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Geometric Modeling
av v

Geometric model is defined by solids,
surfaces, curves, and points.
Solids are bounded by surfaces.
They represent solid objects. Analytic shape. Q
Surfaces are bounded by lines. They represent Q
surfaces of solid objects, or planar or shell objects.O

Curves are bounded by points. /’(D‘L@N

They represent edges of objects.”/\! ’-‘E;
Lines, polylines, curve. z
Points are locations in 3-D space. They represent

vertices of objects. A set of points, point clouds.
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Geometric Modeling FATT
There is a built-in hierarchy among solid model entities.
Solids (volumes) from surfaces, o
Surfaces (faces) from curves, HRER:
Curves (edges) are built from the points, -

Points (vertices) are the foundation ;
entities.

The wire frame models does'nt have @
the surface and volume definition.

Difference between
wire, surface and solid models :

H’nlnu




“geometric elements



https://www.google.com/url?sa=i&url=https://www.daviddarling.info/encyclopedia/H/helicoid.html&psig=AOvVaw0mrxsEzenebl7LEYXEu4CU&ust=1584603944466000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOjvooLEo-gCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https://www.pinterest.co.kr/pin/423831014929044185/&psig=AOvVaw1CQ1LiXXFz5YvXiXLoOAEh&ust=1584604684165000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKDq_dDGo-gCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https://www.lafsozluk.com/2013/06/hiperboloit-hiperboloid-nedir-ne.html&psig=AOvVaw1Iq19-qHzxEanIbKgL6Cr5&ust=1584604180651000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKDmmdzEo-gCFQAAAAAdAAAAABAJ
https://www.google.com/url?sa=i&url=https://commons.wikimedia.org/wiki/File:Triple_torus_illustration.png&psig=AOvVaw36jugrg1AK1OuX28s4OBpc&ust=1584605743817000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCLiiqsvKo-gCFQAAAAAdAAAAABAT
https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI
https://www.google.com/url?sa=i&url=https://hal.inria.fr/inria-00518326/document&psig=AOvVaw2Uen-Y4DNta4ROjYaZiRyK&ust=1584607107819000&source=images&cd=vfe&ved=0CAIQjRxqGAoTCMDxqNTPo-gCFQAAAAAdAAAAABClAQ

Sketching curve tools

Curve tools in CAD programs
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Analytic and Free Form Synthetic Curves

Analytic Curves are points, lines, arcs
and circles, fillets and chamfers, and

conics (eIIipseV
parabolas, O e

and hyperbolas)

~Ellipse

1S 2
= 2 Wil =y}
F=0

- Parabola

- Least Square fit
— Least Absolute Residual fit .
= Bisquare fit

P
Free form synthetic curves include / lestswareft
various types of splines ¥
(cubic spline, B-spline) ’
and Bezier curves.



Splines

Splines -- a mechanical beam with bending deflections,
or a smooth curve under multiple constraints.

Natural Spline : mathematical approximation of the
spline historically used in naval construction.

M (x) _ax+b,

v (x)=—""=

El El

l | a, b.
y(x)=— i 34200 +ex+d,
EI| 6 2




Physical Splines
_uE

The ducks and
spline are
used to make
tighter curves




Physical Splines

The splines were once physical things. In an era prior to CAD
and large-format printing, when draftsmen needed to lay out full-
sized curves for boatbuilding, airplane manufacturing and the like
this is how they dld |t

i P




Physical Splines




Physical Splines

To be clear, the "spline" Is the actual strip of wood being bent and
held in place. The things holding it in place are called spline
weights, or colloquially, "ducks" or "whales." They Welgh about
five pounds apiece.




Physical Splines

Spline weights were typically cast in lead, then painted to prevent
the user from transferring lead smudges from his hands onto the
drawing. The bottom was lined in felt, to prevent tearing the
paper it sat on. A protruding hook was used to pin the spline itself

down.




Physical Splines

The surfaces of these
heavy objects were
purposely cast rough,
which made them
easier to pick up.




"'ishysical Splines

In 2005 a company named Edson began manufacturing
spline weights out of bronze rather than lead, to
reduce the health risk. They go for $50 a pop.




Physical Splines

Anyways, next time you CAD jockeys are trying to
massage the carpal tunnel out of your wrist, just be

glad your mouse doesn't weigh five pounds.




Curves Representations,
Splines : p
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oy a collection of connected line segments

Pi Pa |=2
A
-~ ~ - ‘\ ._
pO ,;f \\ ’V/ """\\ I—‘1 i=3
u * i g
.I ]( } Vz(uj \EJ.Q/ - 3(u) V4(u? ~ i \24

Pa




Parametric Curves

(1) Parametric vs. Nonparametric Curve Equation

(2) Various free-form curves (some mathematics) :
Hermite, Bezier, B-Spline Curve,

NURBS (Nonuniform Rational B-Spline) Curves
Applications: CAD, CAM, FEM, Design Optimization
Examples: car bodies, ship hulls, airplane fuselage and
wings, propeller blades, shoe insoles, and bottles
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Bezier curves, Spline curves, NURBS

Bézier curves and B-splines are generalized to rational
Bezier curves and Non-Uniform Rational B-splines
(NURBS).

Rational Bézier curves are more powerful than Béezier
curves since the former now can represent analitical
curves, circles and ellipses.

Similarly, NURBS are more powerful than B-splines.

B-spline
Rational Bezier NURBS

Bezier



Parametric vs. Nonparametric
Curve Representations |

(1) Parametric equation is good for calculating +
the points at a certain interval along a curve.  °
X, ¥, z coordinates are related by a parametric

and independent variable (v or 0) L]

Point on 2-D, 3-D curve: p =[x(u) Yy(u)] T
p=I[x(u) y() zu] !
(2) Nonparametric equation -
X, Y, (z=0) coordinates are related by a function -
EXPIICIt: . ~ Y=/ “ values along this line
yv=1tyR —x"

Implicit:

-

The circle has two A

O\



flz,y)=22+y>—-1=0

1 ('T y)
Unit
Circle
.( 0,0) -~

Other Representations

p{_]-! 1)

3D circle of radius R

Implicit:
x2+y2+72-R?=0 & z=0

Parametric:
X(0) = R cos(0)
y(0) = R sin(0)
z(0)=0

X

t =400

Other 2D representations of a circle

is p(t)=(x(t), y(t)) coordinate functions
and homogenous coordinates. p(t) = (=(t),5(®) Tt = 1
{j{” y(f)., H‘{f.}] - (1 35 12- Qt 1 T rl) where z(t) = 1t y(t) = 2

1+ t2°




Circle Represented in Recursive Fashion

X, =rcosé 0]
y, =rsiné | ‘-x\\\
X . =rcos(8+df)=rcos@cosdf —rsin@sindf 7 \
-t %
. [ Y
{.x‘“_, =x,cosdf -y sind@ | \
L
11\'”4 =y, cosdf +x sindf T Y @8 \
0 { ———
1.0

Circular helix parametric equation
P(t) = [z(t) y(t) =2(t)] ¥ b the pitch of the helix

= |rcost rsint bt]




Curve representation equations

Nonparametric equation: related to x, y, z
Explicit z =1(x, y) $Y
Implicit f(x, y,z) =0

Parametric:

A one-to-one mapping
from parametric space
into the Euclidean space

x=X(u), y=Y(u) and z=Z(u), U
(X(u), Y(u), Z(u)) > Ploe)=[X (). ¥ (o). ¥ ()]

< <
min = u = ”mm;
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er Parametric Curves

Ellipse
x=x,+Acosé y ]
y=y +Bsinf8 0<60<2x
—_—
Parabola
X = x +Au’ .
I, s i Conic section Equation
y=y +2Au  0O0<u<oo A Circle
S Ellipse Circle X2 +y? =
LTS, h
_— Parabola Bl x° N y? |
ipse =
: P a’ b
—~Hyperbola Parabola V2 _ Ao
. 2
_ Hyperbola L =
a b?




Points

2D CAD
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Representations of curves and surfaces

Geometry Parametric Implicit Explicit
Plane r=z(t), y =y(t) f(z,y) =0 or y = F(z)
curves t1 <t<t r = r(u,v) N plane
Space r==z(),y=y(E), flz,y,2)=0ng(z,y,2)=0 y=Y(z)N
curves z=2z(t),t1 <t<ta orr=r(u,v)N f(zr,y,2) =0 2z=2Z(x)
orr = p(o,t) Nr =q(u,v)
Surfaces r = z(u, v), fil=z,9.2) =0 z=F(z,y)
A y(uﬂ U), | Wed
z = z(u,v),

up < u < ug,
v < v< V2
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Comparison of
representations

Explicit Form z = f(Xx, y)

e Easytorender -

e Unique representation e D

e Difficult to represent all (vertical) tangents

Implicit Form f(x,y,z) =0

e Easy to test and determine if a point (object) lies on,
inside, or outside a curve or surface

e Unique representation

e Difficult to connect two curves in a smooth manner

* Not efficient for drawing. Difficult to render.

