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Lectures, Outline of the course

1 Advanced CAD Technologies, Hardwares, Softwares
2 Geometric Modeling, 2D Drawing

3 Transformations, 3D

4 Parametric Curves

5 Splines, NURBS

6 Parametric Surfaces

7 Solid Modeling

8 APl programming



Why Study Geometric Modeling

The knowledge of the geometric modeling entities
increase your productivity.

Understand how the math presentation of various
entities relates to a user interface.

Understand what is impossible and which way can be
more efficient when creating or modifying an entity.
Control the shape of an existing object in design.

The storage, computation and transformation of
objects. Calculate the intersections and physical
properties of objects.



Geometric Modeling is important

* to meet certain geometric requirements
e such as slopes and/or curvatures in model
e interpretation of unexpected results

e evaluations, simulations of CAD/CAM systems cutting
e use of the tools in particular (robotic) applications

e creation of new attributes

e modify the obtained models




Geometric Modeling in CAD

Geometric modeling is only a means not the goal in
engineering. Engineering analysis needs product
geometry; the degree of detail depends on the analysis
procedure that uses the geometry.
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Basic Elements of a CAD System

Input Devices Main System Output Devices
Computer
Keyboard CAgatS;’;g’;’: & Hard Disk
Mouse e — Network
2RQ Cac00am) S &3 UE Printer
CAD keyboard i | Plotter
Templates
Space Ball
A t

Human Designer



Fundamental Features

Geometry: Position, direction, length, area, normal,
tangent, etc.

Interaction: Size, continuity, collision, intersection
Topology

Differential properties: Curvature, arc-length
Physical attributes

Computer representation & data structure

Others...



Professional CAD/CAE/CAM products

Unigraphics (UGS), NX (EDS)

I-DEAS (SDRC)

Pro/Engineer, Pro/Mechanica, Pro/E, Creo (PTC)
AutoCAD (AutoDesk, Inventor)

ANSYS (ANSYS Inc.)

CATIA, Delmia, SolidWorks (Dassault Systemes - IBM)
Nastran, Patran (MacNeal-Schwendler)

SurfCam, Solid Edge (EDS), MicroStation, Intergraph,
CADKey, DesignCAD, ThinkDesign,
3DStudio MAX, Rhinoceros, ...



AutoCAD

A world’s leading PC-based 3D mechanical design

package, from AutoDesk Inc.

Used to be the primary PC drafting package (dealer, PC)

The world’s most popular CAD software due to its lower

cost and PC platform

New features:

e ACIS 3.0 Advanced Solid Modeling Engine

 NURBS Surface Modeling

e Robust Assembly Modeling and Automated Associative
Drafting

Flexible programming tools, AutoLISP, ADS and ARX



Integrated
ANSYS (from

CAD/CAM Tools
ANSYS Inc.)

* Agrowth leaderin CAE and integrated design
analysis and optimization (DAQO) software

* Coveringso
and multi-p

id mechanics, kinematics, dynamics,
nysics (CFD, EMAG, HT, Acoustics)

* Interfacing with key CAD systems

NASTRAN (from MacNeal-Schwendler): PATRAN
provides an open flexible MCAE environment for
multidisciplinary design analysis.

Pro/MECHAN

ICA (integrated with Pro/E)



Integrated CAD/CAM Tools

SURFCAM (from Surfware Inc. CA)

* An outgrowth of the Diehl family’s machine shop

* A system for generating 2~5- axis milling, turning,
drilling, and wire EDM.

* Toolpath verification (MachineWorks Ltd.)

Rhinoceros (NURBS modeling)
—Industrial, marine, and jewelry designs; cad/cam;
rapid prototyping; and reverse engineering



Applications of CAD

Geometric modeling, visual computing
e Computer graphics

Visualization, animation, virtual reality
« CAD/CAM

e Virtual Prototyping
Engineering, manufacturin
 Computer vision

 Mesh generation

e Physical simulation

* Design optimization

* Reverse engineering, Prototyping
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Surface Modeling

® Models 2D surfaces in 3D space

® All points on surface are defined

® useful for machining, 3d printing, visualization, etc. 4§
~ =

—

)

& 52
e aSSS"
CEm="

Surfaces
have no thickness,
no volume or solid properties 5=


https://www.google.com/url?sa=i&url=https://grabcad.com/library/simple-surface-modelling-1&psig=AOvVaw0OHuEKKG4owbtzkFqhh1IT&ust=1584691835941000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMjjuaeLpugCFQAAAAAdAAAAABBH
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Point Manipulation

Scan object and
create point cloud
1

Pass point

Create triangulated mesh

|
Is CAD or RP
oulpul required?

Deve'lop surface

Fit curves and

~

Perform dala clean-
up if needed

Parform data
reduction i needed

Perform poinl cloud
merge il needed

Perform data point
smoothing if desired

CAD

Model RP

Reverse Eng workflow

Point Capture

I
Is tha CAD maodel o ba used
lor NC, Inspection or RP7?

Pass data to CAD

CAD/CAM Rapid Prototyping (RP)
4 ™\ o D)
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Prototype
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Prototype
Pass
triangulated data \—/
in STL formal
Coordinate Measuring
Machine (CMM)
Pass
STL
File
Inspect p;srl
Genearale report
comparing CAD
Fass CMM Pary model with
programm inspected part
NC Inspection
Develop NG Create NC Machining
Tool paths STL File
Create CMM part J
programime
Machine
component

Pass post-processed
NC Toolpaths

Point

X

Y 4 Resultant planar

Number polygon

P1 23564 | 45673 | 73428 P2

P2 35674 | 7.6784 | 7.3428 el

P3 74536 | 59876 | 73428 | E2 P

Edge Start End 5
vertex vertex P1

El P3 P2

E2 P2 P

E3 P1 P3
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Solid Modeling @ /{\@ @
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® Complete and unambiguous (clear, exact)
® Models have volume, and mass properties




Associativity

e In modern CAD packages, drawings are associated with
the underlying model, so that changes to the model

cause drawings to be updated

e A CAD package has bi-directional associativity if:
— A change to the model automatically updates the drawing AND
— A change to the drawing automatically updates the model

=)

Changes

Model

Drawing



Drawing Set Up and Layout

e Drawing Size - 5
e Drawing Projection Angle
L. &
% L=
Selected views
e Front
* Top
e Right
e |[sometric
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Generic CAD Process

Engineering Sketch —v[ Start

3D

*

Settings

Units, Grid (snap), ...
2D

v

Construct Basic
Solids
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Boolean Operations
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‘ E:ontours, chamfers
—— extrude, rotate 'l'
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Create lines, radii, part
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Annotations
Dimensioning

Add cutouts & holes
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CAD file

Verification

Output < Drawing
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CAD Software, Graphic User Interface

Geometrical model
2D/3D

Exact or faceted with planar polygons

Mass properties
Editing

Parametric
Object Organization

Named Objects

Layers

Part libraries
Drawing Output

Drafting module
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CAD Software, Graphic User Interface

Analysis Module
Finite Elements
Plastic Flow
Kinematics/Collisions
Dynamics
Importing/Exporting
Surface formats: IGES, DXF, CDL
Solid Formats: PDES/STEP, ACIS, SAT
Files for systems such as NASTRAN
Can be linked to a user written program
Rendering
Hidden line
Shaded Image
Ray Tracing
Real Time Rotations



Graphics Standards

(GKS, PHIGS, OpenGL, IGES, PDES, STEP, DWG, DXEF,
Parasolid, ACIS,...)

Application CAD data transfer other
program | .| formats : IGES. >
CAD system PDES. STEP. DXF. | CAD systems
Language A Parasolid, ACIS
binding Device
dependent Physical
Device-independent || instructions |<°| device
computer graphics
support package | __ | GKS. GKS-3. <> | Physical
PHIGS. device
OpenGL

Graphics Environment




Graphics Standards

Several graphics standards have been developed over
the years, including CORE (1977-1979),

GKS (Graphical Kernel System, 1984-1985),

GKS-3D (added 3D capabilities),

PHIGS (Programmer’s Hierarchical Graphics sys.1984),
PHIGS+ include more powerful 3D graphics functions,
X-Windows system (1987), and

OpenGL is adapted from Unix system.

DirectX (1994) APl developed by Windows for 3D
animation.



