
Hikmet Kocabaş, Prof., PhD. 
Istanbul Technical University 

Advanced CAD  
2. Geometric Modeling,  

3. Transformations 



1  Advanced CAD Technologies, Hardwares, Softwares 
2  Geometric Modeling, 2D Drawing 
3  Transformations, 3D 
4  Parametric Curves  
5  Splines, NURBS 
6  Parametric Surfaces 
7  Solid Modeling 
8  API programming 

Lectures, Outline of the course 



The knowledge of the geometric modeling entities 
increase your productivity. 

Understand how the math presentation of various 
entities relates to a user interface.  

Understand what is impossible and which way can be 
more efficient when creating or modifying an entity. 
Control the shape of an existing object in design.  

The storage, computation and transformation of 
objects. Calculate the intersections and physical 
properties of objects.  

Why Study Geometric Modeling 



• to meet certain geometric requirements  
• such as slopes and/or curvatures in model 
• interpretation of unexpected results  
• evaluations, simulations of CAD/CAM systems cutting 
• use of the tools in particular (robotic) applications 
• creation of new attributes  
• modify the obtained models 

Geometric Modeling is important 



Geometric modeling is only a means not the goal in 
engineering. Engineering analysis needs product 
geometry; the degree of detail depends on the analysis 
procedure that uses the geometry. 

Geometric Modeling in CAD 



. 

Basic Elements of a CAD System 



• Geometry: Position, direction, length, area, normal, 
tangent, etc. 

• Interaction: Size, continuity, collision, intersection 
• Topology 
• Differential properties: Curvature, arc-length 
• Physical attributes 
• Computer representation & data structure 
• Others… 

Fundamental Features 



Unigraphics (UGS), NX (EDS) 
I-DEAS (SDRC)  
Pro/Engineer, Pro/Mechanica, Pro/E, Creo (PTC) 
AutoCAD (AutoDesk, Inventor)  
ANSYS (ANSYS Inc.) 
CATIA, Delmia, SolidWorks (Dassault Systemes - IBM) 
Nastran, Patran (MacNeal-Schwendler) 
… 
SurfCam, Solid Edge (EDS), MicroStation, Intergraph,  
CADKey, DesignCAD, ThinkDesign,  
3DStudio MAX, Rhinoceros, … 

Professional CAD/CAE/CAM products 



A world’s leading PC-based 3D mechanical design 
package, from AutoDesk Inc. 
Used to be the primary PC drafting package (dealer, PC) 
The world’s most popular CAD software due to its lower 
cost and PC platform 
New features: 
• ACIS 3.0 Advanced Solid Modeling Engine 
• NURBS Surface Modeling 
• Robust Assembly Modeling and Automated Associative 

Drafting 
Flexible programming tools, AutoLISP, ADS and ARX 

AutoCAD 



ANSYS (from ANSYS Inc.) 
• A growth leader in CAE and integrated design 

analysis and optimization (DAO) software 
• Covering solid mechanics, kinematics, dynamics, 

and multi-physics (CFD, EMAG, HT, Acoustics) 
• Interfacing with key CAD systems 
NASTRAN (from MacNeal-Schwendler): PATRAN 
provides an open flexible MCAE environment for 
multidisciplinary design analysis. 
Pro/MECHANICA (integrated with Pro/E) 

Integrated CAD/CAM Tools 



SURFCAM (from Surfware Inc. CA) 
• An outgrowth of the Diehl family’s machine shop 
• A system for generating 2~5- axis milling, turning, 

drilling, and wire EDM. 
• Toolpath verification (MachineWorks Ltd.) 
 
Rhinoceros (NURBS modeling) 
– Industrial, marine, and jewelry designs; cad/cam; 
rapid prototyping; and reverse engineering 

Integrated CAD/CAM Tools 



Geometric modeling, visual computing 
• Computer graphics 
Visualization, animation, virtual reality 
• CAD/CAM 
• Virtual Prototyping 
 Engineering, manufacturing 
• Computer vision 
• Mesh generation 
• Physical simulation 
• Design optimization 
• Reverse engineering, Prototyping 

 

 
  
Applications of CAD 

meshes 
in FEA 

visualization 

tool path 



. 

CAD  
Software 



Surface Modeling 
• Models 2D surfaces in 3D space 
• All points on surface are defined 
• useful for machining, 3d printing, visualization, etc. 

Surfaces  
have no thickness,  
no volume or solid properties. 
 
Surfaces may be open or closed. 

https://www.google.com/url?sa=i&url=https://grabcad.com/library/simple-surface-modelling-1&psig=AOvVaw0OHuEKKG4owbtzkFqhh1IT&ust=1584691835941000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMjjuaeLpugCFQAAAAAdAAAAABBH


Surfaces from Curves  

Edge of surface
to be created

Curves cross over outside
surface edge, therefore it

can not be created

No cross overs outside
surface edge, therefore
surface can be created



Reverse Engg workflow 

• . Topology of  
a triangle 



Solid Modeling 

• Complete and unambiguous (clear, exact) 
• Models have volume, and mass properties 



Associativity 

• In modern CAD packages, drawings are associated with 
the underlying model, so that changes to the model 
cause drawings to be updated 

• A CAD package has bi-directional associativity if: 
– A change to the model automatically updates the drawing AND 
– A change to the drawing automatically updates the model 

Changes 

Model 
Drawing 



Drawing Set Up and Layout 

• Front 
• Top 
• Right 
• Isometric 

Selected views 

• Drawing Size 
• Drawing Projection Angle 



. 