Parametric Representation p(u) = [x(u) y(u) z(u)]

e Easytorenderand common in modeling

e Representation is not unique
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Comparison of curve, surface r

Disadvantages A
Explicit z=1f(x,y) _—
Infinite slopes are impossible if f(x,y) is a polynomlal
Axis dependent (difficult to transform).

Closed and multivalued curves are difficult to represent.
Implicit f(x,y,z)=0 Az
Difficult to fit and manipulate free form shapes.
Axis dependent. Complex to trace.

Parametric p(t)=(x(t), y(t), z(t))

High flexibility complicates intersections , 7
and point classification.
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Comparison of curve, surface reps

Advantages

Explicit z=1f(x,y) Easy to trace.
Implicit f(x,y,z)=0
Closed and multivalued curves and -
infinite slopes can be represented e
Point classification (solid modeling, interference check) is easy
Intersections/offsets can be represented.

Parametric p(t)=(x(t), y(t), z(t))

Closed and multivalued curves and infinite slopes can be
represented. Axis independent (easy to transform). \
Easy to generate composite curves. Easy to trace. tw
Easy in fitting and manipulating free-form shapes .-
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Line

(Combinations of Points) t(P2-Pa)

e Let P1and P2 be pointsin space. i

e if o<t<ithenPissomewhere P11 Pi+t(P2-P1)
on the line segment joining P1 and P2.

e We may utilize the following notation

P2

Linear
A interpolation

P=P(t)=(2-1t) P+t P2 e
a2(=t
e We can then define a combination
of two points P1and P2 to be 9 1>t
e P=01P1+a2P2 where a1 +02=1 P2

e derive the transformation by setting o2 =t



Line (Linear Interpolation)

P,

Three ways of writing a line segment: Qt) _ -,
1. Weighted average of Po et

the control points: t=0

Q(t) = (2-t)p, + tp, A

Basis Blending Functions: AIE—————>

B (t)=1-t B (t)=t B, t)+B,(t)=1 3

Q(t) = B,(t)p, + B,(t)p, i

Ol St

2. Polynomialint: Q(t)=(p,-p, )t +p, p, ™

3. Matrix form: O(t) =1 1]-?—

L 1] p,
L1 0}ip1



Example: Linear Polynomial

The geometrical constraints for x(u) are:

x(0)=a, =P, ; x(1)=a,+ b, = P’

Solving the coefficients for x(u) we get:

a =P, : b_= P* - PJF
= Sl y= Py + {57 — P ) #
u=1
u=0
Solving for [x(u) y(u) z(u)] we get: '/- oF
Po



Example: Linear Polynomial

u=1
EI&EN
= v (u ) = oy e Ly = By )
z (% ) |
P+ Ps
7 .
pO ,(/ \\ ’/,’ \\\
¢ Vilu) V:z(uy\izf" Valt) V4(UT“~~E4
x(u)
V(u)=|v(u)|= Z V. (u)
z (u) j
i P () = V. (u) if wuelu,u,,,l]

0 otherwise

"



Line equation
Parametric representation

I(po-p) =p, + (P, -Po)u u€[0.1]
Parametric representation is not unique

I(po,p,) =0.5(p, +p,)+0.5(p, —py)v vel[-L1]

Ingeneral p(#). u € [a.,b]
_ _ v = (u — a) /( b — a)
Re-parameterization B

(variable transformatlon)q (v) = p (b - a)v + a)

v € [0.1]



Reparameterization

e Linearinterpolation: v=v (1-7)+v,(?)
* Local coordinates: ve|v,,v,].7€][0.]]

* Reparameterization:

S),u=gw), f(g)=h)

* Affine transformation: f'(ax+by)=af (x)+bf(y)

a+b=1



Geometric Modeling - Points and Curves

e Points on 3D curves can be represented in a
parametric form, as a function of a single variable
uelo 1]: X=x(u), y=y(), and z=1z(u)

* x(u), y(u), z(u) are polynomials, usually cubic curves

e Any point on such a parametric curve is defined by
the components of the vector p(u). Thus, the
boundary conditions are defined by the vectors
[p(0), p(1), p'(0), p'(1)], where dp(u)

du

p'(u) =



Tangent Vector

Let V(u)=[x(u), y(u), z(u)], u—[0,1] be a continuous
univariate parametric curve in R3
The tangent vector atu,, T(u,), is:

. . A _dv )| _[dx dy dz
Tto) =V i{Uo) = =g, _[du du du |, .

|U=UO

V(u) may be thought of as the trajectory of a point in
time. In this case, T(u,) is the instantaneous velocity
vectorattimeu,. =g Ug

T(up)
1

u



Parametric Continuity

Let V1(u) and V2(u), u—[0,1], be two parametric curves.
Level of parametric continuity of the curves
at the joint between Vi(2) and V2(0):

C*: The joint is discontinuous, Vi1(1)#V2(0)
C°: Positional continuous, V1(1)=V2(0)

C*: Tangent continuous, C° & V'1(1)=V'2(0)
CK, k>o: Continuous up to the k-th derivative,
Vil (1)=V2W (0),0<j<k

She ST 2
V,(0)



Geometric Continuity

In computer aided geometry design,
we also consider the notion of
geometric continuity:

G?, G°: Same as C*and C°

G*: Same tangent direction:
V'1(1)=aV'2(0)

Given a set of points {p}:
A piecewise constant interpolant is C*
A piecewise linear interpolant is C°

‘—-- = X1}
y(t)
A 4 TV3
TV, /
/
y. 3
P1f/
P
Py 3
Q,
Q
|-' 1 » x(t)
I
I
I I
: ®o—
g I
| :



Parametric and Geometric Continuity

G?, G°: Sameas C*and C°

G*: Same tangent direction: V'1(1)=aV'2(0)

G*: All derivatives up to the k-th order are proportional

In general, C'implies G' (not vice versa). ;

A ATV,
1 => @G?, unless tangent vector = [o, o, 0]. i

Exception when the tangents are zero. 2

Join point




Parametric and
Geometric Continuity

G° geometric continuity:
Two curve segments join together. ,

G* geometric continuity: The direction of the two segments’
tangent vectors are equal at the join point.

C° continuity: Curves share the same point where they join.

C?* continuity: Tangent vectors of the two segments are
equal in magnitude and direction (share the same
parametric derivatives). e em—

C? continuity: Curves share the same |° < |, i
parametric second derivatives )

where they join.



Joining Curve Segments Jogpint_———

joinsC_, C.,and C,with | Cn ) -C_is Co'
co,C and C2 continuity, respectlvely C i C1
\ C is (&
and Q, are C* continuous because
their tangents, TV, and TV, are equal. '
and Q, are only G* continuous. _ 7 \'
Y

-Q, both C* and G* %
-Q, is G* but not C*

- _+I_I-U



Curve fitting to points

-

Two possible approaches to
curve-fitting to a set of data points

- = Least Square fit
collected through experimentation: i et :
1 08 0.6 04 0.2 ;J 02 04 06 0.8
Least-squares fit : The best curve .
would most likely not pass through T~
any one of the points; and, / Least-square fit .
/ .
Spline fit : A set of curves pass /¢’
through all the given points and PR
provide any desired degree of s / N
continuity at meeting points. i S
H
/ ;

Py



Interpolated vs. Approximated Curves

Given a set of control points P,

Interpolating Curve

known to be on the curve, FH a
find a parametric curve =, s .
. . o
that interpolates/
approximates the points . dai e L
L e
Pe==*"""""" -
° °
P, Py

Yy Interpolating Curve

@ o & e___ e &




nterpolated vs. Approximated Curves

nterpolation

* Goes through all specified points ¥ Interpolating Curve
 Sounds more logical . .
e But can be more unstable .

~. Approximating Curve

* o o o — o *

Approximation
e Does not go through all points
e Turns out to be convenient

We will do something in between.



Mathematical curve equations D,

— . I(u) - “U=1
Point: |2:| Line: %5<”<1
p=|a, l(u)=[a, a, alu+[b, b bl
a_

Quadratic &IJrve: qu)=h_ a, az]I'ff+[b\_ b, b_,]ru+[cx c, c:]?'




Cubic Polynomial Curve

Definition (o<u<i)
P(u) = [x(u) y(u) z(u)]" =a_ +au+a,u?+ a,u3

Major Drawback

a, a,a,aare simply algebraic vector coefficients.
They do not reveal any relationship with the shape
of the curve itself. In other words, the change of the
curve’s shape cannot be intuitively anticipated from
changes in their values.
Why not quadric?
P(uy=a_+au+au®> (o<uxi) .