IGES, STEP, ACIS data exchange formats

Import Formats

Export Formats

SolidWorks .sldprt, .sldasm

CATIA V4 model

ACIS sat CATIA VS .CATPRODUCT,
.CATPART

Inventor .ipt, .iam ACIS .sat

CATIA V5 (visualization data) VDA-FS .vda

.CATPRODUCT, .CATPART, .CGR

CATIA V45 model, .session, .exp,
.CATPRODUCT, .CATPART, .CATSHAPE

Parasolid % t, x b

Pro/Engineer .prt, .asm, .Xpr, .xas

STEP .step, .stp

NX (formerly Unigraphics) .prt IGES .iges, .igs

VDA-FS .vda COLLADA .dae

Parasolid x t, x b VREML wrl

STEP X3D .x3d

IGES DWF .dwf
DWG .dwg

OpenFlight it




IGES, STEP, PDES, Parasolid formats

IGES (Initial Graphics Exchange Specification) initially
published by ANSI in 1980. Version 5.3 (21996) is the last.
STEP (STandard for the Exchange of Product model data)
(ISO 10303) released in 1994. A neutral representation of
product data. Every year new parts are added or new
revisions of older parts are released. This makes STEP the
biggest standard within ISO.

PDES (Product Data Exchange Specification, PDDI)
originated in 1988 by McDonnell Aircraft Corporation.
Parasolid (owned by Siemens) can represent wireframe,
surface, solid, cellular and general non-manifold models.
It stores topological and geometric information defining
the shape of models in transmitting files.



Solid modeling techniques

Sweeping,
Half Spaces,

Torus [Eq. (7.66)]



Migration of standards towards STEP

| ICAM I—>

- VDA-FS I -
- SET I B
CAD*I I -

om-—-w

VDA-PS I—> CADLIB | CADLIB 2 I—>




STEP configuration control

(Standard for the Exchange of Proc

ed 3D Design

uct model data)

STEP is also referred as ISO 10303. (start.1984..1994...)
https://cadexchanger.com/step

Configuration Management
» Authorisation

» Control(Version/Revision)
» Effectivity

» Release Status

» Security Classification

» Supplier

Product Structure
» Assemblies

» Bill of Materials
* Part

» Substitute Part
» Alternate Part

994'\' ‘

0

Ty

1S

S

Geometric Shapes
+ Advanced BREP Solids 1
» Faceted BREP Solids
» Manifold Surfaces 2

* Wireframe with Topology
» Surfaces and Wireframe 3

No Shape

with Topology

without Topology

D ’

Specifications e

» Surface Finish S ”@
» Material

* Design :: é

* Process 6 . @
* CAD Filename




STEP, BREP: Boundary Representation

B-rep represent solids by their surfaces

Define vertices in space (- exact geometry)
Define edges, faces in terms of vertices (> structure)

Winged-Edge Data Structure

Edges
Verices (direded)

(in3 dim) ABE

A-1-1 0 EC

Faces
(oriented)

cD

DCBA

EAE

EA

EEC

o
o DA
o
2

EE

ECD

EC

EDA

ED

CLASS 1

CONFIGURATION MANAGEMENT
INFORMATION WITHOUT SHAPE

CLASS 2

CLASS 1 + SURFACE & WIREFRAME W/O
TOPOLOGY

CLASS 3
CLASS 1 + WIREFRAME WITH TOPOLOGY

CLASS 4

CLASS 1 + MANIFOLD SURFACES WITH
TOPOLOGY

CLASS 5

CLASS 1 + FACETED BOUNDARY
REPRESENTATION

CLASS 6

CLASS 1 + ADVANCED BOUNDARY
REPRESENTATION

1 No Shape

. (5 )
&

4 @M‘a

D {



~ Vector versus Raster Graphics

Raster Graphics

= Grid of pixels

= No relationships between
pixels

= Resolution, e.qg. 72 dpi
(dots per inch)

=« Each pixel has color, e.q.
8-bit image has 256
colors

.bmp - raw data format

424D BCD20000000000003EODOCOO28000000420000003500000001
000100000000000000000012 0EOODO120B0000000000000000 0000
FFFFFFO0000000000000 15FD0CO00000000000000000FF EFF3 0000
000000D0DCOO0001DO0O0OSCO0000C00D000000C0O0F 80000FS00C00D0000
0000001¢000001400000000000000036000000E0O0000DOCOODAOD
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00000000 CO0EOOONOOO3 BEEEEEESO0D000001C00000003 FF FFFF COOO
0000180000000300C0004000000010000000030040004000000030
000000DZ2 006000400000007000000003 00500040000000 50000000
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00 40000000400000000300100040000000€00000000300 18004000
D000 400000000300100040000000C000000002 00180040000000CO
DO00000300180040000000CO00D0D0O0U0DZ0OD0B0040000000C000000D
0300180040000000800000000300180040000000C000000C03 0010
0040000000300000000300130040000000400000000300 10004000
0000CODDC0O00020012800400000004000000003 001000400000 00 ED
0O0OOODZ200380040000000400C00000300100040000000 60000000
03003000400000007000000003007000400000003000000C03 D0 6O
0040000000 1000000003 7777 7740000000 1800000003 FF FFFF CO 0O
D000 1C 0000000001 CO00D000000000EDDDD U000 D3 80000000000007
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001400000000000001EDDOOODO3E000000DCO00000070000000 7000
00000000 C0003S000000E0DD0COD000000C001C000001C00C0000000
DO0OODDFE0000FB800000000000000001D000SC 000000000000 0000
OOFFDOFOC0000000000D00000017FF40000000000000000000



Raster Graphics

Tessellation

Sampling & Antialiasing

It is easy to rasterize mathematical line segments into
pixels, but polynomials and other parametric functlons
are harder.

d

—d

not a
box!

\JI Bl

not a
circle!

NOC He0 I




Vector Graphics

= Object Oriented

= relationship between
pixels captured

= describes both
(anchor/control) points
and lines between them

= Easier scaling & editing

.emf format
CAD Systems use
vector graphics

Most common interface file:
IGES



Curve representation equations

A line can be defined using either parametric equation
or implicit, explicit nonparametric equations.

Given two points (x1, y1) and (x2, y2)

Implicit: (X2 -x1)(y-yD-(y2-yhHx-x1)=0

Explicit: y=(y2-y)(x—=xD)/(x2 —x1) +yl P2 (x2,y2)
Parametric  Let x—xl _ y—)l P(u)= (X'M
€ U= —
x2—-x1 y2-yl -
P1 (x1,y1)

J.\' =(1—u)xl+ux2

osux1
L\'z(l—u)‘\'lﬂ.(\*l Rt



b the pitch of the helix

Curve representation
equations

There are two types of curve equations
(1) Parametric equation

X, ¥, z coordinates are related by a parametric
and independent variable (u, 8 or t) P(t) = [z(t) y(t) =2(t)]
Point on 3-D curve: p = [x(u) y(u) z(u)] = [rcost rsint bt]
Point on 2-D curve: p = [x(u) y(u)]

rand b # 0

—00 <t <00

Yy=Rcosf. y=Rsmé (0=6<2x)

(2) Nonparametric equation
X, Y, z coordinates are related by a function
Implicit: >+ —R* =0

Explicit: N
P v=EVyR —x°



Curve representation equations

Which is better for CAD/CAE ? : Parametric equation
It is good for calculating the points at a certain interval

along a curve.

Parametric: e T EEs .
Example: Implicit: x +y =1 0sx<1
. x=cosf@ 0<8<L2rx s —
Circle g Explicit:  y=y1-x> 0<x<]|
V= 511
Y
-H‘“'ﬂx — -‘- HT‘H_
DN L4 ]
1._..‘ i a\*
\ -
: ! X L P
— | . ~ 1 4=




Comparison

Explicit Form

e Easytorender

e Unique representation

e Difficult to represent all tangents

Implicit Form

e Easyto determine if a point lies on, inside, or outside a
curve or surface

e Unique representation

e Difficult to render

Parametric Representation

e Easytorenderand common in modeling

* Representation is not unique



Geometric Modeling (:O%@ solids

A typical solid model is defined by solids, surfaces,
curves, and points.

Solids are bounded by surfaces. They represent solid
objects. Analytic shape.

Surfaces are bounded by lines. They represent
surfaces of solid objects, or planar or shell objects.
Quadric surfaces, sphere, ellipsoid, torus.