Generic CAD Process 



Geometrical model 
 2D/3D 
 Exact or faceted with planar polygons 
 Mass properties 
Editing 
 Parametric 
Object Organization 
 Named Objects 
 Layers 
 Part libraries 
Drawing Output 
 Drafting module 

CAD Software, Graphic User Interface 



Analysis Module 
 Finite Elements 
 Plastic Flow 
 Kinematics/Collisions 
 Dynamics 
Importing/Exporting 
 Surface formats: IGES, DXF, CDL 
 Solid Formats: PDES/STEP, ACIS, SAT 
 Files for systems such as NASTRAN 
 Can be linked to a user written program 
Rendering 
 Hidden line 
 Shaded Image 
 Ray Tracing 
 Real Time Rotations 

CAD Software, Graphic User Interface 



(GKS, PHIGS, OpenGL, IGES, PDES, STEP, DWG, DXF, 
Parasolid, ACIS,…) 

 

Graphics Standards 



Several graphics standards have been developed over 
the years, including CORE (1977-1979),  
GKS (Graphical Kernel System, 1984-1985),  
GKS-3D (added 3D capabilities),  
PHIGS (Programmer’s Hierarchical Graphics sys.1984), 
PHIGS+ include more powerful 3D graphics functions, 
X-Windows system (1987), and  
OpenGL is adapted from Unix system.  
DirectX (1994) API developed by Windows for 3D 
animation. 

 

Graphics Standards 



. 

IGES, STEP, ACIS data exchange formats 



IGES (Initial Graphics Exchange Specification) initially 
published by ANSI in 1980. Version 5.3 (1996) is the last. 
STEP (STandard for the Exchange of Product model data) 
(ISO 10303) released in 1994. A neutral representation of 
product data. Every year new parts are added or new 
revisions of older parts are released. This makes STEP the 
biggest standard within ISO. 
PDES (Product Data Exchange Specification, PDDI) 
originated in 1988 by McDonnell Aircraft Corporation. 
Parasolid (owned by Siemens) can represent wireframe, 
surface, solid, cellular and general non-manifold models.    
It stores topological and geometric information defining 
the shape of models in transmitting files.  

IGES, STEP, PDES, Parasolid formats 



Sweeping,  
Half Spaces,  
CSG,  
B-rep 
 

Solid modeling techniques 



. 

Migration of standards towards STEP 



(Standard for the Exchange of Product model data) 
STEP is also referred as ISO 10303. (start.1984..1994…) 
https://cadexchanger.com/step 

STEP configuration controlled 3D Design 



B-rep represent solids by their surfaces 

STEP, BREP: Boundary Representation 



. 

Vector versus Raster Graphics 



Tessellation  
Sampling & Antialiasing 
 
It is easy to rasterize mathematical line segments into 
pixels, but polynomials and other parametric functions 
are harder. 
 
 

Raster Graphics 



. 

Vector Graphics 



A line can be defined using either parametric equation 
or implicit, explicit nonparametric equations. 

Curve representation equations 

P1 (x1 ,y1) 

P2 (x2 ,y2) 

P(u)= (x,y) 



Curve representation  
equations 
There are two types of curve equations 
(1) Parametric equation  
x, y, z coordinates are related by a parametric  
and independent variable (u, θ or t)  
Point on 3-D curve:  p = [x(u)   y(u)  z(u)] 
Point on 2-D curve:  p = [x(u)   y(u)] 
 
 
(2) Nonparametric equation  
x, y, z coordinates are related by a function 
Implicit:                                       
Explicit: 



Which is better for CAD/CAE ?  : Parametric equation 
It is good for calculating the points at a certain interval 
along a curve.   
Example:  
Circle 

Curve representation equations 



Explicit Form 
• Easy to render 
• Unique representation 
• Difficult to represent all tangents 
Implicit Form 
• Easy to determine if a point lies on, inside, or outside a 

curve or surface 
• Unique representation 
• Difficult to render 
Parametric Representation 
• Easy to render and common in modeling 
• Representation is not unique 

Comparison 



A typical solid model is defined by solids, surfaces, 
curves, and points. 
Solids are bounded by surfaces. They represent solid 
objects. Analytic shape.  
Surfaces are bounded by lines.  They represent 
surfaces of solid objects, or planar or shell objects. 
Quadric surfaces, sphere, ellipsoid, torus. 
Curves are bounded by points.  They represent edges 
of objects. Lines, polylines, curve. 
Points are locations in 3-D space.  They represent 
vertices of objects. A set of points. 

Geometric Modeling solids 

lines, curves, 
points,  

point cloud 

surfaces triangles 

polygons 



There is a built-in hierarchy among solid model entities.  
Points are the foundation entities.   
Curves are built from the points,  
Surfaces from curves,  
Solids from surfaces. 
 
The wire frame models does’nt  
have the surface definition. 
Difference between wire, 
surface and solid model 

Geometric Modeling 

Points 

Curves 

Surfaces 

Solids 



Source books: 
Computer Aided Geometric Design, Thomas W. 
Sederberg, 2003. 
CAD/CAM Theory and Practice , Ibrahim Zeid, McGraw 
Hill , 1991, Mastering CAD/CAM, ed. 2004 
 
Points and Vectors 
Motions and Projections 
Homogeneous matrix algebra 

 

Vector Algebra and Transformations 



 
 
 
 
 
 
 

• vectors have no fixed position 
• had-to-tail rule – useful to express functionality 

C = A + B 
• points & vectors – distinct geometric types! 
• a given vector can be defined as from a fixed reference point 

(origin) to the given point p 

Geometric View of Points & Vectors  



Symbols: 
 α, β, γ - scalars 
 P, Q, R – points 
 u, v, w – vectors 
Typical geometrical  

operations: 
 | α v| = | α | | v | 
 v = P – Q  => P = v + Q 
 ( P – Q )+ ( Q – R ) = P – R  
 P(α) = P0 + α d  

(a line in an affine space – param.form) 

Vectors (Lines) in Affine Space  



new point P can be defined as 
 P = Q + α v 
Point R 
 v = R – Q  
and  
 P = Q + α(R –Q)= αR + (1- α)Q 
 P = α1 R+ α 2 Q 
where 
  α1 + α 2 = 1 

Vector Sums in Affine Space 



Z axis represents depth 
Right Handed System 
When looking “down” at the origin,  
Positive rotation is CCW. 
 