Quadric Polynomial Curve

Definition quadric curve to interpolate

P(u) = [x(u) y(u) z(u)]" =a_+a_u+a,u? (quadric)
(0<u<i) P(u)=a_ +au+a,u?+ au3 (cubic)

An example: ] 01 [0 [é |

the parabola ey || o [ e o ola

(X=cu? y=u, z=0) |z@w)| |0| |0] 0

(quadric) Pw a a  a
(cubic)

x(z)| [0 0 c
Ao Ay Ay A A€y =0 + |1 |u+]0
algebraicvector |_.y| |of |o 0

coefficients. P % 2



Quadric Polynomial Curve

P(u)=a_+au+a,u* (o<u<i)

Given two 3D points P_, P_, and their tangents P, P_,
find a quadric curve to interpolate them.

Quadric curve’s use is limited.

- P’ Po=P0) =2
P(u) P, =P(1)=ag+a,+a
P‘o — P‘(O) — a)
P, P‘1=P‘(l)= ﬂ1+2a;>
Po=P(0) =2 P,
P’y =P"(0) =a, > ao Poo
=P(1)=Py+ P’y + a; =P,-P, - P,

Py =P()=Po+22 P . — (P, -P')2



Parametric Cubic Curves

Cubic polynomials defining a curve in R3 have the form:

where uis in [0,1]. Defining: (a, a, a,

. b _ b b _

U”T (u) = [H ou? o 1] and 0 = ! ) :
B C, &

The curve can be rewritten as: d; d5; 4d;

p(u)=[x(u) y(u) 2(u)F=VT@)=UT (@) O




Parametric Cubic Curves
plu)=[x(u) y(u) z(u)]=V"@)=U"(u) O

| a &

b b b

[;'T{u'}=[u3 i U l] 0O = |

-

C

X ¥
x d

a, 6 Qe

|1.

The coefficients Q are unknown |—
and should be determined. For this purpose,

we have to supply 4 geometrical constraints.
Different types of constraints =
define different types of Splines. P(s) P,

P’y

a.,

i




Hermite Cubic
Polynomial Curve

When the conditions are the positions and two tangent

vectors of two end points, a Hermite cubic spline

parametric equation results.

ﬁ(u):[.r(u) viu) z(u)] :[ff u u l]

_ 3
- P 0 =
Plu)=Cut’ +Cyt” +Cu -I-(.{J:Z(.ju'

i=0

U=[u u”ull 0<u<l)

|
( ) LY { )
D. I —_ L (] < l L l

=U"[C]
Y 4
Pl
Pa B
. =
‘ I*_/f (u=1)
1 X
P,
¥ & (u=0)



Hermite Cubic
Polynomial Curve ;-

C,
D : T 32 C, T
P(H):[.l(”) \'(u) z(u) :[u‘ u- u l] (_: =U"[C] 7 (u=0)
“1 . . .
Plu)=Y Cu' = Cu +Ca +Cu' +€, |C,|  Algebraic coefficients
0 L U _]
i=0 [ p. s o o0 1]
. 3 - | 241 b 7 3 Lns
P\(z:)=ZC,iu"': [3:.** 2u 1 0] [C] ‘.pr.‘ o o 1 ofld
i=0 ;Te-1J L3 2 1 0]
Puw=U"(u)C=UT(u)M-'V vV M
2 -2 1 . u=0 {]:?’ C__;’ Co=hy
ooz | =3 3 -2 -1 B=G C, =P,
T g : E | P P=C+C+G+G C,=3(P-F)-2R-P
= —
- P =3C,+2C,+C,  C,=2(P,-P)+P,+P,

Rearrange the above CUbIC polynomlal curve equatlon
P(u)-(’u —3y* -|-1)P +{-2u° 435" )P+(u —Iu" +u)P +( — U )P



1.2

rmite Cubic Curve

0.8 -

Blending Functions .
Pu)=u’ =3u® + )P, + (21> +3u®)P, .

+’ =2u” +u)P, + u’ _uz)f.'{ i

-0.2

Blending (Basis) Functions

0.4

»
o

J,.-f"F3(u)=u3—2uz y

Pu) :[(Zu3 =3 +1) (2 +3u”) (=2 +u) (o +L12)]

—

Plu)=x(u) s(u) ()} [C Geometry Vector/
:[113 u u 1] 2 l=utC] -

G > 2 11

o —

3 2
V=l wu u l
P(”) [ ] O O 1 0
10 0 0




Derivatives of Hermite Cubic Splines

Hermite curve
P(u)= (2u’ =3u’ +1)E’J L2043 )151 Ll = +u)150' i’ —u" )ﬁ;'

U<u<l

First derivative of curve, tangent of curve

—_—

P (1) = (6u* —6u)P, +(=6u> +6u)P + (3u’ —4u+1)P, + 3u’ —2u)P,

Second derivative of curve, inverse of radius curvature

*y

P (1)=(12—6)P +(—1 24+6)P +(6u—4)P, +(u—2)P



High-order Parametric Polynomials

Polynomial interpolation has several disadvantages:

Polynomial coefficients are geometrically meaningless.
Polynomials of high degree introduce unwanted

Polynomials of low degree give little flexibility.

Solution: Polynomial Splines

P4
PR RN I

Po_ ~ C,(u) N .
[ 4 1 cz(u)‘~p2 .~ Cyu) C4(u) \\&1



Parametric Polynomials

High-order polynomials
a, . | a, | a, .

i

plu)y=1|a, |+...+|a, |u +..+|a  |u

n

a{]_: a.f' _an.: X

No intuitive insight for the curved shape./

Difficult for piecewise smooth curves.

=2

=3




P
_-.\ F'——-%S

Parametric Polynomials »_ ™\

\
~ P> ~

Polynomial interpolation curve el byl
. _ (v

using equal parameter distance |\

u =i/n,o<u<1, i=o..n p;=p(u;)

n
9 27 27 9
p(U)— E bi (U)pi 2 2 2 2 ([
i=0 . & g 8 I
Pﬂ My = ? 2 : 2
b v B[
p(u) = |u i 1 H P 2 2 Blending polynomials for interpolation.
2 1 0 0 0
P ¢ 0.2 9.u’ l11-u
P3| bo@)=~§ (u-1) (u=2) -1, > 5 5+
a a a 2 )
31 “32 “33 : 7 27.u” 45u°
- by(u) = :2;_” (u—%){'u— 1), _,u - :u L
‘ ( 3 2 ) a1 a2 a3 i 5 - =
pw=|y |[=lu v ul) b = S B e > 7’ o
aj, ap, a3 2 (1) s u(u—3)(u—1), 18.u° — 7“ fT“
Z 9 1 q ) )
%01 202 203 b3 =3u(u=3)(u- ) ou’ 9w’

[R]

2



/P

Motivation of Splines {

Po
The main motivation for using splines instead of a single
polynomial is to avoid the oscillations in high-degree

interpolating polynomials that can occur between interpolation
points. A spline-fit curve may have undesirable infliction points.

Interpolating }unction (polyfit)

2 2

Interpolating function (spline)

L5k




Why Cubic Polynomials

* Lowest degree for specifying curve in space

* Lowest degree for specifying points to interpolate
and tangents to interpolate

 Commonly used in computer graphics

* Lower degree has too little flexibility

e Higher degree is unnecessarily complex, exhibit
undesired wiggles , Interpolating function (spline)




P P
- - 3
p * ol ¢ ~ - =0 ~ L
07 C.(u) . - %
‘ ] v - -
c(u)~ P -7 GlU) Ca(U) "™~ s

Piecewise Polynomial Splines

Piecewise, low degree polynomial curves for different parts
of the curve with continuous joints
[ x (u ) )

C{u)= ; y(u)| = : C.(u) where
\ z (u ) ) ‘ ~ | C.(u) if uwelu,,u,,]
C.lu)=4 "™ ‘
Advantages: ' 0 otherwise

* Low-degree, Flexible, Rich representation

* Geometrically meaning coefficients

e Local effects

 Interactive sculpting capabilities

Disadvantages:

 How to ensure smoothness at the joints (continuity)



Hermite Curves

Assume we have n control points {p,} with their
tangents {T}

V(u) represents a parametric cubic function for the
section between p, and p,,,

For V(u) we have the following geometric constraints:
V(o) =py; V(1) =Py,

Vi(0)=T,; V@) =T,

/F«)k T V(1)
V(0) V(u) j



Pk Tk

/ 7(1)

3 V(u
ermite Curves ¢ vo " o 9

. ;(“):[x(”) ,’*'(“) E(H)]T =Viw)y=U"(w) Q ¢ -=
Since
VT(”)=[H3 u -’ U I:I 0
we have that