Curves are bounded by points. They represent edges
of objects. Lines, polylines, curve.

Points are locations in 3-D space. They represent
vertices of objects. A set of points. ‘

{ _

surfaces triang / ||ne5, .CUI’VGS, | ";- ; |
| pOIntS,

Q PO pOint cloud 0




Polyhedron

! Vs fs Lo S i 55 K A 5
6 X vi -
= f » V::.b—‘::_-: ——
é1‘-1 kf.', M N N S —— 7‘7;;; "

! . 1 & & e K

2 . Vg = = f'; / N \\. \\ ) ;\,-\,_,\qu-‘*

eometric Mode mg A DN
] L j 3 V, s Vg

_ R
There is a built-in hierarchy amor{g solid model entities.
Points are the foundation entities. Si:fl;iz
Curves are built from the points, Corves
Surfaces from curves, Points
Solids from surfaces.
The wire frame models does'nt J
have the surface definition.
Difference between wire, %
surface and solid model ‘




Vector Algebra and Transformations

Source books:

Computer Aided Geometric Design, Thomas W.
Sederberg, 2003.

CAD/CAM Theory and Practice, Ibrahim Zeid, McGraw
Hill, 1991, Mastering CAD/CAM, ed. 2004

Points and Vectors
Motions and Projections
Homogeneous matrix algebra



Geometric View of Points & Vectors

y
A op=(x,y,2)

e vectors have no fixed position

e had-to-tail rule — useful to express functionality
C=A+B

e points & vectors — distinct geometric types!

e agiven vector can be defined as from a fixed reference point
(origin) to the given point p



Vectors (Lines) in Affine Space

Symbols:
a, [, v - scalars
P, Q,R_points u+v v P2R P2@
u, v, W — vectors

Typical geometrical B
operations: ) e
lav|=|al]|V| (a) (b)
V=P-Q =>P=v+Q
(P-Q)+(Q-R)=P-R _Pa)
Pla) =P, + ad
(a line in an affine space — param.form) d




Vector Sums in Affine Space

new point P can be defined as
P=Q+av

Point R
V=R-0

and
P=Q+ oR-Q)=0aoR + (1- 2)Q
P=aog R+ a,Q

where
ogyta,=1

Pa)




Representation of 3D Transformations

Z axis represents depth 4

Right Handed System
When looking "down” at the origin,

Positive rotation is CCW. }K

V4

Left Handed System (out of page)
When looking “"down”,
positive rotation is in CW.
More natural interpretation
for displays, big z means “far” |<»

X

Z

<

(into screen) X



Points, Vectors and Coordinate Systems

The Cartesian coordinates (x, y, z) are the distances of
the vertex with respect to the coordinate system we

defined.

Unit Vectors
A unit vector is a vector whose
length equals unity.

Y

—

k




Vectors

A vector can be pictured as a line segment of definite
length with an arrow on one end.
We will call the end with the arrow /
the tip or head v
and the other end the tail. /
b

Equivalent Vectors

Two vectors are equivalent if they have the same
length, are parallel, and point in the same direction
(have the same sense) as shown in Figure.



Unit vectors

The symbolsi, j, and k denote vectors of “unit length”
(based on the unit of measurement of the coordinate
system) which point in the positive x, y, and z
directions respectively (see Figure). Unit vectors allow
us to express a vector in component form

Y

P=(a, b, c)=ai+bj+ck ji

Unit Vectors )
A unit vector is a vector
whose length equals unity. 8




Points and Vectors

An expression such as (X, y, z) can be called a triple of
numbers. A triple can signify either a point or a vector.
Relative Position Vectors Given two points P1 and P2,
we can define P2/1=P2-P1

as the vector pointing from P1 to P2. This notation
P2/1is widely used in engineering mechanics, and can
be read “the position of point P2 relative to P1”

(see Figure).




The distance between two points

In a Euclidean space we define the distance between
two points p and g as the norm of the vector p —q.

d(p.q) = \/'[:-T1 — W }2 + (X, —», )2 -+ (x, _.1"”}2

Because points correspond to vectors, for a fixed origin,
and vectors correspond to column matrices, for a fixed
basis, there is also a one-to-one correspondence between
points and column matrices. A pair (origin, basis) is called a
frame or coordinate system. For a fixed frame, points
correspond to column matrices.



Vector algebra J_

Let A, B, and C be independent vectors,

i, J, and k be unit vectors in the X, Y, .

and Z directions respectively.

1. Magnitude of a vectoris |A|=./A2 + A2 + AZ v
where A, A,,and A, are /
the cartesian components of the vector A.
£ 2

2. The unit vector in the direction of A is X 4y
~ A ) s ﬁ N
“A—_-I_A"'I':n‘!xl'i‘n“yj'*'ndz ¥

The components of i, are also the direction cosines of the vector A.

—

3. If two vectors A and B are equal, then

.

A, = B, A,=B, and A =B, B


https://www.google.com/url?sa=i&url=https://math-physics-problems.wikia.org/wiki/Vector_Norm&psig=AOvVaw2NXDQV4Me1w1-_0-EPRQ-J&ust=1582827003177000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIimu6Do7-cCFQAAAAAdAAAAABA9

ector algebra

4. The scalar (dot or inner) product of
two vectors A and B is a scalar value

A*B=B-A=A_B . +A,B,+A,B, =|A||B|cos 0

where @ is the angle between A and B.
Therefore the angle 6 between two vectors is given by

A-B e
cos 8§ = 2
|A||B] ¢
The scalar product can give the component of a vector A ! B !
Ag=Acos ¢

in the direction of another vector B as
A-fig=|A|cos b
A -B = |A||B|cos(8)

if the magnitude of B is 1, then
C=A-B = |A|cos(0)



https://en.wikipedia.org/wiki/File:Dot_Product.svg

ector algebra

5. The vector (cross) product of two vectors A and B /QK x

Z

is a vector perpendicular to (out of page)

the plane formed by A and B and is given by
i §j k

AxB=|A, A, A.|=(A,B,—A.B)i+(A.B,— A.B)j+(A.B,— A, Bk
B, B, B, A

A xB=(|A||B]|sin 6)] iAx]?.

where I is a unit vector B o|A x B

in a direction perpendicular

to the plane of A and B A

when it is rotated from AxB

A to B (the right-hand rule). A [




r AxB=(|A||B]|sin 0)i

Vector algebra A-B=|A||B]cos 0
g |A x B| p A-B
n — COS =
RVNITY |A[B]
and vector products, the angle 6 between two vectors
_|A x B|
tan 0 = B p

The vector product can give the component of a vector A \
in a direction perpendicular to another vector B as

|A x fig]| =|A| sin 0

A
6. Two vectors A and B are parallel if and only if i|* > 5
G, =1 or |, x#gl=0 %’gmy
7. Two vectors A and B are perpendicular if and only if A

ﬁ_d,'ﬁ_ﬁ'=ﬂ or IﬁA}{ﬁB[=1



Vector Algebra

Given two vectors P1 = (x1, y1, z1) and P2 = (x2, y2, z2),
the following operations are defined:
Addition:

P1+P2=P2+P1=(x2+x2,y1+y2,21+22)

Subtraction:
P1-P2=(x1-x2,y1-Yy2,21-22)




Vector Algebra I
/ """"LE1
Using matrix notation a Ed 3/
Vector can be written as X,
_ X=|.|, E= [ej e, ... e,_,].
X=Xe, +X,e,+.+Xe :
X = EX. _1'”_

The correspondence between vectors and matrices
preserves addition and multiplication by a scalar.
The matrix Z that corresponds to the sum of two vectors

Z=Xx+yisthesum | [x] [»n] [x+»)

R F- X, v, X, +,
X+Y=|.|=| .|+ .|=

L= n R = L —"H « M=



Vector Algebra ax,
T . ax,
For multiplication by ascalar, Z=a X, or Zz-= 2
cP1=c(x,,VY,, z,)=(cx,, cy,, Cz,)
f‘E,T]__

The inner or dot product, denoted x . y,

is another operation defined on vectors. It produces a
scalar given two vector arguments. The square root of
the inner product of a vector with itself is the norm or
length of the vector, denoted |x] = Jx.x.