Left Handed System 
When looking “down”,  
positive rotation is in CW. 
More natural interpretation  
for displays, big z means “far” 

Representation of 3D Transformations 

(into screen) 



The Cartesian coordinates (x, y, z) are the distances of 
the vertex with respect to the coordinate system we 
defined.  
 
Unit Vectors 
A unit vector is a vector whose  
length equals unity. 
 

Points, Vectors and Coordinate Systems 



A vector can be pictured as a line segment of definite  
length with an arrow on one end.  
We will call the end with the arrow  
the tip or head  
and the other end the tail. 
 
Equivalent Vectors 
Two vectors are equivalent if they have the same 
length, are parallel, and point in the same direction 
(have the same sense) as shown in Figure. 
 
 

Vectors 



The symbols i, j, and k denote vectors of “unit length” 
(based on the unit of measurement of the coordinate 
system) which point in the positive x, y, and z 
directions respectively (see Figure). Unit vectors allow 
us to express a vector in component form 
 
P = (a, b, c) = ai + bj + ck 
 
Unit Vectors 
A unit vector is a vector  
whose length equals unity. 
 

Unit vectors 



An expression such as (x, y, z) can be called a triple of 
numbers. A triple can signify either a point or a vector. 
Relative Position Vectors Given two points P1 and P2, 
we can define  P2/1 = P2 − P1 
as the vector pointing from P1 to P2. This notation 
P2/1 is widely used in engineering mechanics, and can 
be read “the position of point P2 relative to P1”  
(see Figure). 
 
 
 

Points and Vectors 



In a Euclidean space we define the distance between 
two points p and q as the norm of the vector p – q. 
 
 
 
Because points correspond to vectors, for a fixed origin, 
and vectors correspond to column matrices, for a fixed 
basis, there is also a one-to-one correspondence between 
points and column matrices. A pair (origin, basis) is called a 
frame or coordinate system. For a fixed frame, points 
correspond to column matrices. 
 

The distance between two points 



. 

Vector algebra 

https://www.google.com/url?sa=i&url=https://math-physics-problems.wikia.org/wiki/Vector_Norm&psig=AOvVaw2NXDQV4Me1w1-_0-EPRQ-J&ust=1582827003177000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIimu6Do7-cCFQAAAAAdAAAAABA9


. 

Vector algebra 

https://en.wikipedia.org/wiki/File:Dot_Product.svg


. 

Vector algebra 



 
. 

Vector algebra 



Given two vectors P1 = (x1, y1, z1) and P2 = (x2, y2, z2), 
the following operations are defined: 
Addition: 
P1 + P2 = P2 + P1 = (x1 + x2, y1 + y2, z1 + z2) 
 
 
 
 
 
Subtraction: 
P1 − P2 = (x1 − x2, y1 − y2, z1 − z2) 

 

Vector Algebra 



Using matrix notation a  
Vector can be written as  
x = x1e1 + x2e2 +…+ xnen 
x = EX.  
The correspondence between vectors and matrices 
preserves addition and multiplication by a scalar.  
The matrix Z that corresponds to the sum of two vectors     
z = x + y is the sum 

 

Vector Algebra 



For multiplication by a scalar, Z = a X, or  
cP1 = c (x1 , y1 , z1) = (cx1 , cy1 , cz1) 
 
The inner or dot product, denoted x . y ,  
is another operation defined on vectors. It produces a 
scalar given two vector arguments. The square root of 
the inner product of a vector with itself is the norm or 
length of the vector, denoted 
The length of x in an orthonormal basis becomes 

Vector Algebra 



Length of a vector: 
 
 
 
Dot Product:  The dot product  
of two vectors is defined 
P1 · P2 = |P1||P2| cosθ 
 
where θ is the angle  
between the two vectors. 
 

Vector Algebra, Dot (Scaler) Product 

https://www.google.com/url?sa=i&url=https://math-physics-problems.wikia.org/wiki/Vector_Norm&psig=AOvVaw2NXDQV4Me1w1-_0-EPRQ-J&ust=1582827003177000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIimu6Do7-cCFQAAAAAdAAAAABA9
https://en.wikipedia.org/wiki/File:Dot_Product.svg


Dot (Scaler) Product 
Two vectors are orthogonal if their dot product is zero.  
The cosine of the angle  
between two vectors is given by 
The most convenient bases are  
the orthonormal bases, composed of unit vectors.  
In an orthonormal basis the inner product  
of two vectors is   x.y = XTY = x1y1 + x2y2 +…+ xnyn    
where the superscript (T) denotes matrix transposition, 
obtained by interchanging  
rows with columns.  

https://en.wikipedia.org/wiki/File:Dot_Product.svg


Since the unit vectors i, j, k are mutually perpendicular, 
i · i = j · j = k · k = 1 
i · j = i · k = j · k = 0. 
Since the dot product obeys the distributive law 
P1 · (P2 + P3) = P1 · P2 + P1 · P3, 
we can easily derive the very useful equation 
P1 · P2 = (x1i + y1j + z1k) · (x2i + y2j + z2k) 
               = (x1 * x2 + y1 * y2 + z1 * z2) 
 

Vector Algebra, Dot (Scaler) Product 



The dot product allows us to easily compute the angle 
between any two vectors. From the dot product 
equation 
 
Example. Find the angle between vectors (1, 2, 4) and 
(3,−4, 2). 
 

Vector Algebra, Angle between Vectors 



Finally, there is an additional operation on vectors, 
called the vector product (also known as cross, or 
exterior product), that is very useful, especially in 3-D. 
Here we define it in terms of components in a right-
handed, orthonormal, 3-D basis:  
x × y= (x2y3 - x3y2)e1 + (x3y1 - x1y3)e2 + (x1y2 - x2y1)e3 
 
The result of a cross product is not truly a vector, and 
its definition depends on the orientation or 
handedness of a basis. 
 
