。

Advanced CAD
2. Geometric Modeling, 3. Transformations Hikmet Kocabaş, Prof., PhD. Istanbul Technical University

Lectures, Outline of the course

1 Advanced CAD Technologies, Hardwares, Softwares
2 Geometric Modeling, 2D Drawing
3 Transformations, 3D
4 Parametric Curves
5 Splines, NURBS
6 Parametric Surfaces
7 Solid Modeling
8 API programming

Why Study Geometric Modeling

The knowledge of the geometric modeling entities increase your productivity.

Understand how the math presentation of various entities relates to a user interface.

Understand what is impossible and which way can be more efficient when creating or modifying an entity. Control the shape of an existing object in design.

The storage, computation and transformation of objects. Calculate the intersections and physical properties of objects.

Geometric Modeling is important

- to meet certain geometric requirements
- such as slopes and/or curvatures in model
- interpretation of unexpected results
- evaluations, simulations of CAD/CAM systems cutting
- use of the tools in particular (robotic) applications
- creation of new attributes
- modify the obtained models

Geometric Modeling in CAD

Geometric modeling is only a means not the goal in engineering. Engineering analysis needs product geometry; the degree of detail depends on the analysis procedure that uses the geometry.

Basic Elements of a CAD System

Input Devices

Keyboard Mouse

CAD keyboard Templates Space Ball

Main System
Computer
CAD Software
Database

Output Devices

Hard Disk Network Printer Plotter

Human Designer

Fundamental Features

- Geometry: Position, direction, length, area, normal, tangent, etc.
- Interaction: Size, continuity, collision, intersection
- Topology
- Differential properties: Curvature, arc-length
- Physical attributes
- Computer representation \& data structure
- Others...

Professional CAD/CAE/CAM products

Unigraphics (UGS), NX (EDS)
I-DEAS (SDRC)
Pro/Engineer, Pro/Mechanica, Pro/E, Creo (PTC)
AutoCAD (AutoDesk, Inventor)
ANSYS (ANSYS Inc.)
CATIA, Delmia, SolidWorks (Dassault Systemes - IBM) Nastran, Patran (MacNeal-Schwendler)

SurfCam, Solid Edge (EDS), MicroStation, Intergraph, CADKey, DesignCAD, ThinkDesign,
3DStudio MAX, Rhinoceros, ...

AutoCAD

A world's leading PC-based 3D mechanical design package, from AutoDesk Inc.
Used to be the primary PC drafting package (dealer, PC) The world's most popular CAD software due to its lower cost and PC platform
New features:

- ACIS 3.0 Advanced Solid Modeling Engine
- NURBS Surface Modeling
- Robust Assembly Modeling and Automated Associative Drafting
Flexible programming tools, AutoLISP, ADS and ARX

Integrated CAD/CAM Tools

ANSYS (from ANSYS Inc.)

- A growth leader in CAE and integrated design analysis and optimization (DAO) software
- Covering solid mechanics, kinematics, dynamics, and multi-physics (CFD, EMAG, HT, Acoustics)
- Interfacing with key CAD systems

NASTRAN (from MacNeal-Schwendler): PATRAN provides an open flexible MCAE environment for multidisciplinary design analysis.
Pro/MECHANICA (integrated with Pro/E)

Integrated CAD/CAM Tools

SURFCAM (from Surfware Inc. CA)

- An outgrowth of the Diehl family's machine shop
- A system for generating 2~5-axis milling, turning, drilling, and wire EDM.
- Toolpath verification (MachineWorks Ltd.)

Rhinoceros (NURBS modeling)

- Industrial, marine, and jewelry designs; cad/cam; rapid prototyping; and reverse engineering

Applications of CAD

Geometric modeling, visual computing

- Computer graphics

Visualization, animation, virtual reality

- CAD/CAM
- Virtual Prototyping

Engineering, manufacturing

- Computer vision
- Mesh generation
- Physical simulation
- Design optimization

- Reverse engineering, Prototyping

CAD Software

Surface Modeling

- Models 2D surfaces in 3D space
- All points on surface are defined
- useful for machining, 3d printing, visualization, etc.

Surfaces

have no thickness, no volume or solid properties

Surfaces may be open or closed.

Surfaces from Curves

 \title{
Reverse Engg workflow
}
 \title{
Reverse Engg workflow
}

Solid Modeling

- Complete and unambiguous (clear, exact)
- Models have volume, and mass properties

Associativity

- In modern CAD packages, drawings are associated with the underlying model, so that changes to the model cause drawings to be updated
- A CAD package has bi-directional associativity if:
- A change to the model automatically updates the drawing AND
- A change to the drawing automatically updates the model

Drawing

Drawing Set Up and Layout

- Drawing Size
- Drawing Projection Angle

Selected views

- Front
- Top
- Right
- Isometric

Generic CAD Process

CAD Software, Graphic User Interface

Geometrical model

2D/3D
Exact or faceted with planar polygons
Mass properties

Editing

Parametric
Object Organization Named Objects
Layers
Part libraries
Drawing Output
Drafting module

CAD Software, Graphic User Interface

Analysis Module
Finite Elements
Plastic Flow
Kinematics/Collisions
Dynamics
Importing/Exporting
Surface formats: IGES, DXF, CDL
Solid Formats: PDES/STEP, ACIS, SAT
Files for systems such as NASTRAN
Can be linked to a user written program
Rendering
Hidden line
Shaded Image
Ray Tracing
Real Time Rotations

Graphics Standards

(GKS, PHIGS, OpenGL, IGES, PDES, STEP, DWG, DXF, Parasolid, ACIS,...)

Graphics Environment

Graphics Standards

Several graphics standards have been developed over the years, including CORE (1977-1979),
GKS (Graphical Kernel System, 1984-1985),
GKS-3D (added 3D capabilities),
PHIGS (Programmer's Hierarchical Graphics sys.1984), PHIGS+ include more powerful 3D graphics functions, X-Windows system (1987), and
OpenGL is adapted from Unix system.
DirectX (1994) API developed by Windows for 3D animation.

IGES, STEP, ACIS data exchange formats

Import Formats	Export Formats
SolidWorks .sIdprt, .sldasm	CATIA V4 .model
ACIS .sat	CATIA V5 .CATPRODUCT, .CATPART
Inventor .ipt, .iam	ACIS .sat
CATIA V5 (visualization data) .CATPRODUCT, .CATPART, .CGR	VDA-FS .vda
CATIA V4/V5 .model, .session, .exp, .CATPRODUCT, .CATPART, .CATSHAPE	Parasolid .x_t, .x_b
Pro/Engineer .prt, .asm, .xpr, .xas	STEP .step, .stp
NX (formerly Unigraphics) .prt	IGES .iges, .igs
VDA-FS .vda	COLLADA .dae
Parasolid .x_t, .x_b	VRML .wrl
STEP	X3D .x3d
IGES	DWF .dwf
	DWG .dwg
	OpenFlight .flt

IGES, STEP, PDES, Parasolid formats

IGES (Initial Graphics Exchange Specification) initially published by ANSI in 1980. Version 5.3 (1996) is the last. STEP (STandard for the Exchange of Product model data) (ISO 10303) released in 1994. A neutral representation of product data. Every year new parts are added or new revisions of older parts are released. This makes STEP the biggest standard within ISO.
PDES (Product Data Exchange Specification, PDDI) originated in 1988 by McDonnell Aircraft Corporation. Parasolid (owned by Siemens) can represent wireframe, surface, solid, cellular and general non-manifold models. It stores topological and geometric information defining the shape of models in transmitting files.

Solid modeling techniques

Sweeps

Sweeping, Half Spaces, CSG, B-rep

Migration of standards towards STEP

STEP configuration controlled 3D Design

(Standard for the Exchange of Product model data) STEP is also referred as ISO 10303. (start.1984..1994...) https://cadexchanger.com/step

STEP, BREP: Boundary Representation

B-rep represent solids by their surfaces

Define vertices in space ($->$ exact geometry) Define edges, faces in terms of vertices ($->$ structure)

Winged-Edge Data Structure

CLASS 1
CONFIGURATION MANAGEMENT INFORMATION WITHOUT SHAPE
CLASS 2
CLASS 1 + SURFACE \& WIREFRAME W/O TOPOLOGY
CLASS 3
CLASS 1 + WIREFRAME WITH TOPOLOGY

CLASS 4
CLASS 1 + MANIFOLD SURFACES WITH TOPOLOGY

CLASS 5
CLASS 1 + FACETED BOUNDARY REPRESENTATION
CLASS 6
CLASS 1 + ADVANCED BOUNDARY REPRESENTATION

1 No Shape

2

3

4

5

Vector versus Raster Graphics

Raster Graphics

- Grid of pixels

- No relationships between pixels
- Resolution, e.g. 72 dpi (dots per inch)
- Each pixel has color, e.g. 8 -bit image has 256 colors

.bmp - raw data format

424 DBC 020000000000003 E 00000028000000420000003500000001 0001000000000000000000120 B 0000120 O 00000000000000000000 FF FFFF 0000000000000015 FD 00000000000000000000 FF EFFE 0000 00000000000001 D0 005 C 00000000000000000 F 80000 F 8000000000 $0000001 \mathrm{C} 000001400000000000000038000000 \mathrm{EOO0} 000000000000$ 700000007000000000000000200000003800000000000001 CO 0000 OO LC OO OO OOOO 000007800000 OO OE DO 000000000007000000000700 00000000000 E 00000003 BB BB BE 800000001 C 00000003 FF FFFF CO 00 0000180000000300 COOD 4000000010000000030040004000000030 000000020060004000000070000000030050004000000060000000 0200700040000000400000000300100040000000 E 0000000030030 0040000000400000000300100040000000 COO 0000030016004000 0000400000000300100040000000 CO 0000000200180040000000 CO OO 00000300180040000000 CO 0000000200080040000000 COOO 0000 $0300180040000000800000000300180040000000 c 0000000030010$ 004000000080000000030018004000000040000000030010004000 $0000 C 00000000200180040000000400000000300100040000000$ EO 000000020038004000000040000000030010004000000060000000 030030004000000070000000030070004000000030000000030060 00400000001000000003777777400000001800000003 FF FF FF CO 00 0000 1C 0000000001 COOD 00000000 DE 000000000380000000000007 000000000700000000000003000000000 E 00000000000001000000 001400000000000001 EO 0000003800000000000000700000007000 00000000000038000000 EOOO 0000000000001 C 000001 CO 00000000 000000 OF 80000 F 800000000000000001 D0 005C 0000000000000000 OOFF PBF000000000000000000017FF 40000000000000000000

Raster Graphics

Tessellation
Sampling \& Antialiasing

It is easy to rasterize mathematical line segments into pixels, but polynomials and other parametric functions are harder.