(V’)T(nr):[f'wl2 2 u 1 0] (0
We can write the constraints in a matrix form:

I 1
QU o o
O H X o®

P 0 0 0 1
_ Pk+1 _ 1 1 1 1
i r, |~lo o 1 o
[ Tyl |3 2 1 8
ﬁ—l N _ -
G M
Andthus 7V 7 (u)=U T(u)0 =U T (u)M ~'G
[ 2 -2 1 1 ]
- -3 3 - 2 -1
Where Y
1 0 0

QAL a0 o Q




[.x(zr) v(u) Z(H)]=VT(H)=UI(H) O=U"(u)M 'G

- 2 =2 1 1 ][ |
ermite Curves b
3 2 -3 3 -2 -1 P
V(iu)=lu u- u 1]
0 0 1 0 T,
1 o o o ||T,.,
Pk Tk = d\L - =
/ \[(1) Blending Geometry
v(o) YW d functions matrix
Pk+1 k+1 - B , ) Y T —
2a”" - 38" %1 Pk
3 2
V (u) = 321; +23u Pk+1 _
u’ — 2u° + u 5
I = ] LT+
1.2 -~ ) T ) .
H o(u) Pk
. H 1(“ ) P ks
| H ,(u) Ty
L H 3 ( " ) J | T kE+1 _
° () Hermite blending functions

-0.2
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Pk 1

mm/_\
: V(u)
Hermite Curves ¥

T
Pk+1 k+1

Properties: The Hermite curve is composed of a linear
combinations of tangents and locations (for each v).
Alternatively, the curve is a linear combination of
Hermite basis functions (the matrix M).

It can be used to create geometrically intuitive curves.
The piecewise interpolation scheme is C* continuous.
The blending functions have local support; changing

a control point or a tangent vector, changes its local
neighborhood while leaving the rest unchanged.
Main Drawback: Requires the specification of the
tangents. This information is not always available.




Pk T

. k(1
Hermite Curves M
vy V)

Benefits Pl 1K

fthe designer changes P_or P_, he/she immediately
knows what effect it will have on the shape —the end
Doint moves.

Similarly, if he modifies P, or P_’, he/she knows at least
the tangent direction at that end point will change
accordingly.

Deficiency Itis not easy to predict curve shape
according to changes in size of the tangents P_'or P_".




The effect of tangents on a Hermite Curve

y(u)

Change in Magnitude of T,

yu)] m
.

Change in Direction of T

/l/f

u



10

Effect tangents’ Magnitudes on a Hermite

k .

0"

k .

1-

magnitude of tangent at p,
magnitude of tangent at p,

The tangent directions at p, and p, are fixed.




Parametric polynomial Cubic Curve

— (
X = 331-113 + 321-112 +ayq-u+ ag; u=0.1 31 932
X
3 2 3 2 a21 422
y=azyu +agyu +ajpyutayg p(u)=|y |= (11 u ul )
a1 212
z=a -u3+a -u2+a A+ a z
33 23 13 03 \301 apy

a; . 12 degrees of freedom (dof).

du

P4 Pa

-

p(u):(u3 1.12 u 1)-A

d—(u3 + u2 +u+ 1) > 3-112 +2-u+1 :—p(u) =p'(u) = (3-112 2-u 1 0)-A

1
(a3] a3y a33)

a21 322 a3

a11 212 213

301 302 303 )




p(u)=(u3 u2 u 1

P(u) = UT[M4]V

Hermite Curve
(2 -2 1 1 \(p(0))

) 3 3 2 -1
lo 0o 1 o0

_ p(1)
p'(0)

.1 0 0 0 /\p(1)) z

p(u) = (.?-u3 - 3-1.12 + 1)-p(0) + (—.'tl-u3 + 3-u2)-p( 1) + (u3 - 2-u2 + u)-p'(O) + (u3 - u?')-p'(l)

Hermite Blending functions

Hermite Curve [ p(0))

p(v)=(F; Fy F3 Fy)-

p'(u) := UT-M'H-V

MIH =

p(1)
p'(0)
\p'(1) )
(0 0 0 0
6 -6 3 3
-6 6 4 -2

.0 0 1 0 )

3 2
F1=211 —3u +1 Fl(“)

FZ — —2-113 + 3-112

F3=113—2-ll2+‘l]

F4= 113 —112

Py(u=0)

2 4

1

-0.5




Py P’
1
P(ll) Pl

Hermite Curve

p(u) = (.‘3-113 - 3-11.'2 + 1)-p(0) + (_3.113 + 3-112)-p(1) + (u3 - 2-112 + 11)-p'(0) + (113 - u:_]-p'( 1)

P’y

V=[P, P, P, P (p(0)) . Hermite
3 ' 1 06 [ -
p(u) = (u3 U u l)-MH- p(1) =" Ba_SIS
S p'(0) | Blending
P(u) = UTMg] p'(1)) - Functions
V is geometry vector N _ |
(boundary conditions) Linear
Hermite matrix blending
(2 -2 1 1 > functions
e ° _ for line
=== = o, -7 P2
10 0 0] /Prt)=(1-t)P1+tP2



Plecewise Hermite

Cu
Rat

pic Spline Curve

ner than use a very high degree curve to interpolate

a large number of points, it is more common to break

the

curve up into several simple curves. For example, a

large complex curve could be broken into cubic curves,
and would therefore be a piecewise cubic curve.

For
Itis

the entire curve to look smooth and continuous,
necessary to maintain C* continuity across

segments, meaning that the position and tangents
must match at the endpoints. For smoother looking
curves, it is best to maintain the C2 continuity as well.



Piecewise Hermite Cubic Spline Curve

The above equation is for one cubic spline segment.
It can be generalized for any two adjacent spline
segments of a spline curve that are to fit a given
number of data points.

This introduces the problem of blending or joining

cubic spline segments.
Given a set of n points Po, P1,...Pn-1 and the end /

tangent vectors P'o, P'n-1 connect
the points with a cubic spline curve. »,

— Spline segments —

\

L}




Hermite Cubic Spline Curve

Fit a given number of data points and two end tangent
vectors. Po Py Py Po Py
For curvature continuity between the first two
segments, we can write  p"(u; = 1) =p"(u, = 0)
For2'nd and 3'rd segm. : p'(uy= 1) = p"(uy = 0)

Y4+
P. . +4P. 4+P . =m3(P .-P ] 1
-1 1 i+ 1 1+1 1—1
1000 Po ) [ o | Kspline segmcnt57 ,'D
1 _' _ . A
1410 _ P111—3 3(P111—2 PU) p =
0141 p = 2 P,
3P - P
m—2
000 1 ( m-1 :11—3)
m-1 L Pm—l ) Pﬂ

' -1
Pi = Mggq 'GCS ~

3 4



p(u) = (2—u3 - 3-1:1.2 + 1)-p(0) + (—?..-u3 + 3-u2)-p( 1) + (u3 - 2-u2 + u)-p‘(O) + (u3 - u?')-p'(l)

Hermite Cubic Spline Curve

(Pg ) (
p(u) =UT_MHV (0 0 0 0 ) 0 0 0 0 0)
i 6 -6 3 3 Py y 0 0 0 0
'(u) = M- ' = V = 9 =
P .o H 6 6 4 2 po| 12126 6
" =U_ " _V
p"(u) M'y L0 0 1 0) |py \—6 6 —4 -2

p'(v) = d—p(u) =- Po-(ﬁ-u - 6-112) - Pl-(ﬁ-u - 6-112) - P'D-(S-u2 - 4-u+ 1) - P'1-(2-u = 3-112)

1}

2
p'(u) = —: sp(u) = PO-(12-u— 6) — P1-(12-u— 6) + P'0-(6-u—4) + P'l-(6-u—2)
u

p"(1) = 6-:P0— 6-P1+ 2-P'0 + 4-P'1
p'(uy = 1) =p"(uy=0) p"(0) = —6-P1 + 6-P — 4-P'1 — 2.P'

6-P0O — 6-P1 + 2-P'0 + 4-P'l = —6-P1 + 6-P, — 4-P'1 — 2-P'5

-3 1 3 1
Pl= —P0- —P0+ =P, — —P,
4 4 4 4



-3 1 3 1
P'l= —P0— —P0+ =Py — —P
4 4 4 = 4 “

Hermite Cubic Spline Curve

for next cubic spline segments  p"(u=1)=p"(u3=0)
6-P1 — 6P +2-P'l + 4-P'y=—6-P5 + 6-P3 — 4-P'5 — 2-P'3
P, = :1_3.]31 — i.p'l + E.PS — %.p-s P, = 13;0 - 4-;31 N ].:;';} B P;g . 4':3 ) 4'12'3
If we have m-1 segments on cubic spline defined
by Po ... Pm-1 points.
a) if the end point tangents are known

b) and the second derivatives at Po ... Pm-1 end points

are equal to o,
this curve is named as Natural Cubic Spline.