 

Vector (Cross) Product 



Vector (Cross) Product 
The cross product of two parallel vectors is zero. For 
two non-parallel vectors, x and y , the cross-product     
x × y is perpendicular to both x and y . In particular,  
if E is a righthanded orthonormal basis in 3-D, then 
 
e1 × e2 = e3 
e2 × e3 = e1 
e3 × e1 = e2 
 



Cross Product: The cross product P1 × P2 is a vector 
whose magnitude is 
|P1 × P2| = |P1||P2| sinθ 
 
(where again θ is the angle between P1 and P2), and 
whose direction is mutually perpendicular to P1 and P2 
with a sense defined by the right hand rule as follows. 
Point your fingers in the direction of P1 and orient your 
hand such that when you close your fist your fingers 
pass through the direction of P2. Then your right 
thumb points in the sense of P1 × P2. 
 
 

Vector (Cross) Product 



From this basic definition, one can verify that 
P1 × P2 = −P2 × P1, 
i × j = k  ,   j × k = i   ,  k × i = j 
j × i = −k , k × j = −i ,  i × k = −j . 
Since the cross product obeys the distributive law 
P1 × (P2 + P3) = P1 × P2 + P1 × P3, 
we can derive the important relation 
 

Vector (Cross) Product 



Cross products have many important uses. For 
example, finding a vector which is perpendicular to 
two other vectors. Also, the cross product provides a 
method for finding the area of a triangle which is 
defined by three points P1, P2, P3 in space. 
 

Cross Product, Area of a Triangle 

P2 

P1 P3 

Area 



For example, the area of a triangle with vertices  
P1 = (1, 1, 1), P2 = (2, 4, 5), P3 = (3, 2, 6) is 
 

Cross Product, Area of a Triangle 

P2 

P1 P3 

Area 



A line can be defined using either a parametric 
equation or an implicit equation. 
 
Parametric equations of lines 
Linear parametric equation. A line can be written in 
parametric form as follows: 
x = a0 + a1t;     y = b0 + b1t 
 
In vector form, 
 

Parametric equation of Line 



Parametric equation of Line 
In this equation, A0 is a point on the line and  
A1 is the direction of the line. 
 
Line given by  A0 + A1t  
 
Affine parametric equation of a line (between P0 , P1 ).  
A straight line can also be expressed by P0 , P1 . 

 



where P0 and P1 are two points on the line and t0 and t1 
are any parameter values. Note that 
P(t0) = P0 and P(t1) = P1.  
Note in Figure that the line segment P0–P1 is defined 
by restricting the parameter: t0 ≤ t ≤ t1. 
 
 
 
Line given by P(t) 
 

Parametric equation of Line 

(t- t0)/(t1- t0) (t1- t)/(t1- t0) 
1 

0 
P(t0) P(t1) 

Linear interpolation 

P(t) 
P0 P1 



Sometimes this is expressed by saying that the line 
segment is the portion of the line in the parameter 
interval or domain [t0 ,t1]. We will soon see that the line 
in Figure is actually a degree one Bezier curve. Most 
commonly, we have t0 = 0 and t1 = 1 in which case 
P(t) = (1 − t)P0 + tP1. 
 
 
 

Parametric equation of Line 

t (1- t) 
1 

0 
P(t0=0) P(t1=1) 

Linear interpolation 

P(t) 
P0 P1 



• Let P1 and P2 be points in space.  
• if  0 ≤ t ≤ 1  then P is somewhere  
 on the line segment joining P1 and P2 . 
• We may utilize the following notation 
 P = P(t) = (1 - t) P1+ t P2 
 
• We can then define a combination  
 of two points  P1 and P2  to be  
 P = α1 P1+ α2 P2  where  α1 + α2 = 1 
• derive the transformation by setting  α2 = t 
 

Line  
(Combinations of Points) 

P1 

P2 

P1+ t (P2 - P1) 

t (P2 - P1) P 

α2= t 

α1= 1- t 

1 

0 
P1 P2 Linear  

interpolation 

t 
t0 

t1 



We can generalize the line to define  
a combination of an arbitrary number of points.  
P = α1 P1+ α2 P2 + α3 P3  
where  α1 + α2 + α3 = 1 
0 ≤ α1 , α2 , α3 ≤ 1 
Illustration shows the  
point P generated when  
α2 = 1/4 ,  α3 = 1/2 ,  
α1 = 1 - α2 - α3 = 1/4 .  
Then, each vertex of our triangle could be  
described in terms of its respective distance  
from the two walls containing the origin (P1) and from the floor.  

Linear Parametric Plane Surface 

P2 

P1 

α3 (P3 - P1) 

P3 

P 

α2 (P2 - P1) 

P4 

P = P1+ α2 (P2 - P1) + α3 (P3 - P1)    P(u,v) = (1- u -v) P1+ u P2 + v P3  

0 

1 

0 
1 

α2  

α3  



A convex object is one for which any point  
lying on the line segment connecting any  
two points in the object is also in the object 
 
 P = α1 R+ α 2 Q      &   α1+α 2 = 1 
 
 
More general form 
 P = α1P1+α2P2 +... +αnPn 
where 
 α1+α2 +... +αn= 1 
& 
  αi ≥ 0 , i = 1, 2, ....,n 

Convexity 



Let P, Q, R are points defining  
a plane in an affine space 

S(α) = α P + (1- α)Q  ,  0≤ α ≤ 1 
T(β) = β S + (1 - β) R  ,  0≤ β ≤ 1  
using a substitution 
T(α,β) = β [α P + (1- α)Q ] + ( 1 - β) R  ,    

 0≤ α ≤ 1  & 0≤ β ≤ 1 
T(α,β) = P + β (1 - α )( Q – P )  + (1 - β) (R – P) 
 
Plane given by a point P0 and vectors u, v 
T(α,β) = P0 + α u + β v     &     0≤ α ,  β ≤ 1 

Parametric Plane 



 
• . 