The length of x in an orthonormal basis becomes

I =




Vector Algebra, Dot (Scaler) Product

Length of a vector: |p,| = ‘v‘fI% + o2 4 22 P

Magnitude of a vector

|A| = /A2 + A2 + A? / —

X x4y
Dot Product: The dot product /Q
of two vectors is defined ’ i

P1- P2 =|P1||P2| cos©

where 0 is the angle
between the two vectors.



https://www.google.com/url?sa=i&url=https://math-physics-problems.wikia.org/wiki/Vector_Norm&psig=AOvVaw2NXDQV4Me1w1-_0-EPRQ-J&ust=1582827003177000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIimu6Do7-cCFQAAAAAdAAAAABA9
https://en.wikipedia.org/wiki/File:Dot_Product.svg

e2
B [
————

el

Dot (Scaler) Product

Two vectors are orthogonal if their dot product is zero.
The cosine of the angle

between two vectors is given by cos0 =
The most convenient bases are b1
the orthonormal bases, composed of unit vectors. ~
In an orthonormal basis the inner product P

of two vectorsis x.y=X"Y=xy +Xx,y,+...+ Xy,
where the superscript (T) denotes matrix transposition,

obtained by interchanging |~ » i
rows with columns. vo| ™ o] [wox o x|

|A| cosB

X.) e2



https://en.wikipedia.org/wiki/File:Dot_Product.svg

Vector Algebra, Dot (Scaler) Product

Since the unit vectors |, j, k are mutually perpendicular,
ii=j-j=k-k=1
ij=i-k=j-k=o.
Since the dot product obeys the distributive law
Pi-(P2+P3)=P1-P2+P1-P3
we can easily derive the very useful equation
P1-P2=(xi+Yy,j+zk) (xi+y,j+2zk)

= (X, F X+ Y, ¥ Y, +2,7Z)



Vector Algebra, Angle between Vectors

The dot product allows us to easily compute the angle
between any two vectors. From the dot product
equation 5 ] ( P, . P, )

P1][P2|
Example. Find the angle between vectors (3, 2, 4) and

(31_41 2)- g — L"D‘::_l (Pl ‘P:;’ )
- P1||P2|

_ o (1,2,4)-(3,-4,2)
= oS (1,2,4)]|(3,—4, 2)|
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Vector (Cross) Product h_g TN

Finally, there is an additional operation on vectors,
called the vector product (also known as cross, or
exterior product), that is very useful, especially in 3-D.
Here we define it in terms of components in a right-
handed, orthonormal, 3-D basis:

X XY= (X2Y3 ) X3Y2)e1 i (X3Y1 ) X1Y3)e2 i (X1Y2 ) X2Y1)e3

The result of a cross product is not truly a vector, and
its definition depends on the orientation or e
handedness of a basis. T N



Vector (Cross) Product

The cross product of two parallel vectors is zero. For
two non-parallel vectors, x and y, the cross-product
X x y is perpendicular to both x and y . In particular,

if E is a righthanded orthonormal basis in 3-D, then

A e2 }f
e,xe,=e
e,xe =e
e.xe,=e,

/

Y, a
X
ei{/ g

(out of page)



Vector (Cross) Product

Cross Product: The cross product P1 x P2 is a vector
whose magnitude is
|P1x P2| =|P1||P2| sinB

(where again 6 is the angle between P1 and P2), and
whose direction is mutually perpendicular to P1 and P2
with a sense defined by the right hand rule as follows.
Point your fingers in the direction of P1 and orient your
nand such that when you close your fist your fingers
nass through the direction of P2. Then your right
thumb points in the sense of P1 x P2.




Vector (Cross) Product

From this basic definition, one can verify that C-AxE
P1xP2=-P2x Pz, - 4
ixj=k, jxk=i, kxi=] . T
jxi=-k, kxj=-i, ixk=-j. es// o c-Bxa

Since the cross product obeys the distributive law
Pi1x (P2+P3)=P1xP2+P1xP3,
we can derive the important relation

P xPs = (zii+4+yi)+ z1k) x (221 + 92 + 22k

= (Y122 —Y221,T221 — T122,T1Y2 — T2Y1 )
i k
= o S |
o Yo Zo

— —_—




|

'.--\_

Cross Produc_f, A

re

Cross products have many important uses. For
example, finding a vector which is perpendicular to
two other vectors. Also, the cross product provides a
method for finding the area of a triangle which is
defined by three points P1, P2, P3 in space.

1 . 1
Area = §|P1_;2||P1f.=3| S111 91 = §|P1fﬁg X P]_.l..f3|
P2 Tw=uxv

Area u (x. )
P1 P3 v ‘a

(33:1)




Cross Product, Area of a Triangle

For example, the area of a triangle with vertices
P1=(3,12,1),P2=(2,4,5),P3=(3, 2, 6)Is

Area

1

5|P1fz X P13

I .

51(1,3,4) x (2,1,5)

l.-'ll 3 ﬁ.|—£\/113+3*+( h)2
gl -
6.225 A

) P2 W=uxyv

u (x. )
\P3 v l‘l

(3. 72)




Parametric equation of Line

A line can be defined using either a parametric
equation or an implicit equation.

Parametric equations of lines

_inear parametric equation. A line can be written in
parametric form as follows:
X=a,+at; y=b,+b.t

In vector form,

_Joxt) | ) aotart |,
= =0 YL mrm )



Parametric equation of Line

In this equation, A is a point on the line and

A, is the direction of the line. y

Line given by A, + At

J.’i |:|

Affine parametric equation of a line (between P_, P_).
A straight line can also be expressed by P_, P. .

(t1 —t)Po + (t — )Py

Pit) =
(t) t1 —tp




Parametric equation of Line

where P_and P, are two points on the lineand t,and t,
are any parameter values. Note that
P(t,)=P,and P(t,) =P..
Note in Figure that the line segment P_—P_ is defined
Dy restricting the parameter: t, <t <t..

(t1 —t)Po + (t — t0) Py

P(t) = (t,- O/(t,- t,)
1 —1tp 1§

0)

P(t,) P(t)
E

0)

Linear interpolation




Parametric equation of Line

Sometimes this is expressed by saying that the line
segment is the portion of the line in the parameter
interval or domain [t_,t.]. We will soon see that the line
in Figure is actually a degree one Bezier curve. Most
commonly, we have t,=0and t, =1 in which case
P(t)=(2-t)P, +tP..

(1-1)
1 N

P(t,=0) P(t)
I:)O
Linear interpolation




Line
(Combinations of Points) t(P2-P1) P P2

e LetP1and P2 be points in space. P1+t (P2- P1)
e if o<st<ai thenPissomewhere P1

on the line segment joining P1 and P2.
e We may utilize the following notation

2=
P=P(t)=(1-t) P1+t P2 P >
t

t

o O

e We can then define a combination
of two points P1and P2 to be P1 i aar P2
P=o01P1+ 02 P2 where a1+ 02 =1 interpolation

e derive the transformation by setting a2 =t




Linear Parametric Plane Surface

We can generalize the line to define

a combination of an arbitrary number of points.

P=ao,P+a,P,+0;P,

where o, + o, + a3 =1 4 (Ps Py)

O0<a;,0,,05<1 ay (Py- Py)

[llustration shows the

point P generated when

0,=1/4, 0y=1/2, 5 8 p ,
_ _ 1 m

y=1-0a,-0;=1/4. 3 1P,

Then, each vertex of our triangle could be

described In terms of its respective distance

from the two walls containing the origin (P,) and from the floor.