(s = 1) = (2= 0

(1= 1) = (132 0

+ 4P+ P
1 I+

(1000
1410
0141

: L0001

-1
=MGS

1000) "

1410
0141
L0 00 1)

1= 3-(P.

-1

'GCS

(15 0 0
-4 4
1 -1 4

L0 0 0

P’y

0\

-1 1

—4

15

-3 1 3 1
P'l= —.P0— —P0+ =Py — =P
4 4 4

i+1 Pi—l)

(1 0

1

= ==

m-1 )

4

0

O O = A

0

o = & = O

oS = O O O

o O O = s O

Hermite Cubic Spline Curve

0

0

o O = b= D

( P'y 3\
Py

Py

P'3
Pl

m-2

P
\ m-1)

o o= o o O

o = k= o O




Bezier Curves

A Bezier curve only interpolates the first and last

control points (p,, p,)) and the order of the polynomial
is defined by the number of control points considered,

e.qg.,

p(u) — (1—u)3p0 -I-3U(1— u)2p1 +3U2(1— u)pz + U3p3

De Casteljau

Bezier Blending
Functions

g~ L~ il -

g



Bezier Curves e
(1—u) (u) 3%

0

P P/ P> P:

b:
t 1%
b.. 3
i ; | A b;=xr (L)
Po P1 P, _ g 4
b. .
- b:
t
b;

pé pf -k
pl(u) == (1 —u)-pg + u-p] p, =c(u)
2 3
p2(uw) =po-(1-uw) +p1-2-u(l—-u)+ pg-u‘ b’ -

p2(w) = (1 —w| (1 —w-pp+u-py|+u (1 —w-py+upz]

p3(u) = (1 —11)-[(1 — 11}-[(1 —u)-po + 11-]31] +11-[(] —1)-p1 +u-pgﬂ
+ u-[{l - 11}-[(1 —u)-p] + u-pz] + 11-[(1 —u)-pa + 11-]33]]

p3(u) = (1 —11)-[(1 — 11)-[(1 —u)-po + ll-pl] +11-[(1 —u)-p1 +u-pzﬂ +u-[(1 — 11)-[(1 —u)-p1 +11-p2] + u-[(l —u)-p2 + ll-p_g:u

3 2 2 3
p(u) =po-(1—-u) +pr-3-u(l —uw)” +p2-3-u”-(1 —u) +p3-u



p(u) =(@-u)’p, +3u@—u)’p, +3u’@-u)p, +U
Cubic Bezier Curve

User specifies 4 control points Pa ..

°p,

. P4

p(u) = [H';

Curve goes through (interpolates) the ends P1 P4

Approximates the two other ones
The weights describe the influenc
of each control point

Cubic polynomial : Pt = (1-t)°
P, + 3t(1-1)?
Pa +  3t3(1-1)
] +
P1/\_/'[=1

e

Pl
P2

P4

0 0

Bezier Blending

Functions

oy, il -

. C

P3 ©




p(u) =(@-u)’p, +3ul—u)’p, +3u*@-u)p, +u’p,
Cubic Bezier Curve

Cubic polynomial : That is.
P(t) = (1-t)* PI z(t) = (1 —t)° z1+
+ 3t(1-t)> P2 3t(1 —t)° zo+
+ 3t3(1-t) P3 3t2(1 — t) z3+
*P2 + P4 3
P t T4
4 ‘
P1/\/t=-| y(t) = (l_t)d Y1+
t=0 3t(1 — t)? yat+
e Py

Verify what happens for t=o0 and t=1 t



Cubic Bezier Curve

nonconvex
polygon

4 control points
Curve passes through first & last control point

Curve is tangent at P2 to (P1-P2) and at P4 to (P4-P3)
A Bezier curve is bounded by the convex hull of its




p(u) =(@-u)’p, +3ul-u)’p, +3u’(L-u)p, +u’p,

Bezier blending functions, weights
B2

P(t) is a weighted linear combination
of the 4 control points with weights:

Ba(t)=(2-t)3 P()= (1-)* Pl
B2(t)=3t(1-1)2 + 3yl P2
B3(t)=3t2(2-t) + 3}“(1-0 P3
B4 (t)=t3 + C P4

First, P1is the most influential
point, then P2, P3, and P4 .

P2 and P3 never have full influence.
Not interpolated!




Bezier, Bernstein basis polynomials

For Bezier curves, the basis polynomials/vectors are
Bernstein polynomials

For cubic Bezier curve:

Bi(t)=(2-t)*
B2(t)=3t(z-t)?
B3(t)=3t*(2-1)
B4 (t)=t3

t

1
(careful with indices, many authors start at o)
Defined for any degree



Properties of Bernstein Polynomials

> () forall 0<r< |

Sum to 1foreveryt

called partition of unity
These two together are the
reason why Bezier curves lie
within convex hull

Bi(o) =1

Bezier curve interpolates Pa
B4(1) =1

Bezier curve interpolates P4

1

2. + B, + B + B.

- P, 090900

B, B,

B, B3




p(u) =(@1-u)’p, +3u@—u)’p, +3u’(L—-u)p, +u’p,
Bezier Curves in Bernstein Basis

e P(t) =Pa1Ba(t) + P2B2(t) + P3B3(t) + P4B4(t)

 P.are 2D points (x;, V)

e P(t)is alinear combination of the control points with
weights equal to Bernstein polynomials at t

e But at the same time, the control points (P1, P2, P3,
P4) are the “coordinates” of the curve in the
Bernstein basis

* Inthis sense, specifying a Bézier curve with control
points is exactly like specifying a 2D point with its x
and y coordinates.




Change Of BaSISI pol):{};}:(u?’ ) :21 :22 :23 =[H" woou I]Ms
. 11 912 “13
How You Get the Matrix o=/ 15 =0
M=l 3 0 0
How do we go from Bernstein basis to L 0 0 o
the canonical monomial basis 1, t, t?, t3 and back?
e With a matrix! _ z }
B1(t)=(2-t)3 (Bi(t)\ (1 =3 3 -1\ (1}
B2(t)=3t(1-t)2 B(t) 10 3 -6 3| [¢?
B3(t)=3t2(1-t) B:s(t)) \0 0 3 —3/ H)
- Bu(t 0o 0 0 1 t
B4(t)=t° \B() _ \
Expand these out Pty =3 P Bit) =Y K;) Bf__(,,)] -
and collect powers of {. =1 s B
The coetlicients are the entries o\ (o o m A,
in the matrix B! PLt) .: (um) N (.en v .u:) :; E: [*; —13

|
oY SV T

fran




Change of Basis, Other Direction

Given B1...B4, how to get back to canonical 1, t, t?, t37?
That's right, with the inverse matrix!

-
1\ /1 1 1 1\ /B
(t\ _/0 1/3 2/3 1\ (B:(t)\
t“ 10 0 1/3 1 Bs(t)
e/ \o o 0 1) \B)

The cubic basis can be extended to higher-order
polynomials. Higher- dlmen5|onal vector space, more

control points /\/



Change of Basis with matrices

Cubic polynomials form a 4D vector space.

Bernstein basis is canonical for Bezier.

Can be seen as influence function of data points

Or data points are coordlnates ofthe curve in the
Bernstein basis.
We can change between
basis with matrices.

point on curve

(2x1

vector)

9)-(

P01~ (3

L

Y1

contri

matrni
] poin

ts (

o I3 T4
Y2 Y3z Ya

\\‘1.
2 x 4)

Ik

ZP

0-3[()ae]

(1-t)°
_ 3t(1-t)?
3t3(1-t)

.

|

1 -3 3 -1
0o 3 -6 3
0 0 3 -3
0 0 0 1
B
1 -3 3 -1
0 3 6 3
0 0 3 =3
0 0 0 1



More Matrix-Vector Notation
P =3P B0 =3 |(57) B0

1=
Bernstein polynomials
(4x1 vector)

(Bi(t)

o ZE(t) _[T1 X2 X3 T4 Bg(t)
PO =) = Bs(t)
y(t) Y1 Y2 Y3 Y 3(
point on curve matrix of \B4 (t) )
(2x1 vector) control points (2 x 4)
. Bemsten :\irl_l 1IWIM:
1 -3 3 -1\ /1
P(1) — z(t)\  [(x1 x2 x3 x4\ |0 3 -6 3 t
(t) = y(t))  \wm1 y2 oy wa/ |0 O 3 -3 t*
]1-.'|I'I'I| o CUrve mainx I'lll [) {} [] 1 t:I

(2x1 vector) control points (2 x 4)



Cubic Bezier in Matrix Notation

point on curve
(2x1 vector)

Canonical
P(t) (x(t) ) E

— g (t) mononual basis
/(1 -3 3 -1\ /1)
t

(121 ro I3 .’124) 0 3 —6 3
Yyi Y2 Ys Y4

-3 1
3
“Geometry matrix” \0 0 0 1 } \t /

of control points P1..P4 Spline ma‘trlx
2 x 4) (Bernstein)




p(u) = (L -u)’py +3ul-u)’p; +3u*(L-u)p, +u’p,
Higher-Order Bézier Curves

> 4 control points ZP ol ZIK ) ]
Bernstein Polynomials as the basis functlons

For polynomial of order n, the ith basis function is

| . .
BI(t) = —— -t (1 — )"
i'(n —1)!
* Every control point affects the entire curve
* Notsimply a local effect
* More difficult to control for modeling
* You will not need this in this class




Subdivision of a Bezier Curve

Can we split a Bezier curve in the middle into two
Bezier curves?