Vector Graphics

.emf format

CAD Systems use vector graphics

Most common interface file: IGES

- Easier scaling \& editing

Curve representation equations

A line can be defined using either parametric equation or implicit, explicit nonparametric equations.

Given two points ($\mathbf{x} 1, \mathrm{y} 1$) and ($\mathrm{x} 2, \mathrm{y} 2$)
Implicit:

$$
(x 2-x 1)(y-y 1)-(y 2-y 1)(x-x 1)=0
$$

Explicit: $\quad y=(y 2-y 1)(x-x 1) /(x 2-x 1)+y 1$
Pe $(x 2, y 2)$
Parametric Let $u=\frac{x-x 1}{x 2-x 1}=\frac{y-y 1}{y 2-y 1}$

$$
\begin{aligned}
& P(u)=(x, y) \\
& P_{1}(x 1, y 1)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x=(1-u) x 1+u x 2 \\
y=(1-u) y 1+u y_{2}
\end{array} \quad 0 \leqslant u \leqslant 1\right.
$$

Curve representation equations

There are two types of curve equations
(1) Parametric equation
x, y, z coordinates are related by a parametric
 and independent variable (u, θ or t)
Point on 3-D curve: $\mathbf{p}=\left[\begin{array}{ll}x(u) & y(u) \\ z(u)\end{array}\right]$

$$
P(t)=\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]
$$

Point on 2-D curve: $\mathbf{p}=\left[\begin{array}{ll}x(u) & y(u)\end{array}\right]$

$$
x=R \cos \theta, \quad y=R \sin \theta \quad(0 \leq \theta \leq 2 \pi)
$$

(2) Nonparametric equation
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates are related by a function Implicit: $x^{2}+y^{2}-R^{2}=0$
Explicit:

$$
y= \pm \sqrt{R^{2}-x^{2}}
$$

Curve representation equations

Which is better for CAD/CAE ? : Parametric equation It is good for calculating the points at a certain interval along a curve.

Example:
Circle

Parametric:

$$
\begin{aligned}
& x=\cos \theta \quad 0 \leq \theta \leq 2 \pi \\
& y=\sin \theta
\end{aligned}
$$

Implicit: $\quad x^{2}+y^{2}=1 \quad 0 \leq x \leq 1$
Explicit: $y=\sqrt{1-x^{2}} 0 \leq x \leq 1$

Comparison

Explicit Form

- Easy to render
- Unique representation
- Difficult to represent all tangents Implicit Form
- Easy to determine if a point lies on, inside, or outside a curve or surface
- Unique representation
- Difficult to render

Parametric Representation

- Easy to render and common in modeling
- Representation is not unique

Geometric Modeling

solids
A typical solid model is defined by solids, surfaces, curves, and points.
Solids are bounded by surfaces. They represent solid objects. Analytic shape.
Surfaces are bounded by lines. They represent surfaces of solid objects, or planar or shell objects. Quadric surfaces, sphere, ellipsoid, torus.
Curves are bounded by points. They represent edges of objects. Lines, polylines, curve.
Points are locations in 3-D space. They represent vertices of objects. A set of points.

surfaces

polygons

Geometric Modeling

There is a built-in hierarchy among solid model entities. Points are the foundation entities.
Curves are built from the points, Surfaces from curves, Solids from surfaces.

The wire frame models does'nt have the surface definition. Difference between wire, surface and solid model

Vector Algebra and Transformations

Source books:
Computer Aided Geometric Design, Thomas W.
Sederberg, 2003.
CAD/CAM Theory and Practice , Ibrahim Zeid, McGraw Hill, 1991, Mastering CAD/CAM, ed. 2004

Points and Vectors
Motions and Projections
Homogeneous matrix algebra

Geometric View of Points \& Vectors

(a)

(b)

- vectors have no fixed position
- had-to-tail rule - useful to express functionality $\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}$
- points \& vectors - distinct geometric types!
- a given vector can be defined as from a fixed reference point (origin) to the given point \boldsymbol{p}

Vectors (Lines) in Affine Space

Symbols:
α, β, γ - scalars P, Q, R - points $u, v, w-$ vectors
Typical geometrical operations:

$$
\begin{aligned}
& |\alpha v|=|\alpha||v| \\
& v=P-Q=>P=v+Q \\
& (P-Q)+(Q-R)=P-R \\
& P(\alpha)=P_{0}+\alpha d
\end{aligned}
$$

(a line in an affine space - param.form)

Vector Sums in Affine Space

new point P can be defined as

$$
\mathrm{P}=\mathrm{Q}+\alpha v
$$

Point R

$$
v=R-Q
$$

and

$$
\begin{aligned}
& P=Q+\alpha(R-Q)=\alpha R+(1-\alpha) Q \\
& P=\alpha_{1} R+\alpha_{2} Q
\end{aligned}
$$

where

$$
\alpha_{1}+\alpha_{2}=1
$$

Representation of 3D Transformations

Z axis represents depth Right Handed System When looking "down" at the origin, Positive rotation is CCW.

Left Handed System
 When looking "down", positive rotation is in CW. More natural interpretation for displays, big z means "far"

Points, Vectors and Coordinate Systems

The Cartesian coordinates (x, y, z) are the distances of the vertex with respect to the coordinate system we defined.

Unit Vectors

A unit vector is a vector whose length equals unity.

Vectors

A vector can be pictured as a line segment of definite length with an arrow on one end.
We will call the end with the arrow the tip or head and the other end the tail.

Equivalent Vectors

Two vectors are equivalent if they have the same length, are parallel, and point in the same direction (have the same sense) as shown in Figure.

Unit vectors

The symbols i, j, and k denote vectors of "unit length" (based on the unit of measurement of the coordinate system) which point in the positive x, y, and z directions respectively (see Figure). Unit vectors allow us to express a vector in component form

$$
P=(a, b, c)=a i+b j+c k
$$

Unit Vectors
A unit vector is a vector whose length equals unity.

Points and Vectors

An expression such as (x, y, z) can be called a triple of numbers. A triple can signify either a point or a vector. Relative Position Vectors Given two points P_{1} and P_{2}, we can define $\quad P_{2} / 1=P_{2}-P_{1}$ as the vector pointing from P_{1} to P_{2}. This notation $\mathrm{P}_{2} / 1$ is widely used in engineering mechanics, and can be read "the position of point P_{2} relative to P_{1} " (see Figure).

The distance between two points

In a Euclidean space we define the distance between two points p and q as the norm of the vector $p-q$.

$$
\mathrm{d}(\mathbf{p}, \mathbf{q})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}
$$

Because points correspond to vectors, for a fixed origin, and vectors correspond to column matrices, for a fixed basis, there is also a one-to-one correspondence between points and column matrices. A pair (origin, basis) is called a frame or coordinate system. For a fixed frame, points correspond to column matrices.

Vector algebra

Let \mathbf{A}, \mathbf{B}, and \mathbf{C} be independent vectors, $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ be unit vectors in the X, Y, and Z directions respectively.

1. Magnitude of a vector is $|\mathbf{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$ where A_{x}, A_{y}, and A_{z} are the cartesian components of the vector \mathbf{A}.
2. The unit vector in the direction of \mathbf{A} is

$$
\hat{\mathbf{n}}_{A}=\frac{\mathbf{A}}{|\mathbf{A}|}=n_{A x} \hat{\mathbf{i}}+n_{A y} \hat{\mathbf{j}}+n_{A z} \hat{\mathbf{k}}
$$

The components of $\hat{\mathbf{n}}_{A}$ are also the direction cosines of the vector \mathbf{A}.
3. If two vectors \mathbf{A} and \mathbf{B} are equal, then

$$
A_{x}=B_{x} \quad A_{y}=B_{y} \quad \text { and } \quad A_{z}=B_{z}
$$

Vector algebra

4. The scalar (dot or inner) product of two vectors \mathbf{A} and \mathbf{B} is a scalar value

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=|\mathbf{A}||\mathbf{B}| \cos \theta
$$

where θ is the angle between \mathbf{A} and \mathbf{B}.
Therefore the angle θ between two vectors is given by

$$
\cos \theta=\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}
$$

The scalar product can give the component of a vector \mathbf{A} in the direction of another vector \mathbf{B} as

$$
\mathbf{A} \cdot \hat{\mathbf{n}}_{B}=|\mathbf{A}| \cos \theta
$$

$$
\mathrm{A} \cdot \mathrm{~B}=|\mathrm{A}||\mathrm{B}| \cos (\theta)
$$

if the magnitude of B is 1 , then

$$
\mathrm{C}=\mathrm{A} \cdot \mathrm{~B}=|\mathrm{A}| \cos (\theta)
$$

Vector algebra

5. The vector (cross) product of two vectors \mathbf{A} and \mathbf{B} is a vector perpendicular to
 the plane formed by \mathbf{A} and \mathbf{B} and is given by
$\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{i}}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}$ $\mathbf{A} \times \mathbf{B}=(|\mathbf{A}||\mathbf{B}| \sin \theta) \hat{1}$ where $\hat{1}$ is a unit vector in a direction perpendicular to the plane of \mathbf{A} and \mathbf{B} when it is rotated from
A to \mathbf{B} (the right-hand rule).