Convexity

A convex object Is one for which any point
lying on the line segment connecting any
two points in the object is also in the object

P=ogR+a,Q & agta,=1

Pa)

More general form
P=qP,+aP,+.. +aP,
where
ogyto,+.. +ta=1
&
a>0,1=1,2,..,n




Parametric Plane

Let P, Q, R are points defining
a plane in an affine space
S(o)=aP+(1- )Q , O <1

T(A)=BS+(L-HAHR, 0<pB=1 p* P
using a substitution

T(af)=plaP+(1-2)Q]1+(1-HR,
O<a<1 &0<B<1

Tap)=P+p(1-a)(Q-P) +(1-p5)(R-P)

Plane given by a point P, and vectors u, v
T(a,p)=Py+au+pv & 0<a, <1



L

Linear Transformations

t
1
1
1
:
S e |

-

Isotropic

Identity Translation Rotation (Uniform)
Scaling

Scaling Reflection Shear



Combining Transformations
Example: Transformation of the House

Original House: Goal:
o o {_,
A A 5
j » X1 > X1
(@) (b)

Transformation Composition:

Nobo & L2

Original Translate P, Scale Rotate Translate to
house to origin final position P,




Rotation about a fixed point } n
Transformations 5

For rotation — implicit point = s
— origin f o f f

— 2D —simple ‘ ‘ ‘ f
— 3D - complicated S ’ — - x

Right Handed System
y Z axis represents depth

When looking “"down”
at the origin,

— Positive rotation
/Q*‘ Is CCW.
X

Z
(out of page)

Transformation
— rigid-body /

— non-rigi_d-body

>,

B 4




Linear

Homogeneous
Transformations Matrix .aie meens

_rotation,reflection]

A g a9 |
COmblmng _ 1 Translations
Transformations 7= OiE ) m

4 X 4 transformation | € [ ] : n
homogeneous MatriX f= = e e = o= o ==
i By S Overall scaling

Perspective

Using homogeneous transformation matrix allows us
use matrix multiplication to calculate all kind of
transformations, so combine all in one matrix.

Scale P'=S.P, Translation P'=P+d => P'=T.P,
Rotation P'=R.P Combined P'=T.R.S.T-1.P



Homogenous
Transformations

Homogenous
transformations

for 2D space requires
3D vectors & matrices.

Homogenous
transformations

for 3D space requires
4D vectors & matrices.

P=1[xY,z1]"

S(Sz, Sy, Sz)

T(dg,dy,d;) =

R =]
0*x+1*y+dy*1

| 0*x+0*y+1*1

—SXXX_
Syxy

»
8

II
COoOOR ©OO0O0
SO O o2 o

SO = O O

oL oo
_o O O

QL Q&
N« 8

(-




Homogeneous 3D Translation Matrix
y

Translation A
t=(t. ¢, 1)

4

X'=X+t,
y'=y+t,

X',y z’ Z'=Z-|-'[Z

(XV\ AT
, ,

N < X

o o o B+

o O —» O

P'=P+
P'=TP

o rr O O

P N < X




P*=P +d (9.3)

Translation of a Curve x* = x + x4
= P*
. y*=y+y, (9.4)
z*¥ =z + z,
P* = [T]P

where [7T] 1s the
transformation matrix

FIGURE 9-1 X' 1 0 0 t |]|X
Translation of a curve. y' - 0 1 0 ty y
3D Homogenous translation 271 1o 01 t|]z

1] [0 0 0 1)1



3D Transformations: Scale & Translate

Scale, Parameters I SO
for each axis direction S(8z, 8y, 82) = 0 (jy
P'=S.P 00
Translation "1 0
P'=TP 0 1
P = [X, y, Z, 1]T T(dazvdya d) = 0 0
P'=P+d |00

2D homegenous Translation

(a)

S = O

= o O O

QU QR
N 8

p—d




Scaling
P* = [SIP 9.9)

where [ S] is a diagonal matrix.

In three dimensions, it is given by

—_—

s. 0 0
[S1=[0 s, O (9.10)
0 0 s,

Thus (9.9) can be expanded to give

* x - x __
Xt =5.X yr =3,y z7 =35,2 FIGURE 9-3

Scaling a curve relative to the origin.

P* = sP (9.12) z



Scaling

If the scale factors are equal, Differential scaling occurs
Sx =8, =5 =5, when s, # s, # 5,;

the model changes in size only that is, different scaling
an.d -110'( in shape; factors are applied

this is the case of uniform scaling. 1in different directions.

*=[S1P P*=sP
_3, 0 0] t
[SI=]0 Sy 0
0 0 s,

l
N



Homogenous 3D Scaling matrix
y1 X'=X-S, y1

‘ y'=y-S,

x| [S, 0 0 Of][x
B y' _ 0 S, 0 0|y
z' 0 0 S, 0|z
1] |0 0 O 1]|1




Scaling with respect to a fixed point

(not necessarily of object)
yp y

|_ N \g‘ H_.l
| |




Rewriting EqQs. in a matrix form gives

Rotation of a point about z axis

x*=rcos(@+a)=rcosacos @ —rsinasin 6

y*=rsin (0 + a) =rsin a cos § + r cos o sin §

z¥ =z

Substituting
X =T COS &
y=rsina
gives

x* cos 0
y*|=|sin 6
z*| L 0

P* = [R,]P

where r = |P| = | P*|

x¥=xcos 8 —ysinf

y*=xsin 6 + y cos 0

¥ =z

—sin @
cos 0
0

0

0

1

prr i

Rotation of a point about the Z axis.



_ (cos® —sing 0] [
2D Rotation sind cos@d O0|x
B 0 0 1_ r
3D Rotation about a ma
1 0 0 0] [ x|
0 cos@ -singd O
_|7“ 17 R.(6) =
O sin@d <cos@ 0] ]|z
0o 0o 0 1||1] i
[ cos® 0 sind 0] [x] [
0 1 0 o0fly
= . ' Ry(g) —
—sin@ 0 cos@ O] |z
0 0 0 1][1] ]
cosd -sind 0 O] [x] i
_ sin@ coséd 0 O 1y R.(0) =
0 0 1 0|z
0 0 0 1][1 !

[CoSOxX—Sin@x Y]
Sin@x X+Ccos@xy
1

1 0 0
O cos@ —sinb
0O sinf@ cosb
0 0 0
cos 0 sind
0 1 0
—sin @ 0 cos 6
0 0 0
cos @ —sinf@ O
sin@® cosO O
0 0 1
0 0 0

. P’

jor axis P'=R-P

0

= o O O = o O

= o O O

R-P



2D Inverse Transformations

Transformations can easily be reversed using inverse
transformations

1 0 —dx ) ]
) oo
TH=|0 1 —dy S,
00 1 si-lg L o
] L S,
cosd singd 0 0 0 1
R*=|-sind cosd 0 | |

0 0 1



3D inverse Transformations

Translation
1 0
0 1
T =
0O O
0 0
Scaling
P 0
S = 0 F Y
0 O
0 O

o= O O

_—e O O

Inversion operations:

T1=T(-04, -0, -a,)

S-l:S(]_/BX, 1/ﬁy, 1/B z)



Composite translations

P =Tty ) [Tty )P =Tt ) T (b0t )P

10t [1 0 t,] [1 0 t,+t,
0 1 t,|{0 1 t, [={0 1 t, +t,
00 1]l00 1| |00 1 |

T(tyoty, ) T(toty, ) = T(t, +,0 4, +t,, )

Composite Rotations:
P" = R(&’Z){R(é’l)-P} :{R(‘gz)'R(Hl)}'P
R(6,)-R(6,)=R(6,+6,)

P'=R(6,+6,)-P



Combining Transformations

The three transformation matrices are combined as
follows

(1 0 —dx]| [cos@ -sing 0] [1 0 dx| [x
0 1 —-dy|x|sind cosd O0[x/0 1 dy|x|y
00 1|]0 0o 1floo0 1|1

v'i=T (_—c;<,—dy) R(O)T (d_x, (;Iy)v

Matrix multiplication is not commutative so order
matters

P'=M,(M,-P)=(M,-M,)-P=M-P




Rotation about an arbitrary axis n (n,,n,,n,)
Y
A P X4 XAl n,
A e T ZJIAl .
0{5 — n, . — My
Decompoiion of * NN T
mposition o
three-dii’msen;onal § Ya sin Y “ﬁ =n, cos Y = /1~ ﬂ?
eneTaR | \ [RABTIRA— V)RR YR~ HIP
P* = A

e — — — —— . —— i —— ——

1. Rotate OA and point P about the Y axis an angle —¢

2. Following the above rotation, rotate OA4 and P about the X axis an angle

3. Rotate point P about the Z axis an angle .

4. Reverse step 2, that is, rotate about the X axis an angle —.
5. Reverse step 1, that is, rotate about the Y axis an angle ¢.