Linear Transformations 



Original House:                   Goal:  
 
 
 
 
Transformation Composition: 

Combining Transformations 
Example: Transformation of the House 



For rotation – implicit point 
– origin  
– 2D – simple 
– 3D – complicated 
Transformation 
– rigid-body 
– non-rigid-body                                        Right Handed System   

Z axis represents depth  
When looking “down”  

at the origin,  
Positive rotation  

is CCW.  
 

Rotation about a fixed point 
Transformations 



Combining  
Transformations 
 
 
 
Using homogeneous transformation matrix allows us 
use matrix multiplication to calculate all kind of 
transformations, so combine all in one matrix.  
Scale  P′ = S.P , Translation P′=P+d  =>   P′ = T.P , 
Rotation P′=R.P  Combined P′=T.R.S.T-1.P 
 
 

Homogeneous  
Transformations Matrix 



Homogenous  
transformations  
for 2D space requires  
3D vectors & matrices. 
 
Homogenous  
transformations  
for 3D space requires  
4D vectors & matrices. 
 
P = [x, y, z, 1]T 

 

Homogenous  
Transformations 
















+
+

=
















++
++
++

=















×
















11*1*0*0
1**1*0
1**0*1

1100
10
01

dyy
dxx

yx
dyyx
dxyx

y
x

dy
dx

















100
10
01

dy
dx

vssSvys
xs

y
x

s
s

yxy

x

y

x

),(':
11100

00
00

=















×
×

=















×














 xS

yS



Homogeneous 3D Translation Matrix 

x

y

z

x x t

y y t

z z t

′ = +

′ = +

′ = +

1 0 0
0 1 0
0 0 1

1 0 0 0 1 1

x

y

z

x t x
y t y
z t z

′     
     ′     = ⋅
′     

     
     

P′=T.P 
P′=P+t 

Translation 

( ), ,x y z

( ), ,x y z′ ′ ′

x

y

z

t=(tx , ty , tz) 

t 



 
 
 
 
 
 
 
 
                                       
   3D Homogenous translation 

Translation of a Curve 



















⋅



















=



















11000
100
010
001

1
'
'
'

z
y
x

t
t
t

z
y
x

z

y

x



Scale, Parameters  
for each axis direction 
P′ = S.P 
Translation 
P′ = T.P 
P = [x, y, z, 1]T 

P′ = P + d 
2D homegenous Translation 

3D Transformations: Scale & Translate 



. 

Scaling 



 
. 

Scaling 



Homogenous 3D Scaling matrix 

x

y

z x

y

z

x

y

z

x x S

y y S

z x S

′ = ⋅

′ = ⋅

′ = ⋅

Enlarging object also moves it from origin 

0 0 0
0 0 0
0 0 0

1 0 0 0 1 1

x

y

z

x S x
y S y
z S z

′     
     ′     ′ = = ⋅ = ⋅
′     

     
     

P S P



Scaling with respect to a fixed point  
(not necessarily of object) 

( ), ,f f fx y z
x

y

z
( ), ,f f fx y z

x

y

z
( ), ,f f fx y z

x

y

z

( ), ,f f fx y z
x

y

z

( )
( )
( )

1

0 0 1

0 0 1

0 0 1
0 0 0 1

x x f

y y f

z z f

S S x

S S y

S S z
−

− 
 

− ⋅ ⋅ =  − 
  

T S T



. 

Rotation of a point about z axis 



3D Rotation about a major axis    P′=R∙P 

2D Rotation 

z x 

y 

z x 

y 

x z 

y 



















⋅

















 −

=



















11000
0100
00cossin
00sincos

1
'
'
'

z
y
x

z
y
x

θθ
θθ



















⋅



















−
=



















11000
0cos0sin
0010
0sin0cos

1
'
'
'

z
y
x

z
y
x

θθ

θθ



















⋅


















−

=



















11000
0cossin0
0sincos0
0001

1
'
'
'

z
y
x

z
y
x

θθ
θθ

vRvyx
yx

y
x

)(':
1

cossin
sincos

1100
0cossin
0sincos

θθθ
θθ

θθ
θθ

=















×+×
×−×

=















×














 −



Transformations can easily be reversed using inverse 
transformations 
 

2D Inverse Transformations 
















−
−

=−

100
10
01

1 dy
dx

T























=−

100

010

001

1

y

x

s

s

S
















−=−

100
0cossin
0sincos

1 θθ
θθ

R



Translation        Inversion operations: 
 
 
          T-1 = T ( -αx , -αy , -αz ) 
 
 
Scaling 
 
          S-1 = S ( 1/βx , 1/β y , 1/β z ) 
 
 

3D inverse Transformations 



 
 
 
 
 
 
Composite Rotations: 
 

Composite translations  
( ) ( ){ } ( ) ( ){ }

( ) ( ) ( )

2 2 1 1 2 2 1 1

2 1 1 2

2 1 1 2

2 2 1 1 1 2 1 2

, , , ,

1 0 1 0 1 0
                      0 1 0 1 0 1

0 0 1 0 0 1 0 0 1

                        , , ,

x y x y x y x y

x x x x

y y y y

x y x y x x y y

t t t t t t t t

t t t t
t t t t

t t t t t t t t

′ = ⋅ = ⋅ ⋅

+     
     ⋅ = +     
          

⋅ = + +

P T T P T T P

T T T

( ) ( ){ } ( ) ( ){ }
( ) ( ) ( )

( )

2 1 2 1

2 1 1 2

1 2

θ θ θ θ

θ θ θ θ

θ θ

′ = ⋅ = ⋅ ⋅

⋅ = +

′ = + ⋅

P R R P R R P

R R R

P R P



The three transformation matrices are combined as 
follows 
 
 
 
 
 
 
Matrix multiplication is not commutative so order 
matters 

Combining Transformations 
















×















×














 −
×















−
−

1100
10
01

100
0cossin
0sincos

100
10
01

y
x

dy
dx

dy
dx

θθ
θθ

vdydxTRdydxTv ),()(),(' θ−−=

( ) ( )2 1 2 1′ = ⋅ = ⋅ ⋅ = ⋅P M M P M M P M P



. 