$\mathbf{A} \times \mathbf{B}=(|\mathbf{A}||\mathbf{B}| \sin \theta) \hat{\mathbf{1}}$
Vector algebra

$$
\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta
$$

$$
\sin \theta=\frac{|\mathbf{A} \times \mathbf{B}|}{|\mathbf{A}||\mathbf{B}|} \quad \cos \theta=\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}
$$

and vector products, the angle θ between two vectors

$$
\tan \theta=\frac{|\mathbf{A} \times \mathbf{B}|}{\mathbf{A} \cdot \mathbf{B}}
$$

The vector product can give the component of a vector \mathbf{A} in a direction perpendicular to another vector \mathbf{B} as

$$
\left|\mathbf{A} \times \hat{\mathbf{n}}_{B}\right|=|\mathbf{A}| \sin \theta
$$

6. Two vectors \mathbf{A} and \mathbf{B} are parallel if and only if

$$
\hat{\mathbf{n}}_{A} \cdot \hat{\mathbf{n}}_{B}=1 \quad \text { or } \quad\left|\hat{\mathbf{n}}_{A} \times \hat{\mathbf{n}}_{B}\right|=0
$$

7. Two vectors \mathbf{A} and \mathbf{B} are perpendicular if and only if

Vector Algebra

Given two vectors $\mathrm{P}_{1}=(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1)$ and $\mathrm{P} 2=(\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2)$, the following operations are defined:
Addition:

$$
P_{1}+P_{2}=P_{2}+P_{1}=(x 1+x 2, y 1+y 2, z 1+z 2)
$$

Subtraction:
$P_{1}-P_{2}=(x 1-x 2, y 1-y 2, z 1-z 2)$

Vector Algebra

Using matrix notation a Vector can be written as
$x=x_{1} e_{1}+x_{2} e_{2}+\ldots+x_{n} e_{n}$
$x=E X$.
The correspondence between vectors and matrices preserves addition and multiplication by a scalar.
The matrix Z that corresponds to the sum of two vectors
$z=x+y$ is the sum

$$
X+Y=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right] .
$$

Vector Algebra

For multiplication by a scalar, $Z=a X$, or $c P 1=c\left(x_{1}, y_{1}, z_{1}\right)=\left(c x_{1}, c y_{1}, c z_{1}\right)$

The inner or dot product, denoted $\mathbf{x} \cdot \mathbf{y}$, is another operation defined on vectors. It produces a scalar given two vector arguments. The square root of the inner product of a vector with itself is the norm or length of the vector, denoted $|x|=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}$.
The length of \mathbf{x} in an orthonormal basis becomes

$$
\mid \boldsymbol{x} \mathbf{|}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

Vector Algebra, Dot (Scaler) Product

Length of a vector: $\left|\mathbf{P}_{1}\right|=\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}$
Magnitude of a vector
$|\mathbf{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$
Dot Product: The dot product of two vectors is defined $\mathbf{P}_{1} \cdot \mathbf{P}_{\mathbf{2}}=\left|\mathbf{P}_{1}\right|\left|\mathbf{P}_{2}\right| \cos \theta$
where θ is the angle between the two vectors.

Dot (Scaler) Product

Two vectors are orthogonal if their dot product is zero. The cosine of the angle
between two vectors is given by $\cos \theta=\frac{x \cdot y}{\|x\| \cdot \| y} \quad A_{\text {e } 2}$
The most convenient bases are the orthonormal bases, composed of unit vectors. In an orthonormal basis the inner product of two vectors is $x . y=X^{\top} Y=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$ where the superscript (T) denotes matrix transposition, obtained by interchanging rows with columns.

$$
X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Vector Algebra, Dot (Scaler) Product

Since the unit vectors i, j, k are mutually perpendicular,
$\mathrm{i} \cdot \mathrm{i}=\mathrm{j} \cdot \mathrm{j}=\mathrm{k} \cdot \mathrm{k}=1$
$i \cdot j=i \cdot k=j \cdot k=0$.
Since the dot product obeys the distributive law $\mathrm{P}_{1} \cdot\left(\mathrm{P}_{2}+\mathrm{P}_{3}\right)=\mathrm{P}_{1} \cdot \mathrm{P}_{2}+\mathrm{P}_{1} \cdot \mathrm{P}_{3}$, we can easily derive the very useful equation

$$
\begin{aligned}
P_{1} \cdot P_{2} & =\left(x_{1} i+y_{1} j+z_{1} k\right) \cdot\left(x_{2} i+y_{2} j+z_{2} k\right) \\
& =\left(x_{1} * x_{2}+y_{1} * y_{2}+z_{1} * z_{2}\right)
\end{aligned}
$$

Vector Algebra, Angle between Vectors

The dot product allows us to easily compute the angle between any two vectors. From the dot product equation

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{P}_{1} \cdot \mathbf{P}_{2}}{\left|\mathbf{P}_{1}\right|\left|\mathbf{P}_{2}\right|}\right)
$$

Example. Find the angle between vectors ($1,2,4$) and $(3,-4,2)$.

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\frac{\mathbf{P}_{1} \cdot \mathbf{P}_{2}}{\left|\mathbf{P}_{1}\right|\left|\mathbf{P}_{2}\right|}\right) \\
& =\cos ^{-1}\left(\frac{(1,2,4) \cdot(3,-4,2)}{|(1,2,4)|(3,-4,2) \mid}\right) \\
& =\cos ^{-1}\left(\frac{3}{\sqrt{21} \sqrt{29}}\right) \\
& \approx 83.02^{\circ}
\end{aligned}
$$

$$
\vec{u} \times \vec{v}=\left[\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right]=\left[\begin{array}{cc}
u_{y} & u_{z} \\
v_{y} & v_{z}
\end{array}\right] \vec{i}-\left[\begin{array}{cc}
u_{z} & u_{z} \\
v_{x} & v_{z}
\end{array}\right] \vec{j}+\left[\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right] \vec{k}
$$

Vector (Cross) Product

Finally, there is an additional operation on vectors, called the vector product (also known as cross, or exterior product), that is very useful, especially in 3-D. Here we define it in terms of components in a righthanded, orthonormal, 3-D basis:
$x \times y=\left(x_{2} y_{3}-x_{3} y_{2}\right) e_{1}+\left(x_{3} y_{1}-x_{1} y_{3}\right) e_{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right) e_{3}$
The result of a cross product is not truly a vector, and its definition depends on the orientation or handedness of a basis.

Vector (Cross) Product

The cross product of two parallel vectors is zero. For two non-parallel vectors, x and y, the cross-product $x \times y$ is perpendicular to both x and y. In particular, if E is a righthanded orthonormal basis in 3-D, then

Vector (Cross) Product

Cross Product: The cross product $\mathrm{P}_{1} \times \mathrm{P}_{2}$ is a vector whose magnitude is
$\left|P_{1} \times P_{2}\right|=\left|P_{1}\right|\left|P_{2}\right| \sin \theta$
(where again θ is the angle between P_{1} and P_{2}), and whose direction is mutually perpendicular to P_{1} and P_{2} with a sense defined by the right hand rule as follows. Point your fingers in the direction of P_{1} and orient your hand such that when you close your fist your fingers pass through the direction of P_{2}. Then your right thumb points in the sense of $\mathrm{P}_{1} \times \mathrm{P}_{2}$.

Vector (Cross) Product

From this basic definition, one can verify that $\mathrm{P}_{1} \times \mathrm{P}_{2}=-\mathrm{P}_{2} \times \mathrm{P}_{1}$,
$\mathrm{i} \times \mathrm{j}=\mathrm{k}, \mathrm{j} \times \mathrm{k}=\mathrm{i}, \mathrm{k} \times \mathrm{i}=\mathrm{j}$
$j \times i=-k, k \times j=-i, i \times k=-j$.

Since the cross product obeys the distributive law $P_{1} \times\left(P_{2}+P_{3}\right)=P_{1} \times P_{2}+P_{1} \times P_{3}$
we can derive the important relation

$$
\begin{aligned}
\mathbf{P}_{1} \times \mathbf{P}_{2} & =\left(x_{1} \mathbf{i}+y_{1} \mathbf{j}+z_{1} \mathbf{k}\right) \times\left(x_{2} \mathbf{i}+y_{2} \mathbf{j}+z_{2} \mathbf{k}\right) \\
& =\left(y_{1} z_{2}-y_{2} z_{1}, x_{2} z_{1}-x_{1} z_{2}, x_{1} y_{2}-x_{2} y_{1}\right) \\
& =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|
\end{aligned}
$$

Cross Product, Area of a Triangle

Cross products have many important uses. For example, finding a vector which is perpendicular to two other vectors. Also, the cross product provides a method for finding the area of a triangle which is defined by three points P_{1}, P_{2}, P_{3} in space.

$$
\text { Area } \left.=\frac{1}{2}\left|\mathbf{P}_{1 / 2} \|\left|\mathbf{P}_{1 / 3}\right| \sin \theta_{1}=\frac{1}{2}\right| \mathbf{P}_{1 / 2} \times \mathbf{P}_{1 / 3} \right\rvert\,
$$

Cross Product, Area of a Triangle

For example, the area of a triangle with vertices

$$
\begin{aligned}
& \mathrm{P}_{1}=(1,1,1), \mathrm{P}_{2}=(2,4,5), \mathrm{P}_{3}=(3,2,6) \text { is } \\
& \begin{aligned}
\text { Area } & =\frac{1}{2}\left|\mathbf{P}_{1 / 2} \times \mathbf{P}_{1 / 3}\right| \\
& =\frac{1}{2}|(1,3,4) \times(2,1,5)| \\
& =\frac{1}{2}|(11,3,-5)|=\frac{1}{2} \sqrt{11^{2}+3^{2}+(-5)^{2}} \\
& \approx 6.225
\end{aligned}
\end{aligned}
$$

Parametric equation of Line

A line can be defined using either a parametric equation or an implicit equation.

Parametric equations of lines
Linear parametric equation. A line can be written in parametric form as follows:
$x=a_{0}+a_{1} t_{i} \quad y=b_{0}+b_{1} t$
In vector form,

$\mathbf{P}(t)=\left\{\begin{array}{l}x(t) \\ y(t)\end{array}\right\}=\left\{\begin{array}{l}a_{0}+a_{1} t \\ b_{0}+b_{1} t\end{array}\right\}=\mathbf{A}_{0}+\mathbf{A}_{1} t$.

Parametric equation of Line

In this equation, A_{o} is a point on the line and A_{1} is the direction of the line.