U} (P rotated 90°)

P/(Xut, Yi, Z)

(point to rotate)

= Rot(n,8)-

Rot(n.6)

n:(1-cosf)+cosé
xNy( 1 — cosH) — n=s1né

Nz 1 —cosd) + nysiné
0

ation about an axis n (n,,n, ,n,) by angle 6

( Rotation axis) ﬁ

(a) P'=Q +rcosf v+rsinfu
(b) v=P-Q
nx(P-Q)

I

» Substitute (b), (c) into (a)
nx(P-Q)

I
(nxQ =0)
=Q(l-cosf)+Pcosf@+(nxP)smé (d)

» Substitute Q=(P - n)n into (d)

() a=nxv=

P"=Q+(P-Q)cos @ +rsmné

P' =(P-n)n(l-cosf)+ Pcos 8+ (nxP)sind

niy( 1 —cosf) + n:51nf  Nallz (1 - cosé) — nysind 0|
nf,( 1-cosf)+cosf  nyhA1-cosd)+ nssiné

0 0

0
nyz(1—cosf) —nssind 1. (1-cosé)+cosh 0
1



P* = [R]P = Ror(n.f)
Rotation around an Arbitrary Axis
P* = [R]P

|A|=/x3 + yi + 22
Y pe A A A P*=P+PQ+QP*
A/S n,=x,/|Al

e 9
o

CAD CAM - _ A . _ . e
Ibrahim Zeid , A f: —J;jj/llAl] | P + Rt — RS
p. 495 & 496 A z PO=0Q—P

A rotation p*

e —

/” Q=(P-ni
r’/ s
/ \ o P-aa—P
1 ——
| | R
l\\ f. ','f -~ - -
\ % /' mM=NnXT
\\ : Y
-~ ” - . -
ST § = cos 6 + sin fm

View A-4

P*=(P f)i+[P— (P-d)i]cos§+ (i x P)sin  —n x (P - i) sin ¢
Pr=F-d)a+[P—(P-a)i] cos 0+ (i x P)sin 6



. P* — [RIP = Rot(n.6)
Rotation around [R] i) | g

Z
an Arbitra ry AXIS P*=(P- )i+ [P — (P-i)i] cos 8 + (i x P) sin 0
M
P-fi=xn_+yn, +:zn, = [n, n, ”;]|f’
i3 k& Z.
hxP=(n, n, n =(nyz—nzy)f+(nzxﬂn,z)i+(nxy—nyx)f£
CAD CAM - x ¥y oz B . .
lbrahim Zeid , 0 "z el |
p. 495 & 496 axP=| n, 0 -—n|y
| —n, n, 0}jlz]
( n, 1 0 0] L0 —n, n]l[x
P*=<{(1—cosO)n,([n, n, n,J+cos60 1 O|+sinbf n, 0 —n.¢7ly
g | n, | |0 0 1] | —n, n, 01z

P* =[K]P The general rotation matrix [R]

_ —~ where ¢80 = cos 0
?li vl + cb nxn, v0—n.s6 n.n, V9+ﬂy s sf = sin 0

[R] =|n.n, v0 + n_ s6 n; v0 + cf n,n. vl — n, s v = versine ¢
| n.n,v0 —n,s6 n,n, vl +n,sb nz vé + ch v =1—cos @




Other rotations

What if the axis of rotation w .
does not pass through the origin? / | .F

Similar process as in 2D, translate 2
to the origin, rotate as normal, translate back.

We just need to know a point on the axis that we can
translate to the origin.

Only way to specify such a rotation is to give two points on
the line or one point and a direction, so the requirement

is easily satisfied.



2D Rotation about a pivot point P,

i Translate pivot point P, to the origin,
P rotate as normal, translate back.
R Rotation in angle & about a
y A1 ",——"" P
' P X i i i
r! N pivot (rotation) point (X,, Y, )
X :
AY ' o X'=X +(x—x,)cosd—(y—y,)sino
P (X.Y) .
’ y' =y, +(x—x.)sin@+(y—y,)cosd
%P‘(X’ y) P'= Pr +R (P - Pr)
¢« cosd —sind
P (X, X R=
(X ¥0) > Line COSH}




Rotation about a fixed point, M=T.R.T?

|
Move to origin Rotate Move back
4 T8 ‘ .
Translate the fixed 1 0 x |[cosg —sing O||1 O —x
point to origin, 0 1 y,||sind cos¢ 00 1 -y,
Rotate as normal, 00 1] 0 110 0 1

Translate back.

sin @
0

cos® —sin@ X, (1-cosd)+y,sing ]

cosd y,(1-cosd)—x,sind

0

1




Example: Composition

of 3D Transformations S

R
Goal: Transform the local coordinate W n
system R, R, R, to align with the originx,y,z ~—~___
Process 2
1. Translate P, to (0,0,0) b p, ‘
2. Rotate about y )PL' Py SN
3. Rotate about X z B ey *
4. Q?{tate about z (a) Initial position , (b) Final position

y
(2-3) * (4) v A




Translate the fixed point to origin,
Rotate about z axis, Translate back.

Rotation About a Fixed Point

4

iy o
Z/ zZ
A

-

M =T(p;) R0 ) T(- pr)

Transformation is defined by the
Instance transformation M +R

M=TRS

M=TRS } e T
(order is substantial!) Y s~




Composite Rotations in E3

Yy Y

L
Paabauibiiny S '

R

yA

Cube can be rotated about all

X, Y, Z axis (\
In our case the transformation

matrix Is defined
M=R, R,R=R,R,,R

zx ' Myz " Mxy

(b)



Rotations About an Arbitrary Axis

Given:
e points p,, p, and rotation angle 6

« objects to be rotated §
Define vectors /

U=p;-P;
andv=u/|ul -normalized

v=[oy, ay, o]

o, + o, +a,?=1 —directional cosines
cos( gy ) = 0y, COS(Qy) =ay, COS(@,)= 0,
cos( py ) +C0s( @y ) +cos? (@, ) = 1

--------------

— only two directions angles are independent ! &



Rotations About an Arbitrary Axis
/ 73

0 0 0 |
Transformation (rotatlon about orlgln) 0 0 c0s 0 —sind 0
R —
= - - ‘ 0 sinf cosB O
R =R,(-6,) R,(-0,) R,(0) R,(6,) R(6)) 0 im0 et 0]
i op, [ cos O —sinf 0 0O [ cos® 0 sinf® 0]
sin@® cos@® 0 O 0 1 0 0
R.(0) = 0 0 1 0 Ry(0) = —sin® 0 cosf O
b, 0 0 0 1 0 0 0 1]

Complete transformation (include translations)
M = T(pO) Rx('ex) Ry('ey) Rz(e) Ry(ey) Rx(ex) T('pO)




General 3D Rotation P

1. Translate the object such that rotation /
axis passes through the origin. :

1. Rotate the object such that rotation axis coincides
with one of Cartesian axes.

2. Perform specified rotation about the Cartesian axis.

3. Apply inverse rotation to return rotation axis to
original direction.

4. Apply inverse translation to return rotation axis to

original position.

R(0)=T" R/ (a)-R,(A) R, (6)R,(#)Ry(a) T



R(0)=T"-R(a) R (B)R,(0)R,(B)R(a)T
General 3D Rotation

Translate to origin. Rotate on Cartesian axes.

y / y y
PZ‘I PZ’ /I
p 1Y ’
1,I I:)1' ! I:)1’ s’
4 X / X P/ X
Z Z R
Rotation about the axis. Apply inverse translations.
y y| y /
: P, /
PZI‘I 2/‘
p! pr|/ Py

s’ 1 o
P% X / X 'I X



R(0)=T"R,(a) R, (#)R.(0)R,(h)R

Translate the object to origin.

The vector from P, to P, Is:

V=P,—P =(X%-X%,Y, - Y12, 1)

Unit rotation vector: u=V/|V |=(a,b,c)

a=(X2—X1)/|V|
b:(yz_yl)/lvl
C:(Zz_zl)/l\/'

Ja?ib2+c2=1 ‘£

1 0 O
O 1 0
T=
0O 0 1
0 0 0
AY
u:(a,b,c)
X




Rotating u to coincide with z axis
First rotate u around x axis to lay in x—z plane.

Equivglent to rotation u's projection on y — z plane around X axis.

CoS :c/\/b2 +¢? =c¢/d, sina=b/d.

We obtained a unit vector w = (a,O,\/b2 +¢° = d) in X —z plane.

N A | J u=(ab,c)
0 c/d —b/d O u
R, (@)=
0 b/d c/d O
0 0 0 1
10 0 0]
0 cos@ —sinf O
R, (0) = 0 sinf cosf O
0 U




Rotate w counterclockwise around y axis.