This is useful for adding detail

It avoids using nasty higher-order curves

The resulting curves are again a cubic (Why? A cubic
intis also a cubicin 2t) t2=2t-0.5




De Casteljau Construction

e Take the middle point of each of the 3 segments
e Construct the two segments joining them

e Take the middle of those two new segments

e Jointhem

e Take the middle point P

P2
g Q- @
—O0— P72




2

Result of Splitin Middle opy o ©

The two new curves

are defined by

P1, P'1, P"1, and P

P P2, P'3, and P4 Pl
Together they exactly replicate the original curve!
Originally 4 control points, now 7 (more control)
Ref. MIT OpenCourseWare http://ocw.mit.edu6.837
Computer Graphics Fall 2012 For information about
citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms.




De Casteljau Construction

Actually works to construct a point at any t, not just 0.5
Just subdivide the segments with
ratio (1-t), t (not in the middle). 5

»

Linear combination
of basis functions.
Bernstein polynomials

U o

P& ‘

Subdivision by
de Casteljau algorithm
All linear, matrix algebra

|l F
\ 4
]

4

0 3




Cubic Bezier Curves

Four control points, Curve geometry
Cubic Bezier curve geometry

c(u) = Z p,B/ (u)

Control pomts and basis functions @
Image and properties of basis functions

| | (1-u) (u)
B:‘” (1) = T (I —u)"" u' Recursive 0 0 0 0
(ﬁ' — ?)1 f‘! Llnear pO pl pE p3

3 — (1 _ 3 . :
Bti () = (1 —u) Evaluation P}) Pi P
Bl(u)=3u(l—-u)’ 2

2 ) Py Py
B;(u)=3u"(l-u) ; (1)
. o = Clu

B;(u) = u- Po



Cubic Bezier Curve Properties

e The curve passes through the
first and the last points
(end-point interpolation).

* Linear combination of control
points and basis functions.

» Basis functions are all polynomials

1

c(u) = Z p.,B (u)

‘ 3.

e Basis functions sum to one (partition of unity) r

 All basis functions are non-negative

e Convex hull (both necessary and sufficient)

* Predictability



e Curve Subdivision

5

de Casteljau’s Algorithm -

A

|III \

Stepwise
Computation

F i
4
Py
"
.
| |
L1
L
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. * | |
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Tangent, Normal, Curvature of a Curve

Tangent _

Bi-normal .J ¢ 3

— Curvature
x Sphere



Continuity

Measures the degree of "smoothness” of a curve.
C° continuous — position continuous /\
C* continuous — slope continuous /\
C2 continuous — curvature continuous /K\
Ctis the minimum acceptable curve for engineering design.
Cubic polynomial is the lowest-degree polynomial that can

guarantee the generation of C_, C_, and C, curves.
Higher order curves tend to oscillate about control points.



Continuity algorithm

Bezier curves can represent complex curves by
increasing the degree and thus the number of control
points.

Alternatively, complex curves can be represented
using composite curves, which can be formed by
joining several Bezier curves end to end.

If this method is adopted, the continuity between
consecutive curves must be addressed.



Degree Elevation of a Curve

a
3

Adding a control point N n-i
B '(t)=| . [t (1-t
elevates degree by 1. (0 [Ij 4=

p® = ! bi_1+(1— ' jbi for i =0,K ,n+1
6 (n+1) (n+1)
b,

New vertices b\; obtained
from old polygon by by
piecewise linear interpolation
at parameter values i/(n+1).

b b[}} b,

5 |

Degree elevation: both polygons
define the same (degree three) curve.

Degree elevation: a sequence of polygons approaching
the curve that is defined by each of them.



Evaluation and subdivision algorlthm

A Bezier curve can be evaluated at a spec;lflc parameter
value to and the curve can be split at that value using
the de Casteljau algorithm

b¥(tg) = (1 — to)by 1—|-f0bf_1

Symmetry property: If we renumber the control

ointsasb”..=b. ,
P T ZbB,n Zme



N %

» ” ~ - - - -
Po_ 7 c,(u) & ” ST
~ ”
o c,u)~ P2 _ -7 Cslu) C4(u) )

Piecewise Polynomial Splines

Piecewise, low degree polynomial curves for different parts
of the curve with continuous joints

x4 )
C(u)=1y (2 ) | = Z C.(u) where
\ =z (u) ) | E C.(u f wuelu..u.
C.lu)= l _ ) . Lot 11
Advantages I 0 otherwise

* Low-degree, Flexible, Rich representation

* Geometrically meaning coefficients

e Local effects

 Interactive sculpting capabilities

Disadvantages:

 How to ensure smoothness at the joints (continuity)



Bezier curves — Continuity

B3, B4/C1, C2 must lie in straight line

B, B, P

Defining \
B, polygon _\ B, \




Composite Bezier Curves
P

Po q- s

Joining adjacent curve segments |
is an alternative to degree elevation.

CoIIinearityofcubicBezier/ "
Pos U -

control points produces
G?* continuity at join point:

Evaluate at u=o0 and u=1 to show b
tangents related to first and last "o Composite Bézier Curves.
control polygon line segment. P (0)=3(p;—P,) P (1) =3(p;—P,)

For G2 continuity at join point, 5 vertices must be coplanar.



Curves

Both Bezier curves and B-splines are polynomial
parametric curves. Polynomial parametric forms can
not represent some simple analytic curves such as
circles, conics (ellipses, parabolas, and hyperbolas).

Composite Curves by using Continuity




Interpolation using Bezier curve

Smoothly interpolate an ordered list of points by many
Bezier curves. To interpolate points ®, first construct
temporary points O, the two sets of points induce 4

quadric Bezier curves that meet smoothly at the points
to be interpolated. Problem: How to determine these

temporary points O? By what criteria? Is quadric Bezier

enough? Q..
# 4 X "
---=Q £ —
- ¥ - -
! _f_r_..rff Ty
i

-
-
-
-




Bezier Splines

Bezier curves of degree n

C(”): Z pf B?.”(”) BI"(H):(}?)(l_”)n—ruz

i=0 I
. . n n!
Control points and basis ( : J = T
. . n — 4 8.
functions (Bernstein - : ’
. n 1. n-—i ]
polynomials of degree n): B (1) = ( / 7 (1—u)""u
n—1).1.

Recursive Computation: I’? =p,;,i=0,12,...n
p/ =0-u)p/ " +up/;
c(u)=p,(u)



Recursive Computation

N+1 levels

p’=p..i=0,1,2,. n
p/ =(1-u)p/" +up/]
c(u) =p,(u)

7 (u )
0
pH
p ln—l
" oop
= ¢ (u )



Properties of Bezier Splines

* Basis functions are non-negative

 The summation of all basis functions is unity

e End-pointinterpolation ¢(0)=p, , ¢(l)=p,

e Binomial expansion theorem

e Convex hull: the curve is bounded by the convex hull
defined by control points

e Recursive subdivision (1= u)+ )" = Z { n
and evaluation | e L d

 Symmetry: c(u) and c(1-u) are defined by the same
set of points, but different ordering

u'(1—u)""

/



Bezier Curve Rendering

e Use its control polygon to approximate the curve

* Recursive subdivision till the tolerance is satisfied

e Algorithm go here

e |f the current control polygon is flat (with tolerance),
then output the line segments, else subdivide the
curve at u=0.5

* Compute control points for the left half and the right
half, respectively

* Recursively call the same procedure for the left one
and the right one



Points and Curves (cont.)

P;
— -.._,“
P;,J.«~~'”
4 .
l.". ’ — ‘
p (0)=3(p, - p;/‘ P(1)=3(p;-p,)
Po

The shape of the curve can be changed by emphasizing certain
desired points by creating pseudo-points coinciding at the same

location: By By
.
P, e Eea
. \‘u\ P
P



Rational Bezier curve

Effect of the weights of
the control points
of a Rational Bezier curve

/ A curve held by springs




Bezier curves by Bernstein polynomials
n=3 i=0,...,n binomial const. C(n,i)=n!/(i!(n-i)!)

