a radius of 1.5 inch. The two pipes are to be butt welded along the
common ellipse of intersection. The area of the ellipse must be 10 in® + 1 percent
for pressure drop considerations inside the pipes at the intersection cross section.
Find the angle 6 for which the resulting ellipse has the required area. Find also the
lengths of the ellipse axes. For welding purposes, find also the perimeter of the
ellipse. Ignore the thickness of the pipes for simplicity.

=

&

8= 15° 0 = 25°
A=1553in,B=15in A=1655in,B=15in
Area = 7.318 in? Area = 7.799 in?
Perimeter = 9.592 in Perimeter = 9918 in

\

9 =35° 0 =45°
A=1831in,B=15in A=2121in,B=15in
Area = 8.628 in® Area = 9.995 in2
Perimeter = 10.490 in Perimeter = 11.460 in
FIGURE 6-59

Characteristics of intersection ellipse of two intersecting pipes.
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(a) Isometric view (b) Front view

FIGURE 6-60
Final design of pipeline of Fig. 6-58.

Solution. The strategy to solve this problem is to construct the vertical pipe shown
in Fig. 6-58 as a tabulated cylinder with a radius of 1.5 inch and an arbitrary length,
say 6 inches, cut it with a plane at various values of @ ranging from 0 to 90°, verify
the resulting ellipse entity to obtain the lengths of the ellipse axes, and calculate its
_area using a “calculate area” command provided by the particular CAD/CAM
system. The ellipse that produces the given area is the desired one and the corre-
sponding angle 8 is the solution. The ellipse perimeter can be evaluated using the
“measure length” command.
Figure 6-59 shows some of the intermediate results with the solution and
Fig. 6-60 shows the final design of the pipeline. To check the system accuracy,
compare the obtained results with those obtained using the following equations:

Ellipse area a = nAB

A+ B?
Ellipse perimeter p = 21 —;— = 4aE (approximate)
where E is the complete elliptic integral at # = \/A* — B*/4. E can be obtained
from the table of elliptic integrals available in CRC standard mathematical tables.
For this problem E is found to be 1.3506.

Some CAD/CAM systems may recognize the intersection curve between the
plane and the cylinder as a closed B-spline curve. In this case, the area and the
perimeter can be calculated using the “calculate area” and “measure length”
commands as above. To check the accuracy, the B-spline intersection curve can
be replaced by an ellipse using B = 1.5 and A4 = B/cos 6. The reader is encour-
aged to re-solve this example on a CAD/CAM system. To find out whether your
system treats the intersection curve as an ellipse or a B-spline curve, verify it
using the “verify entity” command. Note: instead of using a plane to intersect the
vertical cylinder, the two cylinders can be created and intersected.

Example 6.14. Figure 6-61 shows a duct of an air-conditioning system. The 4-inch
diameter pipe is connected to a 4-inch diameter elbow. The elbow is joined to a
truncated cone having a 4-inch diameter and 6-inch diameter ends. The 6-inch di-
ameter end is increased to a 10 x 10 inch square end. If the thickness of the duct is
ignored:

(a) Develop a surface model of the duct.
(b) Find the duct cross section at the valve location shown.
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FIGURE 6-61
Geometry of an
Butterfly valve air-conditioning duct.
Solution

(@) Figure 6-61 also shows the four different surfaces required to create the duct.
Surface I is a tabulated cylinder with a 4-inch diameter and 4-inch length.
Surface II is a surface of revolution. It is created by rotating a horizontal circle
located at the end of surface I about an axis passing through point P an angle of
90°. Surfaces IIT and IV can be created as ruled surfaces. Figure 6-62 shows the
top, front, right, and isometric views of the duct.

(b) If the duct geometric model is cut by a vertical plane at the valve location, the
resulting duct cross section is shown in Fig. 6-63. The area of the cross section is
85.229 in®. The figure also shows cross sections 2 inches apart for surface IV.
Notice that the right (first) cross section is square and the left (last) cross section
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FIGURE 6-62
Duct geometric model.

TYPES AND MATHEMATICAL REPRESENTATIONS OF SURFACES 329

Duct cross section

at valve location«l

FIGURE 6-63
Cross sections of duct surface IV.

is circular as expected and gradual change in shape occurs in between. The
areas, centroids, and perimeters of these cross sections can easily be calculated
using the “calculate area” and “measure length” commands.

PROBLEMS

Part 1: Theory

6.1.

6.2.
6.3.
64.

6.5.
6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

Equation (6.36) gives the equation of a,rul'ed surface joining two space curves. Find

the equation of a ruled surface that passes through one space curve along a given set

of direction vectors defining the surface rulings.

How can you implement Eq. (6.37) into a surface package?

Derive the parametric equations of an ellipsoid, a torus, and a circular cone.

Find the tangent and normal vectors to a surface of revolution in terms of its profile

equation.

Repeat Prob. 6.4 but for a tabulated cylinder in terms of its directrix.

Prove that the curvature of a circular cylinder is zero. What is the radius of curva-

ture at any point on its surface?

Derive Eq. (6.65) of Example 6.6 which states the planar condition of a bicubic

surface patch.

Develop the relationships between the position, tangent, and twist vectors at the

corner points of a bicubic surface patch and C;; coefficients used in Eq. (6.39).

Derive the conditions for C° and C! continuity of a cubic Bezier composite surface

of two patches. '

Show that a bilinear Coons patch cannot provide C' continuity between adjacent

patches even if their boundary curves form a C* continuity network.

Derive Eq. (6.103) for a bicubic Coons patch whose boundary curves and cross-

boundary derivatives are given.

Given a point Q and a parametric surface in cartesian space (Fig. P6-12), find the

closest point P on the surface to Q. -
Hint: Find P such that (Q — P) is perpendicular to the tangent vectors P, and

P,at P.
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Q

7

FIGURE P6-12

6.13. Find the minimum distance between:
(@) A point and a surface
(b) A curve and a surface
(¢) Two surfaces

6.14. Refer to the published literature and find algorithms for the intersection between:
(@) A curve and a surface .
(b) Two surfaces

Part 2: Laboratory

6.15. Create the surface models of the wireframe models of Prob. 5.20 in Chap. 5. Make a
copy of each model database for surface construction.

Hint: Use layers and colors provided by your CAD/CAM system in order to

manage the amount of graphics displayed on the screen and to facilitate identifying
each surface-generating curve.

6.16. Create the surface models of the additional geometric models shown in Fig. P6-16.

Follow the part setup procedure on your CAD/CAM system. All dimensions are in
inches.

6.17. Create the quadric (quadratic) surfaces shown in Fig. P6-17 on your CAD/CAM
system.

Part 3: Programming
‘Write a computer program to generate a:

6.18. Plane surface that passes through three points.
6.19. Ruled surface that connects two given rails.
6.20. Surface of revolution.

6.21. Tabulated cylinder.

6.22. Bicubic surface.

6.23. Cubic rectangular Bezier patch.

6.24. Open cubic B-spline surface patch.

1@ — 6 holes (L in apart)

‘il@—-l holes

150

Model

thickness = (.5

Ll \:,—n
[

Spot face 1@ x 0.25 deep

8.50

Spot face
1% 0.25

331

FIGURE P6-16
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6.25. Closed cubic B-spline surface patch.
a 6.26. Bilinear Coons patch.

6.27. Cubic Coons patch.

6.28. Quadratic triangular Bezier patch.
6.29. Cubic triangular Bezier patch.
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