W IS a unit vector whose x —component is a, y —component is 0,

hence z—component is vb* +c* =d. cosf=d, sinf=-a

'd 0 a 0 J u=(ab,c)
2 (p)o| 0 L 00
a0 0d 0
0 00 1
cos 0 0 sinf® 0O
1y (0) = —S?ﬂﬂ é (3029 0
0 0 0

R(0)=T"-R, (a)-R,'(A)R.(0) R, () Ry(a) T

1 0 0 O d cos@ -sind 1 0 0 O
0 c¢/d -b/d O 0 _|sin@ cos@ |0 ¢/d -b/d 0
Rx(a){o o od o} Ry(ﬂ){a } Rz(e){ 0 o Rx(“)[o b/d  c/d o}

R O O O
o B O O

o Q O o

0 0 0 1 0 o 0 0O 0 0 1

Py,
<
—
=)
~
Il
1
|
o O +— O



General 3D Rotation Matrix

= _ y !
cosd -sin@ 0 O Prg
sind cosd 0 O pg7>‘9
R, (9)= s
0 0 10 i
0 0 0 1_ z
R(0)=T"-R’ ()R, (h)R.(0)-R,(f)-Ry() T
1 0 0 O d 0 a 0 cosf —sind 0 O d 0 a 0 1 0 0 o0
s 3 8 w11 [ o 8} T ot
0 1 0 001 L 0 001 o 0o 0 1

az(l—cosé’)+cos«9 ab(1-cos@)—csind ac(l—c059)+bsin9_
ba(1-cosd)+csind b2(1—cosH)+cose bc(1-cos@)—asind
ca(l-cos@)—bsind cb(1-cosd)+asind cz(l—cosH)Jrcos@_
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Linear Transformations

t
1
1
1
:
S e |

-

Isotropic

Identity Translation Rotation (Uniform)
Scaling

Scaling Reflection Shear



2D Reflections (Mirror)

2D reflection about x, y, (x and y) axis :

(R

—1 0 0]
0 -1 0
0 0 1

=




3D Reflection (Mirror) - _::"/{"3

Reflection through a

3D Reflection principal plane (x = 0 plane)
about x-y plane :

1 0

o O
-

1
0O -1 0
0

the mirror of P
P*=MP
Com P lete transformation =z Reflection through a plane (P,,, £, §)
M =T(pg) Ry(-0,) Ry(-6,) F,(-2) Ry(8) Ry(0y) T(- po)




3D Transformations: Shear

DS 1 0 sh, O\
near:
e 0| 53
(function of z)

00 0 1)/

X\ (1 S S 0) (X) X=X+HY+$Z
Y| s 1 S 0| |Y]  Y=SX+Y+SZ
Z s s 1 0| |Z] Z=X+SY+Z
1) Lo o0 o0 1)\l

(—sinO , cosO ) , A

(cos 0, sin 0) / /
/‘9/.__ - X,y - X,y

X
Rotation (about z) Shear (orthogonal to z)

(sh, shy,1)

A




Orthographic projection matrices

'
y X y (a d g: i |
|
Front / T—b i I:m
Al Top Right oy =
— g I
- vo )/ X=0 BERE T
y _p q rl S_
Z z
Z —_— — — —_— — —_—
1 000 1 00 0 0000
0100 0000 0100
T 1= T = T =
T=lo 000! oo 0] =001 0
000 1_ 00 0 1 00 0 1

Pe O I L
S e T T T

o .‘éﬂégtér of projection
Viewpoint




rl 0 a rx x+ ﬁ'—|
Y =MX=0 1 blly|=|yv+b .
o o il L1 ] | _—
Perspective projection ﬁﬁ?

\ [00C
000
000

Figure shows how to project a point on the y axis from
a center of projection v lying on the x axis at x=d. By
similarity of triangles. Thus far we have only used
homogeneous matrices with a last row whose
offdiagonal elements are null. What happens when
they are non-null (—1/d) term. After normalizing the
result, we obtain perspective projection of the object.

g ! / * X
T Y. 4 ,__¥ _
....... Py d-x 1-x/d 1 —x/d
y x conerof |1 o olx] [ + |
Y T~ Projection 1
| K M v D ]. DJ[1 — ,1' l _ ”r
- - —1/d 0 1 | 1] Ll=-x/dl| 1 |




& Y*
ey _
. A
Perspective projection =, o
Computing a planar projection 0
involves matrix multiplication, |
followed by normalization and orthographic projection
10 0 0] (z=o plane). (r=-1/d)
0100

y z 1] =[x v z (rz+D)]
0O 0 1 r [x:: \’* i ]]=|: X ) 4
00 0 1] c rz+1 rz+l rz+l
1 0 0 o1t 0 0 O] [} ‘0 0 @]
40 1 D 00 1 0 0| 1¢ 1T 0 8

y z 1} N -:[.\‘ vy z 1} _ :[\ y O (f’.+l)]
O O1 r{{O O 0 O] 0O 0 0 r
0 0 0 1/0 0 O 1] 0 0 0 1]




3D
In 3-

Perspective

D, the matrix mu

|

tiplication

Object

Eye
p—— )>
Center of

-

~~__ Projection

| v

/j:

provides us the x and y coordinates

of the projection of a point on the xy plane,
from a center of projection on the z axis at z=d.
In 3-D the perspective transformation produces
a deformed 3-D object, which must be projected

orthographically onto the xy plane to generate the

.

1
OO O =

desired 2-D image. Computing a planar projection

involves matrix multiplication, followed by
normalization and orthographic projection. P,=

« -

-0 O O
- o O O

|

c o = O

=3

X

1 —z/d
y

1 —z/d
0




x T d—z 1—z/d p 1 —z/d

3D Perspective »__4 _ 1 ur y
y d—z 1-—z/d —z/d

. 0

2 P, 1 0 0 0] x]

o op 2|0 L 0 oy

"’It.ina 0 0 0 0 z

_;; of sight 0 0 —I/d 1 1

>x.x, P,= {I ¥ 0 (1-— Efd)]r
This require the division of x and y by (1 — z/d)

X
X y 1 —z/d
T
—zd 1-za ° Y= _
Perspective projection 1 - Z_/ d
Z.Z, along the Z axis. - 0
“ﬁ - 1
00Qo DO0 - -
P | H




=

x=Xx,+ Rcosu
Parametric Circle y=y.+Rsinu { 0<u<2n
A z=7z, J
Y4 u= /2

L (xn+1~ Yos+ts Zns1)
Py (Xns Yns Zn) X, = X, + R cos u

P(x.y,z) V, =Y.+ R sin u
Xp+1 = X. + R cos (u + Au)

u

I
3

—> y"+1=yc+RSin(u+Au)

zn+1 = zr:

Xpeq1 = X + (x, — x.) cos Au — (y, — y.) sin Au

= 37/2 Van+1 = Ve T (yu - yc) cos Au + (xn - xc) sin Au

Zn+1 = Zy

>
X



Parametric Circle

X, =rcosé
y, =rsinf

X ., =rcos(@+df)=rcos@cosdf@—rsinfsindb

1.0

X ., =x,cosdf—y sind@
Y, =y,cosdf+x sindé




Other Parametric Curves

Ellipse

(x=x_ +Acos@

y=y, +Bsin@ 0<60<2r

..

S (,0

Parabola

x=x +Au’
yv=y,+2Au 0<u<oo

A

rd

LT 4y




Points

2D CAD

o 12 P4
« & 1 e c
APT Statements Pwnm>2< : 1 .

Lines Circles

Mm / | .
(X1,Y1,Z1) P1 c2 ,
2 v

C1
L5 ‘
Lo
ct \ .
P : P1 :
P1 = 3
- P2
g C4 |
' ol PIci

P3

L8 i o Lo | . .. s

Ci1



Circle defined by diameter P1 P2

Circle radius R and center P, are

R=1%1/(x; — x)* + (12 — y1)* + (25 — 2,)?

P, = 4P, + P,
T
r_ | X1tX2 Y1 +Y: Zp+ 2
[xc Ve zc:' —[ 2 ) y)




Circle passing through three points

Circle center Pcis the
intersection of the
perpendicular lines to
the chords P1P2, P2P3,
P2P1 from their
midpoints P6 , P4, P5 ..