Rotation about an arbitrary axis n (nx ,ny ,nz) 

z 
x 

y 
θ n 



. 
 
 
 
 

Rotation about an axis n (nx ,ny ,nz) by angle θ 



. 

Rotation around an Arbitrary Axis 

CAD CAM - 
Ibrahim Zeid , 
p. 495 & 496 

0 



. 

Rotation around  
an Arbitrary Axis 

CAD CAM - 
Ibrahim Zeid , 
p. 495 & 496 



Other rotations 
What if the axis of rotation  
does not pass through the origin? 
 
Similar process as in 2D, translate  
to the origin, rotate as normal, translate back. 
 
We just need to know a point on the axis that we can 

translate to the origin. 
 
Only way to specify such a rotation is to give two points on 

the line or one point and a direction, so the requirement 
is easily satisfied. 

x 

y 

z 

u’z 

u’x 

u’y 



2D Rotation about a pivot point Pr  

( )

Rotation in angle  about a

pivot (rotation) point , .r rx y

θ

( ) ( )

( ) ( )

( )

cos sin

sin cos

cos sin
sin cos

r r r

r r r

r r

x x x x y y

y y x x y y

θ θ

θ θ

θ θ
θ θ

′ = + − − −

′ = + − + −

′ = + ⋅ −

− 
=  
 

P P R P P

R

x

y

rx

ry
θ

Pr 
P 

P′ 

x

y

θ

( ),r rx y

( ),x y′ ′

( ),x yP 

P′ 

Pr 

Translate pivot point Pr  to the origin, 
rotate as normal, translate back. 



Rotation about a fixed point, M=T.R.T-1 

Move to origin Rotate Move back 

( ),r rx y

( )
( )

1 0 cos sin 0 1 0
0 1 sin cos 0 0 1
0 0 1 0 0 1 0 0 1

cos sin 1 cos sin
sin cos 1 cos sin

0 0 1

r r

r r

r r

r r

x x
y y

x y
y x

θ θ
θ θ

θ θ θ θ
θ θ θ θ

− −     
     ⋅ ⋅ − =     
          

− − + 
 − − 
  

Translate the fixed 
point to origin, 
Rotate as normal, 
Translate back. 



Goal: Transform the local coordinate  
system Rx, Ry, Rz to align with the origin x,y,z  
Process 
1. Translate P1 to (0,0,0)  
2. Rotate about y  
3. Rotate about x 
4. Rotate about z 
 

Example: Composition  
of 3D Transformations 

(1) (2-3) (4) 



 
 
 
 
 
 
M = T(pf ) Rz(θ ) T(- pf ) 

Rotation About a Fixed Point 

Transformation is defined by the 
instance transformation M 

 
  M = T R S 
 (order is substantial!) 

Translate the fixed point to origin,  
Rotate about z axis, Translate back. 



• . 

Composite Rotations in E3 

Cube can be rotated about all  
x, y, z axis  

In our case the transformation 
matrix is defined 

M = Ry Rx Rz= Rzx Ryz Rxy  

 
 
 

⇓ 

⇒ 

Rz Rx 

Ry 



Given: 
• points p1 , p2 and rotation angle θ 
• objects to be rotated 
 
Define vectors  

u = p1 - p2  
and v = u / |u|     – normalized  
 v = [ αx , αy , αz ]T   

 αx
2 + αy

2 + αz
2 = 1   – directional cosines 

cos( ϕx ) = αx ,   cos( ϕy ) = αy ,   cos( ϕz ) = αz  
cos2( ϕx ) + cos2( ϕy ) + cos2 ( ϕz ) = 1 
⇒ only two directions angles are independent !! 

Rotations About an Arbitrary Axis  



 
 
 
 
 
Transformation (rotation about origin) 
R = Rx(-θx) Ry(-θy) Rz(θ) Ry(θy) Rx(θx) 

Rotations About an Arbitrary Axis  

Complete transformation (include translations) 
M = T(p0) Rx(-θx) Ry(-θy) Rz(θ) Ry(θy) Rx(θx) T(-p0)  



1. Translate the object such that rotation  
 axis passes through the origin. 
1. Rotate the object such that rotation axis coincides 

with one of Cartesian axes. 
2. Perform specified rotation about the Cartesian axis. 
3. Apply inverse rotation to return rotation axis to 

original direction. 
4. Apply inverse translation to return rotation axis to 

original position.  

General 3D Rotation 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
x y z y xθ α β θ β α− − −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅R T R R R R R T

x

z

y
2P

1P
θ



Translate to origin. Rotate on Cartesian axes. 
 
 
 
 
 
Rotation about the axis.    Apply inverse translations. 

General 3D Rotation 

x

z

y
2P′

1P′
x

z

y

1P′

2P′′

x

z

y

1P′

2P′′ θ x

z

y
2P′

1P′
x

z

y
2P

1P

( ) ( ) ( ) ( ) ( ) ( )1 1 1
x y z y xθ α β θ β α− − −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅R T R R R R R T

x

z

y
2P

1P
θ



. 

Translate the object to origin. 

( )
1 2

2 1 2 1 2 1 2 1

The vector from  to  is:

, ,x x y y z z= − = − − −

P P

V P P

( )

( )

( )

( )

2 1

2 1

2 1

2 2 2

Unit rotation vector: | | , ,

| |   

| |

| |

1

a b c

a x x

b y y

c z z

a b c

= =

= −

= −

= −

+ + =

u V V

V

V

V

1

1

1

1 0 0
0 1 0
0 0 1
0 0 0 1

x
y
z

− 
 − =
 −
 
 

T

( ), ,a b c=u

x

y

z

x

z

y
2P

1P

x

z

y
2P′

1P′

( ) ( ) ( ) ( ) ( ) ( )1 1 1
x y z y xθ α β θ β α− − −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅R T R R R R R T

x

z

y

1P′

2P′′



Rotating  to coincide with  axiszu

( )
2 2

2 2

First rotate  around  axis to lay in  plane.