Line given by $A_{0}+A_{1} t$

Affine parametric equation of a line (between P_{0}, P_{1}). A straight line can also be expressed by $\mathrm{P}_{0}, \mathrm{P}_{1}$.

$$
\mathbf{P}(t)=\frac{\left(t_{1}-t\right) \mathbf{P}_{0}+\left(t-t_{0}\right) \mathbf{P}_{1}}{t_{1}-t_{0}}
$$

Parametric equation of Line

where P_{0} and P_{1} are two points on the line and t_{0} and t_{1} are any parameter values. Note that
$P\left(\mathrm{t}_{0}\right)=\mathrm{P}_{\mathrm{o}}$ and $\mathrm{P}\left(\mathrm{t}_{1}\right)=\mathrm{P}_{1}$.
Note in Figure that the line segment $P_{0}-P_{1}$ is defined by restricting the parameter: $\mathrm{t}_{0} \leq \mathrm{t} \leq \mathrm{t}_{1}$.

$$
\mathbf{P}(t)=\frac{\left(t_{1}-t\right) \mathbf{P}_{0}+\left(t-t_{0}\right) \mathbf{P}_{1}}{t_{1}-t_{0}}
$$

Parametric equation of Line

Sometimes this is expressed by saying that the line segment is the portion of the line in the parameter interval or domain [$\mathrm{t}_{0}, \mathrm{t}_{1}$]. We will soon see that the line in Figure is actually a degree one Bezier curve. Most commonly, we have $t_{0}=0$ and $t_{1}=1$ in which case $P(t)=(1-t) P_{0}+t P_{1}$.

$$
\mathrm{t}=\mathrm{t}_{0}
$$

Linear interpolation

Line

(Combinations of Points) $t\left(P_{2}-P_{1}\right) \quad P_{-}--_{P_{2}}^{-}$

- Let P_{1} and P_{2} be points in space. $P_{1} P_{1}+t\left(P_{2}-P_{1}\right)$
- if $o \leq t \leq 1$ then P is somewhere on the line segment joining P_{1} and P_{2}.
- We may utilize the following notation $P=P(t)=(1-t) P_{1}+t P_{2}$
-We can then define a combination of two points P_{1} and P_{2} to be $P=\alpha_{1} P_{1}+\alpha_{2} P_{2}$ where $\alpha_{1}+\alpha_{2}=1$

- derive the transformation by setting $\alpha 2=\mathrm{t}$

Linear Parametric Plane Surface

We can generalize the line to define
a combination of an arbitrary number of points.
$\mathbf{P}=\alpha_{1} \mathrm{P}_{1}+\alpha_{2} \mathrm{P}_{2}+\alpha_{3} \mathrm{P}_{3}$
where $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$
$0 \leq \alpha_{1}, \alpha_{2}, \alpha_{3} \leq 1$
$\alpha_{3}\left(P_{3}-P_{1}\right)$

Illustration shows the point \mathbf{P} generated when $\alpha_{2}=1 / 4, \alpha_{3}=1 / 2$,
$\alpha_{1}=1-\alpha_{2}-\alpha_{3}=1 / 4$.
Then, each vertex of our triangle could be described in terms of its respective distance from the two walls containing the origin $\left(\mathrm{P}_{1}\right)$ and from the floor.

$$
\mathbf{P}=\mathrm{P}_{1}+\alpha_{2}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)+\alpha_{3}\left(\mathrm{P}_{3}-\mathrm{P}_{1}\right) \quad \mathbf{P}(\mathbf{u}, \mathbf{v})=(1-\mathrm{u}-\mathrm{v}) \mathrm{P}_{1}+\mathrm{u}_{2}+\mathrm{v} \mathrm{P}_{3}
$$

Convexity

A convex object is one for which any point lying on the line segment connecting any two points in the object is also in the object

$$
P=\alpha_{1} R+\alpha_{2} Q \quad \& \quad \alpha_{1}+\alpha_{2}=1
$$

More general form

$$
P=\alpha_{1} P_{1}+\alpha_{2} P_{2}+\ldots+\alpha_{n} P_{n}
$$

where

$$
\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}=1
$$

\&

$$
\alpha_{i} \geq 0, i=1,2, \ldots, n
$$

Parametric Plane

Let P, Q, R are points defining a plane in an affine space
$S(\alpha)=\alpha P+(1-\alpha) Q, 0 \leq \alpha \leq 1$
$T(\beta)=\beta S+(1-\beta) R, 0 \leq \beta \leq 1$
using a substitution

$$
\begin{aligned}
& T(\alpha, \beta)=\beta[\alpha P+(1-\alpha) Q]+(1-\beta) R, \\
& 0 \leq \alpha \leq 1 \& 0 \leq \beta \leq 1 \\
& T(\alpha, \beta)=P+\beta(1-\alpha)(Q-P)+(1-\beta)(R-P)
\end{aligned}
$$

Plane given by a point P_{0} and vectors u, v
$T(\alpha, \beta)=P_{0}+\alpha u+\beta v \quad \& \quad 0 \leq \alpha, \beta \leq 1$

Linear Transformations

Identity

Translation

Rotation

Isotropic
(Uniform)
Scaling

Scaling

Reflection

Shear

Combining Transformations

 Example:Transformation of the HouseOriginal House:

(a)

Goal:

(b)

Transformation Composition:

Original house

Translate P_{1} to origin

Scale

Rotate

Translate to final position P_{2}

Rotation about a fixed point Transformations

For rotation - implicit point

- origin
- 2D - simple
- 3D - complicated Transformation
- rigid-body
- non-rigid-body
d

Homogeneous

Transformations Matrix

Linear
transformations
scaling, shear,

Using homogeneous transformation matrix allows us use matrix multiplication to calculate all kind of transformations, so combine all in one matrix.
Scale $P^{\prime}=S . P$, Translation $P^{\prime}=P+d=>P^{\prime}=T . P$, Rotation $P^{\prime}=$ R.P Combined $P^{\prime}=T . R . S . T^{-1} . P$

Homogenous

Transformations
Homogenous
transformations
for 2D space requires
3D vectors \& matrices.
Homogenous transformations
for 3D space requires
4D vectors \& matrices.

$$
\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
S_{x} \times x \\
S_{y} \times y \\
1
\end{array}\right]: v^{\prime}=S\left(S_{x}, S_{y}\right) v \quad \begin{gathered}
\\
S_{x} \longrightarrow \\
S_{y}
\end{gathered}
$$

$P=[x, y, z, 1]^{T}$

$$
T\left(d_{x}, d_{y}, d_{z}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Homogeneous 3D Translation Matrix

$$
\begin{equation*}
\mathbf{P}^{*}=\mathbf{P}+\mathbf{d} \tag{9.3}
\end{equation*}
$$

Translation of a Curve

FIGURE 9-1
Translation of a curve.
3D Homogenous translation

$$
\begin{aligned}
& x^{*}=x+x_{d} \\
& y^{*}=y+y_{d} \\
& z^{*}=z+z_{d} \\
& \mathbf{P}^{*}=[T] \mathbb{P} \\
& \text { where }[T] \text { is the } \\
& \text { transformation matrix }
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

3D Transformations: Scale \& Translate

Scale, Parameters

for each axis direction
$P^{\prime}=S . P$
Translation

$$
\begin{aligned}
& P^{\prime}=T . P \\
& P=[x, y, z, 1]^{T} \\
& P^{\prime}=P+d
\end{aligned}
$$

$$
\begin{aligned}
& S\left(s_{x}, s_{y}, s_{z}\right)=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& T\left(d_{x}, d_{y}, d_{z}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

2D homegenous Translation
(a)

$$
Y^{*}=M^{*} X^{*}=\left[\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+a \\
y+b \\
1
\end{array}\right]
$$

Scaling

$$
\begin{equation*}
\mathbf{P}^{*}=[S] \mathbf{P} \tag{9.9}
\end{equation*}
$$

where $[S]$ is a diagonal matrix.
In three dimensions, it is given by
$[S]=\left[\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & s_{z}\end{array}\right]$
Thus (9.9) can be expanded to give

$$
x^{*}=s_{x} x \quad y^{*}=s_{y} y \quad z^{*}=s_{z} z
$$

$$
\begin{equation*}
\mathbf{P}^{*}=s \mathbb{P} \tag{9.12}
\end{equation*}
$$

Scaling

If the scale factors are equal,
$s_{x}=s_{y}=s_{z}=s$,
the model changes in size only and not in shape; this is the case of uniform scaling.

Differential scaling occurs when $s_{x} \neq s_{y} \neq s_{z}$; that is, different scaling factors are applied in different directions.

$$
\begin{aligned}
& \mathbf{P}^{*}=[S] \mathbf{P} \quad \mathbf{P}^{*}=s \mathbf{P} \\
& {[S]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]}
\end{aligned}
$$

Homogenous 3D Scaling matrix

Enlarging object also moves it from origin
$\mathbf{P}^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}S_{x} & 0 & 0 & 0 \\ 0 & S_{y} & 0 & 0 \\ 0 & 0 & S_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]=\mathbf{S} \cdot \mathbf{P}$

Scaling with respect to a fixed point (not necessarily of object)

$$
\begin{aligned}
& \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{T}^{-1}=\left[\begin{array}{cccc}
S_{x} & 0 & 0 & \left(1-S_{x}\right) x_{f} \\
0 & S_{y} & 0 & \left(1-S_{y}\right) y_{f} \\
0 & 0 & S_{z} & \left(1-S_{z}\right) z_{f} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{P}^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
S_{x} & 0 & 0 & \left(1-S_{x}\right) x_{f} \\
0 & S_{y} & 0 & \left(1-S_{y}\right) y_{f} \\
0 & \mathbf{0} & S_{z} & \left(1-S_{z}\right) z_{f} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{T}^{-1} \cdot \mathbf{P}
\end{aligned}
$$

Rotation of a point about z axis

$x^{*}=r \cos (\theta+\alpha)=r \cos \alpha \cos \theta-r \sin \alpha \sin \theta$
$y^{*}=r \sin (\theta+\alpha)=r \sin \alpha \cos \theta+r \cos \alpha \sin \theta$
$z^{*}=z$ where $r=|\mathbf{P}|=\left|\mathbf{P}^{*}\right|$
Substituting
$x=r \cos \alpha$
$y=r \sin \alpha$
gives

$$
\begin{aligned}
& x^{*}=x \cos \theta-y \sin \theta \\
& y^{*}=x \sin \theta+y \cos \theta \\
& z^{*}=z
\end{aligned}
$$