P
P,—-P
ﬁ]_= 2 1
|P2_P1|

P.—P P,—P

ﬁ2= 3 2 ﬁ3= 1 3

|P3_P2| |P1"‘P3|



P,—P
P —P) i, = — s
P,—P
PPy ;= — :
P,—-P
[PC—PS)'ﬁ3=| 1 3|
- M1 [
Mix My Mz || % b,
Max MNay N || Ve | T b?-
| M3, N3, "3:_'_Zc_ Lb3

[A]P. =b

2 Pc (xc’ycizc)

b,

bs

|P, — P, |
2

_|P3-P2|

- 2
=|P1"P3|

2

+ (xyny . + yyny, + 2,0,

+ (xany + yany, +2,n,,)

+ (x3n3, + y3n3, + z3n5,)



[A]P. =D P, (x., e, 2)

Adj ([4]) b P,
|A]
The cofactor C;; 1s given by

P, = [4] b=

Cij = (-I)HJMU Ciy Cys

[C]T [C] = sz C,,

P, = b KETR &)
I A | Ci = MayNy, — Ny N3, Cia=ny.ny, —ny.ny, Ciy= Mo N3y, — Ny Ny,

Coy=nynyy —nyyny. Cpy=ny ny,—n.ny,  Chy=nyny. —ny .ny

Cay=nyny. —ny.nyy, Cyp=mnynye—nny, Cyz=nyny,,—n n,

|A| = "1x("zyn3z — Ny, Ny,) — ny(na Ny, — Ny, N3, + nyfny.ns, —ny,nsy)



Circle passmg through three poi

T
P = [C] b Xe =707 (Cub + C21b2 + C31 bs)
1
Yo = ]—A_I‘ (Cy2by + Coy by + Cy5b5) P
- 1
z. === (Cy3b, + Cy3b, + C33b3)

7|4
=|Pc—P1|=IPc—P2'=IPc'—P3|

R=\/(xc""x1)2+(yc_y1)2+(zc_zl)2 Pc(xcs yc)

: nyyby —ny, b
For 2D case: P, —P,| x = 2201 — My 0o

' bl = + (xlnlx + yiny,) ‘ RixBay = Ny Nox
ny, Nyl v b, _|Py—P,| _ Meby—ny. by

b, 5 + (X3 1y, + Y2 13y) Ye =

Nix nZy — Ny, Nay



Circle tangent to two lines with a given R

The center of the circle Is
the intersection point of
two offset parallel lines
with radius R distance.

Multiple solutions



P,—-P, P,— P, .
1 n, = 0,
IPZ_Pll |P4_P3l

-~

"~

iy X i, fi; = i, x fi;

=}

i

4
P, =P, +Ri, P, =P,+Ri,
P, =P, + Riy; P, =P, + Ri;
The parametric vector equations |
of parallel lines P=P, +uP,—P,)+ Ri,

] ] ] P=P3+U(P4_P3)+Rﬁs
Intersection point of two lines

P, + u(P, — P,) + Ria, = P; + P, — P;) + Ris

(Pa“Pl)'ﬁs+(l—ﬁ4'ﬁs)R

‘7 (P, —P,y) i
P;—P;)-ns+ (1 —i, 0,5)R -
= -P R
P.=P, +l: P, P, - a. (P, 1) + Ry



Fillet circle to perpendicular corner

—P,))ns+ (1 —n,-05)R X
Pc=P1+[(P3 ‘()P SP().ﬁ = ](Pz—P1)+Rn4
2 *1 5
@y —P)-ds+(1—d, @R :

(P, —Py) s

~

fi, =Mh,, i; =i, and i, s =0
(P; —P))-n; +R
|P; — P, |
P.=P, +[(P;— P, a, + R]a, + Ri,
P, =P, — Rn,
P, = P. — Riig

Trim points are




A !
Xp+1 = X, + (x, — x.) cos Au — B (v, — ¥.) sin Au

A :
Vori = V. + (¥, — y.) cos Au + E (x, — x.) sin Au

Ellipses

Zps41 = 2y

Y ) :

'y x=x,+ A cos ucosa— Bsin usin «
x=x.+Acosu | 0<u<2n y=1y.+ A cos usina+ Bsih ucosa

. IF".l'.|+l P

y=y.+ Bsinu " Pleyd) z=12,

B :
zZ=2 t B sinu

'Pr(‘xf'!.}rf‘z’.'} A h 'L :-_-_Xw
Amsu—r|
YA

Internal rectangle
fiy

X,+1 = X, + A cos (u, + Au) cos o — B sin (1, + Au) sin o

Z

Ellipse defined by a center, major and minor axes. V.1 = ¥. + A cos (u, + Au) sin « + B sin (u, + Au) cos «

zn+l, = zn



_d

ransformationsin model. p'=C*T *p

Root }

Group
(chair, legs)
S

= R2

(table, fruits)

Group

Group Group
(tabletop, legs) (basket,_ fruit)

S=T1T2 S =T1R1




Forward Kinematics, Skeleton Hierarchy

Each bone position/orientation described relative to
the parent in the hierarchy. Given the skeleton
parameters p (position of the root and the joint angles)
and the position of the point in local coordinates vs,
what is the position of the point in the world
coordinates vw? Just apply transform accumulated

from the root. For the oot the
. e parameters
Xnt¥noZnsdnef nosy _ include a position
g as well

G of ¢ 1St /T i
ey >

/ ®  l-thigh
qc i —
Joints are r-calf UWS — S(p) ‘US

specified by
angles. G 1 f

1'—fgot vV, = [T(x,,y,,2,)R(q,.f,,5,) TR(q.f,s,) TR(q.) TR(g,.f )|V,




Hierarchical modeling, animation ;
q;(1)

* Hierarchical structure modeling —

e Forward and inverse kinematics 5

e Eyes move with head g f

e Hands move with arms Xis oY 5 Zio ol or S
e Feet move with legs v

e Models can be animated &[5 D

by specifying the joint angles

as functions of time.

v, =[I(x,,v.,z,)R(q.f,,5,) TR(q.f ,s ) TR(g) TR(q,.f )|v,

9 2

V=S XnrYneZnoOnOnrOn O /B 1O /8,0 VS=S(p )Vs f ' s
: G 1J 1 d

parameter vector p



vws = S(p) s

a(vws)z}

Forward Kinematics Op;

Transformation matrix S for a point vs is a matrix
composition of all joint transformations between the
foot point and the root of the hierarchy.

S is a function of all the joint angles Xic Wt 5 2ol o g S
between foot point and root. -y

Inverse Kinematics requires solving G v rS. A
for p, given vs and the desired position vw. ‘
e
Vo = M0,,:2)RG,f 5,) TRG 5 ) TR@G) TR@GS )|V, g f, ' ¢

V=S ?(h!yh 1 Zh 19 0n 04,0 P, 0,0, 0 rd}f}}’s =S(D )vs

parameter vector p



Applications in Robotics and Simulation

A robotic manipulator is a kinematic chain, i.e., a
collection of solid bodies—called links—connected at
Joints. The most common joints are the revolute joint,
which corresponds to rotational motion between two
links, and the prismatic joint, which corresponds to a
translation. Most of the industrial robot “"arms” in use
today have only revolute joints.

1%
Figure shows an idealized robot ’B/—- ----- -
with two links and two revolute joints. s

y

»




Applications in Robotics and Simulation

Stick-figure model for a 2-link robot

1\ .-
e X'=MX =M M, X

X%= M5(0)M, ()X

z _ _
cosO 0 sin®@ 01 0 0 0O [ cos® 0 sin® 0]
N— 0 1 0 o0 1 0 L 0 1 0 L
) ° MLO)Y=| W=
y > —sin® 0 cos® 0|0 O 1 O —smB@ 0 cosB 0O
A’/—l-* | 0 o 0o 110 0o o0 1) ! o 0 0 1 |
cosp —sing 0 O]1 0 0O L,| [cosd =—sing 0 L, msq)—‘
. sing  cos¢p O O 0 1 O O | smdp  cosdp 0 L,sin
"lfijfl:»{b}: —
0 0 1 Oj0 O 1 0 0 0 | 0
L0 o o0 1Joo o 1! 0 o o 1 |
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CAD Assemblies & Animation Models
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3 .| i |
Left Shoulder Right Hip Left Hip

| | |

Right Elbow Left Elbow Right Knee Left Knee
| | | l

Right Wrist Laft Wrist Right Ankle Laft Ankle
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