B(i,n,u) = C(n,i) U' (2-u)"" Bezier weights

n!

I Lilt) = — e i=0..... n

1

l(n —1)! N
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The de Casteljau algorithm

= 1-t
b.
: bi=r(t)
t 1-t
b’ " t
3
1-t
-
b:
t

b’



Properties of the Berntein polynomials

e Non-negativity. B; ,(t) > 0, Dstsl, ¢t=0...,8.
e Partition of unity: > .. o Bin(t) = (1 —t +t)"™ = 1 (by the binomial
theorem).

e Symmetry:

e Recursion: in(t) = (1 —1)Biy—1(t) +tBi—_1 n—1(t) with B; ,(t) = 0 for
: < 0, z>na11dB0 (£} =1 .
e Linear precision:

which implies that the monomial ¢ can be expressed as the weighted sum



Derivative of a Bernstein polynomial

de’,n(t)
dt

— ‘77..[Bi__1’n_.1(f) = Bz’,n-—l(f)]

where B-—l,n—l(f) = Bn,n—l(t) =)

Degree elevation: The basis functions of degree n can be expressed in
terms of those of degree n + 1 as:

i 1+ 1
Binli)= |1 — B; t B t),
in(t) ( - 1) in+1(f) + ] i+1,nt+1(t)
where + = 0.,1.---.n. Or more generally in terms of basis functions of

degree n + 1 as:

gngelt); $=001,=,0.



Derivative of a Bezier Curve

d{z B:’,ﬂ {H}‘E )
1=l

=1

— ﬂz Biln—l (M}{PH-I Fx ‘P})
di-{ i={

The right hand is a Bezier curve of degree (n-1), if you take
n(P,,,-P;) as a new control point. At u=o and u=1, the two ends

of the Bezier curve, their tangents are n(P,-P_ ) and n(P -P,,_,)

res&ectlvely. N

(1,2) 4.2) 3%(1,2)=(3,6)

11

3%(3,0)=(9,0)

>
(0,0) (6,0)

u

3*(2,-2)=(6,-6)



-

Evaluation of Bezier Curves

To evaluate a point at 2 = u, on a Bezier curve of degree n

Pu) = i CI] ti(1-1)~1 P,

i=0

Number of multiplications and divisions:

n
=" . (a-D)*@-1)+1=2n-1
i i'"(n—1)!
(1 -24) ! : n-l
Total : (Bn-2+2)*n=3n* (32 if for cubic n=3)

To draw the Bezier curve with 100 points
Number of multiplications and divisions:

3n?*¥100 = 300n* (3200 i1f for cubic n=3)



De Casteljau Algorithm

An example of cubic Bezier curve (n=3):

Mumber of multiplications of a single point:
1 tteration:  2*3 =6
ord jteration;  2%2 =4
3 jteration: 2% =2
Total: 12 {ws. 32 of naive way)

For 100 points; 12*100 = 1200

Mumber of multiplications of a single point:
1* tteration:  2%n

2 jteration:  2%(n-1)

3 jteration:  2%(n-2)

nt iteration: 2
Total: 2*(1+2+. . +n) = oln+1) (ve. 3000° of naive way)

Save 2/3 time compared to the naive way of evaluation
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Bezier Blending Functions f;(u) = B;,(u)

The blending function
comesponding to agiven
pont influences the curve
maxamally near that pont.

The Blend for each pont is
active along the entire length

The sum of blends anywhere
an the curve is 100%.

The end ponts influence by
100% alone in their
respective ends, i.e., the

curve interpolated the end
ponis.

B-spline blending functions have
local control, i.e., they donot
influence the whole interval.

This makes it easier to control the
curve In:u::aI|I3,r baﬂajsg maovement of
cne control point only propagates to
the neighbaurhood of the pggnt and
not to the whole curve.



Addition and subtraction

If the degrees of the two polynomials are the same, i.e.
m =n, we simply add or subtract the coefficients

m

f&)+9(t) =D (f" £ gi")Bim(t)

1=0

If m > n, we need to first degree elevate g(t), m-n times
and then add or subtract the coefficients

( - (n)(mn) \

m min(n.1) . . .

' : g L —] n \
f+ety=>"|mrm+ Y LA 7 gn | Bim(t)

- | , m -
=0 \ j=mazx(D,2—m+n) ) }
l




Multiplication

Multiplication of two polynomials of degree m and n
yields a degree m+n polynomial

| m ) n
m-+n man{m,t) . ’ "
J . : _J, fm.n B +
J 5 .‘;’;‘_‘;‘ 1, m—+n ( )

ft)g(t) =) Y Lo .
1=0 j=mazx(0,2—n) ( e + " )

l

Geometry invariance property: Partition of unity
property of the Bernstein polynomial assures the

invariance of the shape of the Bezier curve under
translation and rotation of its control points.



End points geometric property:

The first and last control points are the endpoints of
the curve. In other words, b, = r(o) and b, = r(1).
The curve is tangent to the control polygon at the
endpoints. This can be easily observed by taking the
first derivative of a Bezier curve

. 1—1
, dr(t) - | |
1‘(” B ‘ =N ])z'_;. — b,‘)Br‘ —1(1), U<it< ]
Xz, g7 E “( 1 n—1(1) <t <
1=L
In particular we have r(0) = n(b;y — bg) and r(1) = n(b,, — b,—1).

Equation can be simplified by setting Ab; = b;+; — b;:

n—1

r(t) = n Z Ab;B;.._4(t), 0<t<1.

1 =0



Bezier curves

* The order of the degree of curve is variable and related
to the number of points defining it. n+1 points define an
n'th degree curve which permit higher-order continuity.

e Control points form the vertices of what is called
characteristic polygon. Curve lies entirely within the
convex hull defined by the polygon vertices.

e Only the first and the last control points or vertices of
the polygon actually lie on the curve. The other vertices
define the order, derivatives, and the shape of the curve.

e The curveis also always tangent to the first and last
polygon segments. In addition, the curve shape tends
to follow the polygon shape.



Continuity conditions

One set of continuity conditions are the geometric
continuity conditions, designated by the letter G with
an integer exponent.

Position continuity, or G° continuity, requires the
endpoints of the two curves to coincide.

The superscripts denote the first and second curves.



G* tangent continuity

Tangent continuity, or G* continuity, requires G°
continuity and in addition the tangents of the curves to
be in the same direction,

(1) = ayt °(0) = aot

where t is the common unit tangent vector and a,;, o,
are the magnitude of vectors. G* continuity is
important in minimizing stress concentrations in
physical solids loaded with external forces and in
helping prevent flow separation in fluids.



G2 Curvature continuity

Curvature continuity, or G2 continuity, requires G*
continuity and in addition the center of curvature to
move continuously past the connection point.

2

i (0) = (—) #9(1) + pir®(1)
X1

where p is an arbitrary constant. G2 continuity is
important for aesthetic reasons and also for helping
prevent fluid flow separation.



CK continuity (all lower derivatives)

More stringent continuity conditions are the
parametric continuity conditions, where Ck continuity
requires the kth derivative (and all lower derivatives) of
each curve to be equal at the joining point. In other
WOI’dS, (]kl‘”('ll_} B (]kl‘b(("))

dtk dtk A B
at g
Figure illustrates the e
connection of two . Pni N
cubic Bezier curve b,.. " M NG
segmentsatt=t, / e

b3 d 9 T



Examples of Bezier Curves

Pl et 2
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Influence of point position

Py

p3 Po Fa
Pull by coincident control Por Py
points Closed Bezier curve
Py p
P, Py 2
o o
P, P,
O
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O
Po 7
o= Sy

o}

Py Py Pq P,




Quadratic Bezier curves

A quadratic Bézier curve is the path traced by the function
B(f), given points P,, P,, and P,,

which can be interpreted as the linear interpolant of
corresponding points on the linear Bézier curves from P,
to P, and from P, to P, respectively. Rearranging the
preceding equation yields:

B(t) = (1—t)°Po + 2(1 — t)tP, + t°P, , t € [0, 1].

OP1 P1

/Q,

0 t=.25 ] Ps t=0 oP,



Cubic Bezier curves

Writing B, p; pi(f) for the quadratic Bezier curve defined by
points P;, P;, and P,, the cubic Beézier curve can be defined as
a linear combination of two quadratic Bézier curves:

B(t) = (1- t)BPo,Pl,PQ(t) + tBP1QP2,P3(t) , L € [0, 1]-
The explicit form of the curve is:

B(t) = (1-1)°Po + 3(1 —t)*tP; + 3(1 — )t°Py + t°P3 , t € [0, 1]

For some choices of P, and P, the curve may intersect
itself, or contain a cusp.