Rewriting Eqs. in a matrix form gives

$$
\left[\begin{array}{l}
x^{*} \\
y^{*} \\
z^{*}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

$$
\text { or } \quad \mathbf{P}^{*}=\left[R_{z}\right] \mathbf{P}
$$

2D Rotation $\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}\cos \theta \times x-\sin \theta \times y \\ \sin \theta \times x+\cos \theta \times y \\ 1\end{array}\right]: P^{\prime}=R \cdot P$
3D Rotation about a major axis $P^{\prime}=R \cdot P$

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$	$R_{x}(\theta)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$	$R_{y}(\theta)=\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$	$R_{z}(\theta)=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	

2D Inverse Transformations

Transformations can easily be reversed using inverse transformations

$$
\begin{array}{ll}
T^{-1}=\left[\begin{array}{ccc}
1 & 0 & -d x \\
0 & 1 & -d y \\
0 & 0 & 1
\end{array}\right] \quad S^{-1}=\left[\begin{array}{ccc}
\frac{1}{s_{x}} & 0 & 0 \\
0 & \frac{1}{s_{y}} & 0 \\
0 & 0 & 1 \\
R^{-1}=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array} \$. \begin{array}{l}
\end{array}\right]
\end{array}
$$

3D inverse Transformations

Translation
$\mathbf{T}=\left[\begin{array}{cccc}1 & 0 & 0 & \alpha_{x} \\ 0 & 1 & 0 & \alpha_{y} \\ 0 & 0 & 1 & \alpha_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
Scaling

$$
S=\left[\begin{array}{cccc}
\beta_{x} & 0 & 0 & 0 \\
0 & \beta_{y} & 0 & 0 \\
0 & 0 & \beta_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
S^{-1}=S\left(1 / \beta_{x}, 1 / \beta_{y}, 1 / \beta_{z}\right)
$$

Composite translations

$$
\begin{aligned}
& \mathbf{P}^{\prime}=\mathbf{T}\left(t_{2 x}, t_{2 y}\right)\left\{\mathbf{T}\left(t_{1 x}, t_{1 y}\right) \cdot \mathbf{P}\right\}=\left\{\mathbf{T}\left(t_{2 x}, t_{2 y}\right) \cdot \mathbf{T}\left(t_{1 x}, t_{1 y}\right)\right\} \cdot \mathbf{P} \\
& {\left[\begin{array}{ccc}
1 & 0 & t_{2 x} \\
0 & 1 & t_{2 y} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & t_{1 x} \\
0 & 1 & t_{1 y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{1 x}+t_{2 x} \\
0 & 1 & t_{1 y}+t_{2 y} \\
0 & 0 & 1
\end{array}\right] } \\
& \mathbf{T}\left(t_{2 x}, t_{2 y}\right) \cdot \mathbf{T}\left(t_{1 x}, t_{1 y}\right)=\mathbf{T}\left(t_{1 x}+t_{2 x}, t_{1 y}+t_{2 y}\right)
\end{aligned}
$$

Composite Rotations:

$$
\begin{aligned}
& \mathbf{P}^{\prime}=\mathbf{R}\left(\theta_{2}\right)\left\{\mathbf{R}\left(\theta_{1}\right) \cdot \mathbf{P}\right\}=\left\{\mathbf{R}\left(\theta_{2}\right) \cdot \mathbf{R}\left(\theta_{1}\right)\right\} \cdot \mathbf{P} \\
& \mathbf{R}\left(\theta_{2}\right) \cdot \mathbf{R}\left(\theta_{1}\right)=\mathbf{R}\left(\theta_{1}+\theta_{2}\right) \\
& \mathbf{P}^{\prime}=\mathbf{R}\left(\theta_{1}+\theta_{2}\right) \cdot \mathbf{P}
\end{aligned}
$$

Combining Transformations

The three transformation matrices are combined as follows

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & -d x \\
0 & 1 & -d y \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
1 & 0 & d x \\
0 & 1 & d y \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]} \\
v^{\prime}=T(-d x,-d y) R(\theta) T(d x, d y) v
\end{gathered}
$$

Matrix multiplication is not commutative so order matters

$$
\mathbf{P}^{\prime}=\mathbf{M}_{2}\left(\mathbf{M}_{1} \cdot \mathbf{P}\right)=\left(\mathbf{M}_{2} \cdot \mathbf{M}_{1}\right) \cdot \mathbf{P}=\mathbf{M} \cdot \mathbf{P}
$$

Rotation about an arbitrary axis $\boldsymbol{n}\left(n_{x}, n_{y}, n_{z}\right)$

Rotation about an axis $n\left(n_{x}, n_{y}, n_{z}\right)$ by angle θ

$$
\mathbf{P}^{*}=[R] \mathbf{P}=\operatorname{Rot}(n, \theta)
$$

Rotation around an Arbitrary Axis

$$
\mathbf{P}^{*}=[R] \mathbf{P}
$$

$\mathbf{P}^{*}=(\mathbf{P} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+[\mathbf{P}-(\mathbf{P} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}] \cos \theta+(\hat{\mathbf{n}} \times \mathbf{P}) \sin \theta-\hat{\mathbf{n}} \times(\mathbf{P} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} \sin \theta$

$$
\mathbf{P}^{*}=(\mathbf{P} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+[\mathbf{P}-(\mathbf{P} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}] \cos \theta+(\hat{\mathbf{n}} \times \mathbf{P}) \sin \theta
$$

Rotation around

$$
\mathbf{P}^{*}=[R] \mathbf{P}=\operatorname{Rot}(n, \theta)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

$$
\text { an Arbitrary Axis } \quad \mathbf{P}^{*}=(\mathbf{P} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+[\mathbf{P}-(\mathbf{P} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}] \cos \theta+(\hat{\mathbf{n}} \times \mathbf{P}) \sin \theta
$$

$\mathbf{P}^{*}=[R] \mathbf{P} \quad$ The general rotation matrix $[R]$

$$
[R]=\left[\begin{array}{ccc}
n_{x}^{2} \mathrm{v} \theta+\mathrm{c} \theta & n_{x} n_{y} \mathrm{v} \theta-n_{z} \mathrm{~s} \theta & n_{x} n_{z} \mathrm{v} \theta+n_{y} \mathrm{~s} \theta \\
n_{x} n_{y} \mathrm{v} \theta+n_{z} \mathrm{~s} \theta & n_{y}^{2} \mathrm{v} \theta+\mathrm{c} \theta & n_{y} n_{y} \mathrm{v} \theta-n_{x} \mathrm{~s} \theta \\
n_{x} n_{z} \mathrm{v} \theta-n_{y} \mathrm{~s} \theta & n_{y} n_{z} \mathrm{v} \theta+n_{x} \mathrm{~s} \theta & n_{z}^{2} \mathrm{v} \theta+\mathrm{c} \theta
\end{array}\right] \begin{array}{r}
\text { where } \mathrm{c} \theta=\cos \theta \\
\mathrm{s} \theta=\sin \theta \\
\mathrm{v} \theta=\mathrm{versine} \theta \\
\mathrm{v} \theta=1-\cos \theta
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{r}
\mathbf{P} \cdot \hat{\mathbf{n}}=x n_{x}+y n_{y}+z n_{z}=\left[\begin{array}{lll}
n_{x} & n_{y} & n_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
\left.\left\lvert\, \begin{array}{lll}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}}
\end{array}\right.\right]
\end{array} \\
& \text { CAD CAM - } \\
& \text { Ibrahim Zeid , } \\
& \text { p. } 495 \text { \& } 496 \\
& \hat{\mathbf{n}} \times \mathbf{P}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
n_{x} & n_{y} & n_{z} \\
x & y & z
\end{array}\right|=\left(n_{y} z-n_{z} y\right) \hat{\mathbf{i}}+\left(n_{z} x-n_{x} z\right) \hat{\mathbf{j}}+\left(n_{x} y-n_{y} x\right) \hat{\mathbf{k}} \\
& \mathbf{P}^{*}=\left\{(1-\cos \theta)\left[\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right]\left[\begin{array}{lll}
n_{x} & n_{y} & n_{z}
\end{array}\right]+\cos \theta\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\sin \theta\left[\begin{array}{rrr}
0 & -n_{z} & n_{y} \\
n_{z} & 0 & -n_{x} \\
-n_{y} & n_{x} & 0
\end{array}\right]\right\}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
\end{aligned}
$$

Other rotations

What if the axis of rotation does not pass through the origin?

Similar process as in 2D, translate
 to the origin, rotate as normal, translate back.

We just need to know a point on the axis that we can translate to the origin.

Only way to specify such a rotation is to give two points on the line or one point and a direction, so the requirement is easily satisfied.

2D Rotation about a pivot point P_{r}

Translate pivot point P_{r} to the origin, rotate as normal, translate back.

Rotation in angle θ about a pivot (rotation) point $\left(x_{r}, y_{r}\right)$.

$$
\begin{aligned}
& x^{\prime}=x_{r}+\left(x-x_{r}\right) \cos \theta-\left(y-y_{r}\right) \sin \theta \\
& y^{\prime}=y_{r}+\left(x-x_{r}\right) \sin \theta+\left(y-y_{r}\right) \cos \theta \\
& \mathbf{P}^{\prime}=\mathbf{P}_{r}+\mathbf{R} \cdot\left(\mathbf{P}-\mathbf{P}_{r}\right) \\
& \mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

Rotation about a fixed point, $\mathrm{M}=$ T.R. T^{-1}

Translate the fixed point to origin, Rotate as normal, Translate back.
$\left[\begin{array}{ccc}1 & 0 & x_{r} \\ 0 & 1 & y_{r} \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{ccc}1 & 0 & -x_{r} \\ 0 & 1 & -y_{r} \\ 0 & 0 & 1\end{array}\right]=$

$$
\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x_{r}(1-\cos \theta)+y_{r} \sin \theta \\
\sin \theta & \cos \theta & y_{r}(1-\cos \theta)-x_{r} \sin \theta \\
0 & 0 & 1
\end{array}\right]
$$

Example: Composition of 3D Transformations

Goal: Transform the local coordinate system R_{x}, R_{y}, R_{z} to align with the origin x, y, z
 Process

1. Translate P_{1} to $(0,0,0)$
2. Rotate about y
3. Rotate about x
4. Rotate about z

Translate the fixed point to origin, Rotate about z axis, Translate back.