Equivqlent to rotation 's projection on  plane around  axis.

cos ,   sin .

We obtained a unit vector ,0,  in  plane.

x x z

y z x

c b c c d b d

a b c d x z

α α

−

−

= + = =

= + = −

u

u

w

( )

1 0 0 0
0 0
0 0
0 0 0 1

x

c d b d
b d c d

α

 
 − =
 
 
 

R

( ), ,a b c=u

x

y

z
α

′u

α
d 

d 
( ),0,a d=w

1 

1 



2 2

Rotate  counterclockwise around  axis.

 is a unit vector whose component is , component is 0,

hence component is .

y

x a y

z b c d

− −

− + =

w

w

cos ,   sind aβ β= = −

( )

0 0
0 1 0 0

0 0
0 0 0 1

y

d a

a d
β

 
 
 =
 −
 
 

R

( ) ( ) ( ) ( ) ( ) ( )1 1 1
x y z y xθ α β θ β α− − −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅R T R R R R R T

( ), ,a b c=u

x

y

z β

( ),0,a d=w

d 

α
d 

1 

1 

( )

1 0 0 0
0 0
0 0
0 0 0 1

x

c d b d
b d c d

α

 
 − =
 
 
 

R( )

0 0
0 1 0 0

0 0
0 0 0 1

y

d a

a d
β

 
 
 =
 −
 
 

R( )

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

z

θ θ
θ θ

θ

− 
 
 =
 
 
 

R( )

1 0 0 0
0 0
0 0
0 0 0 1

x

c d b d
b d c d

α

 
 − =
 
 
 

R ( )

0 0
0 1 0 0

0 0
0 0 0 1

y

d a

a d
β

 
 
 =
 −
 
 

R



General 3D Rotation Matrix 

( )

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

z

θ θ
θ θ

θ

− 
 
 =
 
 
 

R

( ) ( ) ( ) ( ) ( ) ( )1 1 1
x y z y xθ α β θ β α− − −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅R T R R R R R T

( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

2

2

1 cos cos 1 cos sin 1 cos sin
1 cos sin 1 cos cos 1 cos sin
1 cos sin 1 cos sin 1 cos cos

R

a ab c ac b
ba c b bc a
ca b cb a c

θ

θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

=

 − + − − − +
 − + − + − − 
 − − − + − + 

M

x

z

y
2P

1P
θ

( )

1 0 0 0
0 0
0 0
0 0 0 1

x

c d b d
b d c d

α

 
 − =
 
 
 

R( )

0 0
0 1 0 0

0 0
0 0 0 1

y

d a

a d
β

 
 
 =
 −
 
 

R( )

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

z

θ θ
θ θ

θ

− 
 
 =
 
 
 

R( )

1 0 0 0
0 0
0 0
0 0 0 1

x

c d b d
b d c d

α

 
 − =
 
 
 

R ( )

0 0
0 1 0 0

0 0
0 0 0 1

y

d a

a d
β

 
 
 =
 −
 
 

R



 
• . 

Linear Transformations 



2D Reflections (Mirror) 

x

y

1 0 0
0 1 0
0 0 1

 
 − 
  

x

y

1 0 0
0 1 0
0 0 1

− 
 
 
  

x

y

1 0 0
0 1 0
0 0 1

− 
 − 
  

2D reflection about x, y, (x and y) axis : 



3D Reflection  
about x-y plane : 
 
 
 
 
 
the mirror of P 
P* = M P 
Complete transformation 
M = T(p0) Rx(-θx) Ry(-θy) Fz(-z) Ry(θy) Rx(θx) T(- p0)  
 
 

3D Reflection (Mirror) 



3D Shear:  
(function of z) 
 
 

3D Transformations: Shear 



. 

Orthographic projection matrices  



Figure shows how to project a point on the y axis from 
a center of projection v lying on the x axis at x=d. By 
similarity of triangles. Thus far we have only used 
homogeneous matrices with a last row whose 
offdiagonal elements are null. What happens when 
they are non-null (–1/d)  term.  After normalizing the 
result, we obtain perspective projection of the object.  
 
 

 Perspective projection  



Computing a planar projection  
involves matrix multiplication,  
followed by normalization and orthographic projection 

(z=0 plane). ( r = –1/d ) 

Perspective projection 



In 3-D, the matrix multiplication 
provides us the x and y coordinates  
of the projection of a point on the xy plane,  
from a center of projection on the z axis at z=d.  
In 3-D the perspective transformation produces  
a deformed 3-D object, which must be projected 
orthographically onto the xy plane to generate the 
desired 2-D image. Computing a planar projection 
involves matrix multiplication, followed by 
normalization and orthographic projection.  
 
 

3D Perspective 



. 

3D Perspective 



Parametric Circle 



. 

Parametric Circle 



. 

Other Parametric Curves 



APT Statements 

2D CAD 



Circle radius R and center Pc are 

Circle defined by diameter P1 P2 



Circle center Pc is the  
intersection of the  
perpendicular lines to 
the chords P1P2 , P2P3 , 
P2P1 from their  
midpoints P6 , P4 , P5 . 

Circle passing through three points 



. 

Circle passing through three points 



. 

Circle passing through three points 



 
 
 
 
 
 
 
 
For 2D case: 

Circle passing through three points 



The center of the circle is  
the intersection point of  
two offset parallel lines  
with radius R distance. 
 

Circle tangent to two lines with a given R 



 
 
 
The parametric vector equations  
of parallel lines 
 
Intersection point of two lines 



 
 
 
 
 
 
 
 
 
Trim points are 

Fillet circle to perpendicular corner 



. 

Ellipses 



 

Transformations in model.    p’ = C * T * p  



Each bone position/orientation described relative to 
the parent in the hierarchy.  Given the skeleton 
parameters p (position of the root and the joint angles) 
and the position of the point in local coordinates vs, 
what is the position of the point in the world 
coordinates vw? Just apply transform accumulated 
from the root.  
 