Rotation About a Fixed Point

Composite Rotations in E3

(a)

(b)

$$
R_{z}
$$

Cube can be rotated about all x, y, z axis
In our case the transformation matrix is defined
$M=R_{y} R_{x} R_{z}=R_{z x} R_{y z} R_{x y}$

$$
\Downarrow \quad R_{x}
$$

Rotations About an Arbitrary Axis

Given:

- points p_{1}, p_{2} and rotation angle θ
- objects to be rotated

Define vectors

$$
u=p_{1}-p_{2}
$$

$$
\text { and } v=u /|u| \quad-\text { normalized }
$$

$$
v=\left[\alpha_{x}, \alpha_{y}, \alpha_{z}\right]^{\mathrm{T}}
$$

$$
\alpha_{x}^{2}+\alpha_{y}^{2}+\alpha_{z}^{2}=1-\text { directional cosines }
$$

$$
\cos \left(\varphi_{x}\right)=\alpha_{x}, \quad \cos \left(\varphi_{y}\right)=\alpha_{y}, \quad \cos \left(\varphi_{z}\right)=\alpha_{z}
$$

$$
\cos ^{2}\left(\varphi_{x}\right)+\cos ^{2}\left(\varphi_{y}\right)+\cos ^{2}\left(\varphi_{z}\right)=1
$$

\Rightarrow only two directions angles are independent !!

Rotations About an Arbitrary Axis

Transformation (rotation about origin)
$R=R_{x}\left(-\theta_{x}\right) R_{y}\left(-\theta_{y}\right) R_{z}(\theta) R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right)$

$$
R_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$R_{z}(\theta)=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
R_{y}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Complete transformation (include translations) $\mathrm{M}=\mathrm{T}\left(\mathrm{p}_{0}\right) \mathrm{R}_{\mathrm{x}}\left(-\theta_{\mathrm{x}}\right) \mathrm{R}_{\mathrm{y}}\left(-\theta_{\mathrm{y}}\right) \mathrm{R}_{\mathrm{z}}(\theta) \mathrm{R}_{\mathrm{y}}\left(\theta_{\mathrm{y}}\right) \mathrm{R}_{\mathrm{x}}\left(\theta_{\mathrm{x}}\right) \mathrm{T}\left(-\mathrm{p}_{0}\right)$

General 3D Rotation

1. Translate the object such that rotation axis passes through the origin.

2. Rotate the object such that rotation axis coincides with one of Cartesian axes.
3. Perform specified rotation about the Cartesian axis.
4. Apply inverse rotation to return rotation axis to original direction.
5. Apply inverse translation to return rotation axis to original position.

$$
\mathbf{R}(\theta)=\mathbf{T}^{-1} \cdot \mathbf{R}_{x}^{-1}(\alpha) \cdot \mathbf{R}_{y}^{-1}(\beta) \cdot \mathbf{R}_{z}(\theta) \cdot \mathbf{R}_{y}(\beta) \cdot \mathbf{R}_{x}(\alpha) \cdot \mathbf{T}
$$

$$
\mathbf{R}(\theta)=\mathbf{T}^{-1} \cdot \mathbf{R}_{x}^{-1}(\alpha) \cdot \mathbf{R}_{y}^{-1}(\beta) \cdot \mathbf{R}_{z}(\theta) \cdot \mathbf{R}_{y}(\beta) \cdot \mathbf{R}_{x}(\alpha) \cdot \mathbf{T}
$$

General 3D Rotation

Translate to origin. Rotate on Cartesian axes.

Rotation about the axis. Apply inverse translations.

$\mathbf{R}(\theta)=\mathbf{T}^{-1} \cdot \mathbf{R}_{x}^{-1}(\alpha) \cdot \mathbf{R}_{y}^{-1}(\beta) \cdot \mathbf{R}_{z}(\theta) \cdot \mathbf{R}_{y}(\beta) \cdot \mathbf{R}_{x}(\alpha) \cdot \mathbf{T}$
Translate the object to origin.

The vector from \mathbf{P}_{1} to \mathbf{P}_{2} is:

$$
\mathbf{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{1} \\
0 & 1 & 0 & -y_{1} \\
0 & 0 & 1 & -z_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{V}=\mathbf{P}_{2}-\mathbf{P}_{1}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
$$

Unit rotation vector: $\mathbf{u}=\mathbf{V} /|\mathbf{V}|=(a, b, c)$
$a=\left(x_{2}-x_{1}\right) /|\mathbf{V}|$
$b=\left(y_{2}-y_{1}\right) /|\mathbf{V}|$
$c=\left(z_{2}-z_{1}\right) /|\mathbf{V}|$
$\sqrt{a^{2}+b^{2}+c^{2}}=1$

Rotating \mathbf{u} to coincide with z axis
First rotate \mathbf{u} around x axis to lay in $x-z$ plane.
Equivqlent to rotation \mathbf{u} 's projection on $y-z$ plane around x axis.
$\cos \alpha=c / \sqrt{b^{2}+c^{2}}=c / d, \quad \sin \alpha=b / d$.
We obtained a unit vector $\mathbf{w}=\left(a, 0, \sqrt{b^{2}+c^{2}}=d\right)$ in $x-z$ plane.

$$
\begin{aligned}
\mathbf{R}_{x}(\alpha) & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c / d & -b / d & 0 \\
0 & b / d & c / d & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Rotate \mathbf{w} counterclockwise around y axis.
\mathbf{w} is a unit vector whose x-component is a, y-component is 0 ,
hence z - component is $\sqrt{b^{2}+c^{2}}=d . \quad \cos \beta=d, \quad \sin \beta=-a$

$$
\begin{aligned}
\mathbf{R}_{y}(\beta) & =\left[\begin{array}{cccc}
d & 0 & a & 0 \\
0 & 1 & 0 & 0 \\
-a & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
R_{y}(\theta) & =\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { 位 }
\end{aligned}
$$

$\mathbf{R}(\theta)=\mathbf{T}^{-1} \cdot \mathbf{R}_{x}^{-1}(\alpha) \cdot \mathbf{R}_{y}^{-1}(\beta) \cdot \mathbf{R}_{z}(\theta) \cdot \mathbf{R}_{y}(\beta) \cdot \mathbf{R}_{x}(\alpha) \cdot \mathbf{T}$
$\mathbf{R}_{x}(\alpha)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & c / d & -b / d & 0 \\ 0 & b / d & c / d & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad \mathbf{R}_{y}(\beta)=\left[\begin{array}{cccc}d & 0 & a & 0 \\ 0 & 1 & 0 & 0 \\ -a & 0 & d & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \mathbf{R}_{z}(\theta)=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad \mathbf{R}_{y}(\beta)=\left[\begin{array}{cccc}d & 0 & a & 0 \\ 0 & 1 & 0 & 0 \\ -a & 0 & d & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad \mathbf{R}_{x}(\alpha)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & c / d & -b / d & 0 \\ 0 & b / d & c / d & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

General 3D Rotation Matrix

$$
\begin{aligned}
& \mathbf{R}_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{R}(\theta)=\mathbf{T}^{-1} \cdot \mathbf{R}_{x}^{-1}(\alpha) \cdot \mathbf{R}_{y}^{-1}(\beta) \cdot \mathbf{R}_{z}(\theta) \cdot \mathbf{R}_{y}(\beta) \cdot \mathbf{R}_{x}(\alpha) \cdot \mathbf{T} \\
& \mathbf{R}_{x}(\alpha)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c / d & -b / d & 0 \\
0 & b / d & c / d & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{R}_{y}(\beta)=\left[\begin{array}{cccc}
d & 0 & a & 0 \\
0 & 1 & 0 & 0 \\
-a & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{R}_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{R}_{y}(\beta)=\left[\begin{array}{cccc}
d & 0 & a & 0 \\
0 & 1 & 0 & 0 \\
-a & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{R}_{x}(\alpha)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c / d & -b / d & 0 \\
0 & b / d & c / d & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{M}_{\mathrm{R}}(\theta)= \\
& {\left[\begin{array}{ll}
a^{2}(1-\cos \theta)+\cos \theta \quad a b(1-\cos \theta)-c \sin \theta \quad a c(1-\cos \theta)+b \sin \theta
\end{array}\right]} \\
& b a(1-\cos \theta)+c \sin \theta \quad b^{2}(1-\cos \theta)+\cos \theta \quad b c(1-\cos \theta)-a \sin \theta \\
& \left.c a(1-\cos \theta)-b \sin \theta \quad c b(1-\cos \theta)+a \sin \theta \quad c^{2}(1-\cos \theta)+\cos \theta\right]
\end{aligned}
$$

Linear Transformations

Identity

Translation

Rotation

Isotropic
(Uniform)
Scaling

Scaling

Reflection

Shear

2D Reflections (Mirror)

2D reflection about $x, y_{1}(x$ and $y)$ axis :

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \bullet\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

3D Reflection (Mirror)
3D Reflection about $x-y$ plane :
$F_{z}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
the mirror of P
P* $=\mathbf{M}$ P
Complete transformation

$\mathbf{M}=T\left(p_{0}\right) R_{x}\left(-\theta_{x}\right) R_{y}\left(-\theta_{y}\right) F_{z}(-z) R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right) T\left(-p_{0}\right)$

3D Transformations: Shear

 $\begin{aligned} & \text { 3D Shear: } \\ & \text { (function of z) }\end{aligned} \quad H_{x y}(\theta)=\left(\begin{array}{cccc}1 & 0 & s h_{x} & 0 \\ 0 & 1 & s h_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.$$
\left(\begin{array}{l}
X^{\prime} \\
Y \\
Z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & S h_{x}^{y} & S h_{x}^{z} & 0 \\
S h_{y}^{x} & 1 & S h_{y}^{z} & 0 \\
S h_{z}^{x} & S h_{z}^{y} & 1 & 0
\end{array}\right) *\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) \quad \begin{aligned}
& X^{\prime}=X+S h_{x}^{y} Y+S h_{x}^{z} Z \\
& Y^{\prime}=S h_{y}^{x} X+Y+S h_{y}^{z} Z \\
& Z^{\prime}=S h_{z}^{x} X+S h_{z}^{y} Y+Z
\end{aligned}
$$

Rotation (about z)

Orthographic projection matrices

$$
Y^{*}=M^{*} X^{*}=\left[\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+a \\
y+b \\
1
\end{array}\right]
$$

Perspective projection

Figure shows how to project a point on the y axis from a center of projection v lying on the x axis at $x=d$. By similarity of triangles. Thus far we have only used homogeneous matrices with a last row whose offdiagonal elements are null. What happens when they are non-null ($-1 / d$) term. After normalizing the result, we obtain perspective projection of the object.

Perspective projection

Computing a planar projection involves matrix multiplication, followed by normalization and orthographic projection

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \quad(z=o \text { plane }) .(r=-1 / d)} \\
& {\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & r \\
0 & & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
x & y & z & (r z+1)
\end{array}\right]} \\
& {\left[\begin{array}{llll}
x^{*} & y^{*} & z^{*} & 1
\end{array}\right]=\left[\begin{array}{llll}
\frac{x}{r z+1} & \frac{y}{r z+1} & \frac{z}{r z+1} & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
x & y & z \\
1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & r \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & r \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
x & y & 0
\end{array}(r z+1)\right]} \\
& {\left[\begin{array}{llll}
x^{*} & y^{*} & z^{*} & 1
\end{array}\right]=\left[\begin{array}{llll}
\frac{x}{r z+1} & \frac{y}{r z+1} & 0 & 1
\end{array}\right]}
\end{aligned}
$$

3D Perspective

In 3-D, the matrix multiplication provides us the x and y coordinates of the projection of a point on the xy plane, from a center of projection on the z axis at $z=d$. In 3-D the perspective transformation produces a deformed 3-D object, which must be projected orthographically onto the xy plane to generate the desired 2-D image. Computing a planar projection involves matrix multiplication, followed by \quad normalization and orthographic projection. $\mathbf{P}_{v}=\left[\begin{array}{c}\frac{x}{1-z / d} \\ \frac{y}{1-z / d} \\ 0\end{array}\right]$

This require the division of x and y by $(1-z / d)$

Perspective projection
$Z, Z_{v} \quad$ along the Z_{v} axis.

$$
\xrightarrow{\mathbf{P}_{v}}=\left[\begin{array}{lllll}
\frac{x}{1-z / d} & \frac{y}{1-z / d} & 0 & 1 &]^{T}
\end{array}{ }^{\longrightarrow}=\left[\begin{array}{c}
\frac{x}{1-z / d} \\
\frac{y}{1-z / d} \\
0 \\
1
\end{array}\right]\right.
$$

Parametric Circle

Parametric Circle

Other Parametric Curves

Ellipse

$$
\left\{\begin{array}{l}
x=x_{o}+A \cos \theta \\
y=y_{o}+B \sin \theta \quad 0 \leq \theta \leq 2 \pi \\
z=z_{o}
\end{array}\right.
$$

Parabola

$$
\left\{\begin{array}{l}
x=x_{o}+A u^{2} \\
y=y_{o}+2 A u \quad 0 \leq u \leq \infty \\
z=z_{o}
\end{array}\right.
$$

Points

2D CAD

APT Statements

Lines

Circles

Circle defined by diameter $\mathrm{P}_{1} \mathrm{P}_{2}$

Circle radius \boldsymbol{R} and center $\boldsymbol{P}_{\boldsymbol{c}}$ are

$$
\begin{aligned}
R & =\frac{1}{2} \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\
\mathbf{P}_{c} & =\frac{1}{2}\left(\mathbf{P}_{1}+\mathbf{P}_{2}\right)
\end{aligned}
$$

$\left[\begin{array}{lll}x_{c} & y_{c} & z_{c}\end{array}\right]^{T}=\left[\begin{array}{lll}\frac{x_{1}+x_{2}}{2} & \frac{y_{1}+y_{2}}{2} & \frac{z_{1}+z_{2}}{2}\end{array}\right]^{T}$

Circle passing through three points

Circle center Pc is the intersection of the perpendicular lines to the chords $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{P}_{2} \mathrm{P}_{3}$, $\mathrm{P}_{2} \mathrm{P}_{1}$ from their midpoints P6, P4, P5.

$$
\begin{aligned}
& \hat{\mathbf{n}}_{1}=\frac{\mathbf{P}_{2}-\mathbf{P}_{1}}{\left|\mathbf{P}_{2}-\mathbf{P}_{1}\right|} \\
& \hat{\mathbf{n}}_{2}=\frac{\mathbf{P}_{3}-\mathbf{P}_{2}}{\left|\mathbf{P}_{3}-\mathbf{P}_{2}\right|} \quad \hat{\mathbf{n}}_{3}=\frac{\mathbf{P}_{1}-\mathbf{P}_{3}}{\left|\mathbf{P}_{1}-\mathbf{P}_{3}\right|}
\end{aligned}
$$

Circle passing through three points
$\left(\mathbf{P}_{c}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{1}=\frac{\left|\mathbf{P}_{2}-\mathbf{P}_{1}\right|}{2}$
$\left(\mathbf{P}_{\mathbf{c}}-\mathbf{P}_{2}\right) \cdot \hat{\mathbf{n}}_{\mathbf{2}}=\frac{\left|\mathbf{P}_{3}-\mathbf{P}_{2}\right|}{2}$
$\left(\mathbf{P}_{c}-\mathbf{P}_{3}\right) \cdot \hat{\mathbf{n}}_{3}=\frac{\left|\mathbf{P}_{1}-\mathbf{P}_{3}\right|}{2} \quad P_{c}\left(x_{c}, y_{c}, z_{c}\right)$
$\left[\begin{array}{lll}n_{1 x} & n_{1 y} & n_{1 z} \\ n_{2 x} & n_{2 y} & n_{2 z} \\ n_{3 x} & n_{3 y} & n_{3 z}\end{array}\right]\left[\begin{array}{l}x_{c} \\ y_{c} \\ z_{c}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \quad \begin{aligned} & b_{1}=\frac{\left|\mathbf{P}_{2}-\mathbf{P}_{1}\right|}{2}+\left(x_{1} n_{1 x}+y_{1} n_{1 y}+z_{1} n_{1 z}\right) \\ & b_{2}=\frac{\left|\mathbf{P}_{3}-\mathbf{P}_{2}\right|}{2}+\left(x_{2} n_{2 x}+y_{2} n_{2 y}+z_{2} n_{2 z}\right)\end{aligned}$

$$
[A] \mathbb{P}_{c}=\mathbf{b} \quad b_{3}=\frac{\left|\mathbf{P}_{1}-\mathbf{P}_{3}\right|}{2}+\left(x_{3} n_{3 x}+y_{3} n_{3 y}+z_{3} n_{3 z}\right)
$$

Circle passing through three points

$[A] \mathbf{P}_{\mathbf{c}}=\mathbf{b}$
$P_{c}\left(x_{c}, y_{c}, z_{c}\right)$

$$
\mathbf{P}_{c}=[A]^{-1} \mathbf{b}=\frac{\operatorname{Adj}([A])}{|A|} \mathbf{b}
$$

The cofactor $C_{i j}$ is given by

$$
|A|=n_{1 x}\left(n_{2 y} n_{3 z}-n_{2 z} n_{3 y}\right)-n_{1 y}\left(n_{2 x} n_{3 z}-n_{2 z} n_{3 x}\right)+n_{1 z}\left(n_{2 x} n_{3 y}-n_{2 y} n_{3 x}\right)
$$

$$
\begin{aligned}
& \begin{array}{c}
C_{i j}=(-1)^{i+j} M_{i j} \\
\mathbf{P}_{c}=\frac{[C]^{T}}{|A|} \mathbf{b} \quad[C]=\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right] \\
C_{11}=n_{2 y} n_{3 z}-n_{2 z} n_{3 y} \quad C_{12}=n_{2 z} n_{3 x}-n_{2 x} n_{3 z}
\end{array} C_{13}=n_{2 x} n_{3 y}-n_{2 y} n_{3 x} \\
& C_{21}=n_{1 z} n_{3 y}-n_{1 y} n_{3 z} \quad C_{22}=n_{1 x} n_{3 z}-n_{1 z} n_{3 x} \quad C_{23}=n_{1 y} n_{3 x}-n_{1 x} n_{3 y} \\
& C_{31}=n_{1 y} n_{2 z}-n_{1 z} n_{2 y} \quad C_{32}=n_{1 z} n_{2 x}-n_{1 x} n_{2 z} \quad C_{33}=n_{1 x} n_{2 y}-n_{1 y} n_{2 x}
\end{aligned}
$$

Circle passing through three points

$$
\begin{aligned}
\mathbf{P}_{c}=\frac{[C]^{T}}{|A|} \mathbf{b} & x_{c}=\frac{1}{|A|}\left(C_{11} b_{1}+C_{21} b_{2}+C_{31} b_{3}\right) \\
& y_{c}=\frac{1}{|A|}\left(C_{12} b_{1}+C_{22} b_{2}+C_{32} b_{3}\right) \\
& z_{c}=\frac{1}{|A|}\left(C_{13} b_{1}+C_{23} b_{2}+C_{33} b_{3}\right)
\end{aligned}
$$

$$
R=\left|\mathbf{P}_{c}-\mathbf{P}_{1}\right|=\left|\mathbf{P}_{c}-\mathbf{P}_{2}\right|=\left|\mathbf{P}_{c}-\mathbf{P}_{3}\right|
$$

$$
R=\sqrt{\left(x_{c}-x_{1}\right)^{2}+\left(y_{c}-y_{1}\right)^{2}+\left(z_{c}-z_{1}\right)^{2}}
$$

$$
P_{c}\left(x_{c}, y_{c}\right)
$$

For 2D case:
$\left[\begin{array}{ll}n_{1 x} & n_{11} \\ n_{2 x} & n_{2 y}\end{array}\right]\left[\begin{array}{l}x_{c} \\ y_{c}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right] \begin{aligned} & b_{1}=\frac{\left|\mathbf{P}_{2}-\mathbf{P}_{1}\right|}{2}+\left(x_{1} n_{1 x}+y_{1} n_{1 y}\right) \\ & b_{2}=\frac{\left|\mathbf{P}_{3}-\mathbf{P}_{2}\right|}{2}+\left(x_{2} n_{2 x}+y_{2} n_{2 y}\right)\end{aligned}$

$$
\begin{aligned}
& x_{c}=\frac{n_{2 y} b_{1}-n_{1 y} b_{2}}{n_{1 x} n_{2 y}-n_{1 y} n_{2 x}} \\
& y_{c}=\frac{n_{1 x} b_{2}-n_{2 x} b_{1}}{n_{1 x} n_{2 y}-n_{1 y} n_{2 x}}
\end{aligned}
$$

Circle tangent to two lines with a given R

The center of the circle is the intersection point of two offset parallel lines with radius R distance.