 

Forward Kinematics, Skeleton Hierarchy 



• Hierarchical structure modeling  
• Forward and inverse kinematics  
• Eyes move with head  
• Hands move with arms  
• Feet move with legs  
• Models can be animated  
by specifying the joint angles  
as functions of time.  

 
 

Hierarchical modeling, animation 



Transformation matrix S for a point vs is a matrix 
composition of all joint transformations between the 
foot point and the root of the hierarchy.  
S is a function of all the joint angles  
between foot point and root.  
Inverse Kinematics requires solving  
for p, given vs and the desired position vw. 
 

Forward Kinematics 



A robotic manipulator is a kinematic chain, i.e., a 
collection of solid bodies—called links—connected at 
joints. The most common joints are the revolute joint, 
which corresponds to rotational motion between two 
links, and the prismatic joint, which corresponds to a 
translation. Most of the industrial robot “arms” in use 
today have only revolute joints.  
 
Figure shows an idealized robot  
with two links and two revolute joints. 

Applications in Robotics and Simulation 



Stick-figure model for a 2-link robot 
 

Applications in Robotics and Simulation 



. 

Example:  
CAD Assemblies & Animation Models 



• CAD/CAM Theory and Practice , Ibrahim Zeid, 
McGraw Hill , 1991 
 

• Mathematical Elements for Computer Graphics, 
Rogers, D.F., Adams, J.A., McGraw Hill, 1990. 
 

• Computer Aided Geometric Design, Thomas W. 
Sederberg, 2003. 

References  


	Advanced CAD �2. Geometric Modeling, �3. Transformations
	Lectures, Outline of the course
	Why Study Geometric Modeling
	Geometric Modeling is important
	Geometric Modeling in CAD
	Basic Elements of a CAD System
	Fundamental Features
	Professional CAD/CAE/CAM products
	AutoCAD
	Integrated CAD/CAM Tools
	Integrated CAD/CAM Tools
	�� �Applications of CAD
	CAD �Software
	Surface Modeling
	Slide Number 15
	Reverse Engg workflow
	Solid Modeling
	Associativity
	Drawing Set Up and Layout
	Generic CAD Process
	CAD Software, Graphic User Interface
	CAD Software, Graphic User Interface
	Graphics Standards
	Graphics Standards
	IGES, STEP, ACIS data exchange formats
	IGES, STEP, PDES, Parasolid formats
	Solid modeling techniques
	Migration of standards towards STEP
	STEP configuration controlled 3D Design
	STEP, BREP: Boundary Representation
	Vector versus Raster Graphics
	Raster Graphics
	Vector Graphics
	Curve representation equations
	Curve representation �equations
	Curve representation equations
	Comparison
	Geometric Modeling
	Geometric Modeling
	Vector Algebra and Transformations
	Geometric View of Points & Vectors 
	Vectors (Lines) in Affine Space 
	Vector Sums in Affine Space
	Representation of 3D Transformations
	Points, Vectors and Coordinate Systems
	Vectors
	Unit vectors
	Points and Vectors
	The distance between two points
	Vector algebra
	Vector algebra
	Vector algebra
	Vector algebra
	Vector Algebra
	Vector Algebra
	Vector Algebra
	Vector Algebra, Dot (Scaler) Product
	Dot (Scaler) Product
	Vector Algebra, Dot (Scaler) Product
	Vector Algebra, Angle between Vectors
	Vector (Cross) Product
	Vector (Cross) Product
	Vector (Cross) Product
	Vector (Cross) Product
	Cross Product, Area of a Triangle
	Cross Product, Area of a Triangle
	Parametric equation of Line
	Parametric equation of Line
	Parametric equation of Line
	Parametric equation of Line
	Line �(Combinations of Points)
	Linear Parametric Plane Surface
	Convexity
	Parametric Plane
	Linear Transformations
	Combining Transformations�Example: Transformation of the House
	Rotation about a fixed point�Transformations
	Homogeneous �Transformations Matrix
	Homogenous �Transformations
	Homogeneous 3D Translation Matrix
	Translation of a Curve
	3D Transformations: Scale & Translate
	Scaling
	Scaling
	Homogenous 3D Scaling matrix
	Scaling with respect to a fixed point �(not necessarily of object)
	Rotation of a point about z axis
	2D Rotation
	2D Inverse Transformations
	3D inverse Transformations
	Composite translations 
	Combining Transformations
	Rotation about an arbitrary axis n (nx ,ny ,nz)
	Rotation about an axis n (nx ,ny ,nz) by angle 
	Rotation around an Arbitrary Axis
	Rotation around �an Arbitrary Axis
	Other rotations
	2D Rotation about a pivot point Pr 
	Rotation about a fixed point, M=T.R.T-1
	Example: Composition �of 3D Transformations
	Rotation About a Fixed Point
	Composite Rotations in E3
	Rotations About an Arbitrary Axis 
	Rotations About an Arbitrary Axis 
	General 3D Rotation
	General 3D Rotation
	Translate the object to origin.
	Slide Number 108
	Slide Number 109
	General 3D Rotation Matrix
	Linear Transformations
	2D Reflections (Mirror)
	3D Reflection (Mirror)
	3D Transformations: Shear
	Orthographic projection matrices 
	 Perspective projection 
	Perspective projection
	3D Perspective
	3D Perspective
	Parametric Circle
	Parametric Circle
	Other Parametric Curves
	2D CAD
	Circle defined by diameter P1 P2
	Circle passing through three points
	Circle passing through three points
	Circle passing through three points
	Circle passing through three points
	Circle tangent to two lines with a given R
	Slide Number 130
	Fillet circle to perpendicular corner
	Ellipses
	Transformations in model.    p’ = C * T * p 
	Forward Kinematics, Skeleton Hierarchy
	Hierarchical modeling, animation
	Forward Kinematics
	Applications in Robotics and Simulation
	Applications in Robotics and Simulation
	Example: �CAD Assemblies & Animation Models
	References 