Multiple solutions

$$
\begin{array}{ll}
\hat{\mathbf{n}}_{1}=\frac{\mathbf{P}_{2}-\mathbf{P}_{1}}{\left|\mathbf{P}_{2}-\mathbf{P}_{1}\right|} & \hat{\mathbf{n}}_{2}=\frac{\mathbf{P}_{4}-\mathbf{P}_{3}}{\left|\mathbf{P}_{4}-\mathbf{P}_{3}\right|} \quad \hat{\mathbf{n}}_{3}=\frac{\hat{\mathbf{n}}_{1} \times \hat{\mathbf{n}}_{2}}{\left|\hat{\mathbf{n}}_{1} \times \hat{\mathbf{n}}_{2}\right|} \\
\hat{\mathbf{n}}_{4}=\hat{\mathbf{n}}_{3} \times \hat{\mathbf{n}}_{1} & \hat{\mathbf{n}}_{5}=\hat{\mathbf{n}}_{2} \times \hat{\mathbf{n}}_{3} \\
\mathbf{P}_{1^{\prime}}=\mathbf{P}_{1}+R \hat{\mathbf{n}}_{4} & \mathbf{P}_{2^{\prime}}=\mathbf{P}_{\mathbf{2}}+R \hat{\mathbf{n}}_{4} \\
\mathbf{P}_{3^{\prime}}=\mathbf{P}_{3}+R \hat{\mathbf{n}}_{5} & \mathbf{P}_{4^{\prime}}=\mathbf{P}_{4}+R \hat{\mathbf{n}}_{5}
\end{array}
$$

The parametric vector equations

of parallel lines

$$
\begin{aligned}
& \mathbf{P}=\mathbf{P}_{1}+u\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right)+R \hat{\mathbf{n}}_{4} \\
& \mathbf{P}=\mathbf{P}_{3}+v\left(\mathbf{P}_{4}-\mathbf{P}_{3}\right)+R \hat{\mathbf{n}}_{5}
\end{aligned}
$$

Intersection point of two lines

$$
\mathbf{P}_{1}+u\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right)+R \hat{\mathbf{n}}_{4}=\mathbf{P}_{3}+v\left(\mathbf{P}_{4}-\mathbf{P}_{3}\right)+R \hat{\mathbf{n}}_{5}
$$

$$
u=\frac{\left(\mathbf{P}_{3}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{5}+\left(1-\hat{\mathbf{n}}_{4} \cdot \hat{\mathbf{n}}_{5}\right) R}{\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{5}}
$$

$$
\mathbf{P}_{c}=\mathbf{P}_{1}+\left[\frac{\left(\mathbf{P}_{3}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{5}+\left(1-\hat{\mathbf{n}}_{4} \cdot \hat{\mathbf{n}}_{5}\right) R}{\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{5}}\right]\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right)+R \hat{\mathbf{n}}_{4}
$$

Fillet circle to perpendicular corner
$\mathbf{P}_{c}=\mathbf{P}_{1}+\left[\frac{\left(\mathbf{P}_{3}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{5}+\left(1-\hat{\mathbf{n}}_{4} \cdot \hat{\mathbf{n}}_{5}\right) R}{\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{5}}\right]\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right)+R \hat{\mathbf{n}}_{4}$
$u=\frac{\left(\mathbf{P}_{3}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{5}+\left(1-\hat{\mathbf{n}}_{4} \cdot \hat{\mathbf{n}}_{5}\right) R}{\left(\mathbf{P}_{\mathbf{2}}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{5}}$
$\hat{\mathbf{n}}_{4}=\hat{\mathbf{n}}_{\mathbf{2}}, \hat{\mathbf{n}}_{5}=\hat{\mathbf{n}}_{1}$, and $\hat{\mathbf{n}}_{4} \cdot \hat{\mathbf{n}}_{5}=0$
$u=\frac{\left(\mathbf{P}_{3}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{1}+R}{\left|\mathbf{P}_{2}-\mathbf{P}_{1}\right|}$
$\mathbf{P}_{c}=\mathbf{P}_{1}+\left[\left(\mathbf{P}_{3}-\mathbf{P}_{1}\right) \cdot \hat{\mathbf{n}}_{1}+R\right] \hat{\mathbf{n}}_{1}+R \hat{\mathbf{n}}_{2}$
Trim points are

$$
\mathbf{P}_{5}=\mathbf{P}_{c}-R \hat{\mathbf{n}}_{4}
$$

$$
\mathbf{P}_{6}=\mathbf{P}_{c}-R \hat{\mathbf{n}}_{5}
$$

Ellipses

Transformations in model. $\mathrm{p}^{\prime}=\mathrm{C} * \mathrm{~T} * \mathrm{p}$

Forward Kinematics, Skeleton Hierarchy

Each bone position/orientation described relative to the parent in the hierarchy. Given the skeleton parameters \mathbf{p} (position of the root and the joint angles) and the position of the point in local coordinates vs, what is the position of the point in the world coordinates vw? Just apply transform accumulated from the root.

For the root, the

$$
\boldsymbol{v}_{\mathrm{WS}}=\boldsymbol{S}(\boldsymbol{p}) \boldsymbol{v}_{\mathrm{s}}
$$

$$
\mathbf{T}\left(x_{h}, y_{h}, z_{h}\right) \mathbf{R}\left(q_{h}, f_{h}, s_{h}\right) \mathbf{T R}\left(q_{t}, f_{t}, s_{t}\right) \mathbf{T R}\left(q_{c}\right) \mathbf{T R}\left(q_{f}, f_{f}\right) \mathbf{v}
$$

Hierarchical modeling, animation

- Hierarchical structure modeling
- Forward and inverse kinematics
- Eyes move with head

- Hands move with arms

$$
\mathrm{x}_{\mathrm{h}}, \mathrm{y}_{\mathrm{h}}, \mathrm{z}_{\mathrm{h}}, q_{\mathrm{h}}, f_{\mathrm{h}}, s_{\mathrm{h}}
$$

- Feet move with legs
- Models can be animated by specifying the joint angles as functions of time.

$$
\begin{aligned}
& \mathbf{v}_{w}={\mathbf{T}\left(x_{h}, y_{h}, z_{h}\right) \mathbf{R}\left(q_{h}, f_{h}, s_{h}\right) \operatorname{TR}\left(q_{t}, f_{t}, s_{t}\right) \operatorname{TR}\left(q_{c}\right) \operatorname{TR}\left(q_{f}, f_{f}\right)}_{\mathbf{v}_{\mathbf{w}}=\mathbf{S}(\underbrace{\mathbf{x}_{\mathrm{h}}, \mathbf{y}_{\mathrm{h}}, \mathbf{z}_{\mathrm{h}}, \theta_{\mathrm{h}}, \phi_{\mathrm{h}}, \sigma_{\mathrm{h}}, \theta_{\mathrm{t}}, \phi_{\mathrm{t}}, \sigma_{\mathbf{t}}, \theta_{c}, \theta_{\mathrm{f}}, \boldsymbol{\phi}_{\mathrm{f}}}_{\text {parameter vector } \mathbf{p}}) \mathbf{v}_{\mathbf{s}}=\mathbf{S}(\mathbf{p}) \mathbf{v}_{\mathbf{s}}}
\end{aligned}
$$

Forward Kinematics

$$
\boldsymbol{v}_{\mathrm{WS}}=\boldsymbol{S}(\boldsymbol{p}) \boldsymbol{v}_{\mathrm{s}} \quad\left[\frac{\partial\left(\boldsymbol{v}_{\mathrm{WS}}\right)_{i}}{\partial p_{j}}\right]
$$

Transformation matrix \mathbf{S} for a point $\mathbf{v s}$ is a matrix composition of all joint transformations between the foot point and the root of the hierarchy.
\mathbf{S} is a function of all the joint angles between foot point and root.
Inverse Kinematics requires solving $\quad q_{\mathrm{t}}, f_{\mathrm{t}}, s_{\mathrm{t}}$ for p, given $v s$ and the desired position vw .
$v_{w}=S(\underbrace{x_{n}, y_{n}, z_{n}, \theta_{n}, \phi_{n}, \sigma_{n}, \theta_{t}, \phi_{t}, \sigma_{t}, \theta_{c}, \theta_{f}, \phi_{f}}_{\text {parameter vector } p}) v_{s}=S(p) v_{s}$
$\mathbf{v}_{w}=\mathbf{T}\left(x_{h}, y_{h}, z_{h}\right) \mathbf{R}\left(q_{n}, f_{h}, s_{h}\right) \operatorname{TR}\left(q_{t}, f_{t}, s_{t}\right) \operatorname{TR}\left(q_{c}\right) \operatorname{TR}\left(q_{f} f_{f}\right) \mathbf{v}_{s}$

Applications in Robotics and Simulation

A robotic manipulator is a kinematic chain, i.e., a collection of solid bodies-called links-connected at joints. The most common joints are the revolute joint, which corresponds to rotational motion between two links, and the prismatic joint, which corresponds to a translation. Most of the industrial robot "arms" in use today have only revolute joints.

Figure shows an idealized robot with two links and two revolute joints.

Applications in Robotics and Simulation

Stick-figure model for a 2 -link robot

Example:
 CAD Assemblies \& Animation Models

References

- CAD/CAM Theory and Practice, Ibrahim Zeid, McGraw Hill, 1991
- Mathematical Elements for Computer Graphics, Rogers, D.F., Adams, J.A., McGraw Hill, 1990.
- Computer Aided Geometric Design, Thomas W. Sederberg, 2003.