Quartic Bezier Curve

For fourth-order curves one can construct intermediate points Q,, Q,,
Q, & Q; that describe linear Bézier curves, points R;, R; & R, that
describe quadratic Bézier curves, and points S, & S, that describe

cubic Bézier curves:

PR \> P, TP P,
oP,
Po t=.25 OP; PO t=0 0P3
Fifth Order Bezier Curve A
For fifth-order curves, one can \

construct similar intermediate points. /| \



Bezier curve defined by 4 points

X
];_E characteristic P,
» “~.__ Ppolygon SR,
'l “‘-.. *I&HQ e
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Pull by
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Py Py Py P;

Closed Bezier curve Influence of point position



A b’(;;:ic'r Blending
Why and What To Do? oA
L / at \“‘i \
The culprit is the Bezier curve’s blending functions P

f.(u) =B, (u): because B. (u)is non-zero in the entire 4
parameter domain [o,1], if the control point P, moves, .
it will also affect the entire curve. ‘

What we need is some blending function f.(u) such that 'L-"
1. It is non-zero over only a limited portion of the parameter
interval of the entire curve, and this limited portion is
different for each blending function. (Therefore, when P,
moves, it only affects a limited portion of the curve.)

2. It is independent of the number of control pomts n.
Answer: | /
B-Splines




Let’'s Search for a Good Blending Function f,(u)
P(u)=f (u)P,+f (u)P +f (UP +..+f (UP, (v, .<u<u_.)
Two properties that f.(u) must 3

have: (1) f(u)=oforalli and (Z)igjofi(u):lforanqu[O,l]: 1 -

Step 1. Allocate an interval of u for each fi(u),

say we let u,.=0, u,,,=n+1, and interval [i,i+1] is for f,(u). 4 )
Step 2. Look at the simplest case of f,(u), i.e., f(u) is of degree 0, T

a constant. Let this special blending function be called N;,(u) | 5

(where 1 indicates the order of f,(u)). LV NN
Step 3. Look at the 2" simplest case of f(u), i.e., f(u) is linear; /\

it is now denoted as N, ,(u). st

Step 4. One more step further, f(u) = N, 5(u), i.e., quadratic function of u.

Step 5. Finally, how about fi(u) is of an arbitrary degree k-1 of u, i.e.,
N (U)? | &




B-Spline p(u) =Zn:Ni,K(u)pi v

Geometric form (non-uniform,

non-rational case), G T |
= niform B-splin is function
Where K ContrOIS degree ; Ni’K (U) _1 - c:z theBun?tiinTebr::lior Kc:;asnd K=4.
(K -1) Of basis functions: Convex combination, so B-spline curve points all lie

within convex hull of control polygon.

(U—t)N; ,(u) N (ti —WN; o (U)
1:i+k—1 _ti ti+k _ti+1

t. are n+1+K knot values that relate u to the control points.

Uniform case: space knots at equal intervals of u. Repeated

knots move curve closer to control points. Cubic B- spllnes can

provide C2 continuity at curve segment join points. Zhu N, « (U)p,

Rational form (NURBS) where h; are weights. () = =
ZhiNi,K (u)
i=0

N (u)=1if t,<u<t,
N;,(u)=0 otherwise N;, (u)=




.. . . !
Non-periodic and uniform E-Spline il

imven {Fy, Py, .., Pu}. a men-periadic and unifarm B-spline curve 1s constructed [ —
according to the following four steps. A iy
I[_ I—‘\';.
o Step 1. Select an integer k, called the emder of the BE-spline curve, usually k=4 I L I__J
‘ Ny o i8]
o  Step 2. Define (n+k +1) numbers tg to ty, called Arnof values: b
0 1 -
0 0<i<k A ' '
HE=91—k+1 k=i=n
: Tz
H—k+2 nei=ntk A
-
e  Step 3. Cotmpute the ol blending function M (u) recursively: NI (U)I N ]N ©
1 AR o \
Moilw = O /SN
0] oifherwise I o1 2 43 v
10—, (e t.op — M, 1 O T
N],k(u:l e I: !:I !-.-E-—].( :I + I:!+R- :I !+1,-‘:-—1{ :I Nl_lig{u) NIrB{U) NI_’LB(u)
AT R # Lk ~ L

o Gtep 4. Put together:

Pl = E, II'-'E‘,;; (z) By (1 St Styy)
i=l




Properties of B-Splhine

e The order k detertnines the degree of the blending functions Ay (u): the highest
degree p of P 1n M pu) 12 p =k-1, independent of the number of control points n.

o Allthe propetties enjoved by Bezier curves. For example, the convex hull

property (>N, (u) =1foranyu (¢, =u =£,,,))
=0

o The derivative of a B-spline 1z still a B-spline

AT NL@E)
= = E Ny @0,
lffﬂ iull
where
£ —-F
= k_ i 1 i+l i
Q [ :I Lk — i

® The most important feature of B-spline only

Nix(u) is non-zero only in the interval [z, =u =z, ;).

Change of P; therefore only affects that portion of curve.




N|-1,3'[u:|' Nuj':'-'} NHL;{U}

1_'_%

B-Spllne Curve i i+1  i+2 43 U
Similar to Bezier curves, the B-spline curve defined by n + 1 control points P,

First, the parameter k controls the degree (k — 1) of the resulting B-spline
curve and is usually independent of the number of control points except as
restricted as shown below. Second, the maximum limit of the parameter u is no

longer unity as it was so chosen arbitrarily for Bezier curves. The B-spline func-
tions have the following properties:

P(u) = ) P;N, (w), O<u<u,, (5.103) s ; i
i=0 —
Partition of unity: Y N; () =1 b~
i=0 2T
Positivity: N; (u)=0 X
Local support: N; (u)=0 if ué [u;, Wiprs1ld L
Continuity: N; «(u) is (k — 2) times continuously /12\3

differentiable



B-Spline Curve

The first property ensures that the relationship between the curve and its
defining control points is invariant under affine transformations. The second
property guarantees that the curve segment lies completely within the convex hull
of P;. The third property indicates that each segment of a B-spline curve is influ-
enced by only k control points or each control point affects only k curve seg-
ments. It is useful to notice that the Bernstein polynomial, B; ,(u), has the same
first two properties mentioned above.

The B-spline function also has the property of recursion which is defined as

N: ) = (u — u) Ni, —1(1) - + (s — 1) Nit1.x-1(w) (5.104)

i+k—1 — U; Ui — Uiy

where N; ;=

L

{1’ U S US Ui (5.105)

0, otherwise



Ni k- 1(w) Nity x—1(0)
N, = (u — u; : - :
) = (u—u) Uirrr — th + (U4 — u) Uirr — Uie s (5.104)
B-Spline Curve No={y Susue (5109
0, otherwise

Choose 0/0 = 0 1if the denominators in Eq. (5.104) become zero. Equation (5.105)
shows that N; , is a unit step function.

Because N; ; is constant for k = 1, a general value of k produces a poly-
nomial in u of degree (k — 1) [see Eq. (5.104)] and therefore a curve of order k
and degree (k — 1). The u; are called parametric knots or knot values. These
values form a sequence of nondecreasing integers called the knot vector. The
values of the u; depend on whether the B-spline curve is an open (nonperiodic) or
closed (periodic) curve. For an open curve, they are given by

(0, j<k
uj=94j—k+1, k<j<n (5.106)
n—k+ 2, j>n

where 0<j<n+k (5.107)
and the range of u is
O<u<n—k+2 (5.108)



~

0, j<k where 0<j<n+k (5.107)

uj=\j—k+1, k<j<n (5106 and the range of u is

B-Sp

n—k+2, j>n O<u<n—k+2 (5.108)

INE CUI’Ve P(u) = iPiNi.k(u)s O<u<up,

i=0

Relation (5.107) shows that (n + k + 1) knots are needed to create a (k — 1)
degree curve defined by (n + 1) control points. These knots are evenly spaced
over the range of u with unit separation (Au = 1) between noncoincident knots.
Multiple (coincident) knots for certain values of ¥ may exist.

FIGURE 5-50 g
Local control of g
B-spline curves.
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where 0<j<n+k (5.107)
and the range of u is
O<u<sn—-—k+2 (5.108)

B-Spline Curve

While the degree of the resulting B-spline curve is controlled by k, the range
of the parameter u as given by Eq. (5.108) implies that there is a limit on k that is
determined by the number of the given control points. This limit is found by
requiring the upper bound in Eq. (5.108) to be greater than the lower bound for
the u range to be valid, that is,

n—k+2>0 (5.109)

This relation shows that a minimum of two, three, and four control points are
required to define a linear, quadratic, and cubic B-spline curve respectively.

P Py
P =" AN
+—
/
/
/
P[l
k = 6 (quintic) Y P,
N f k = 4 (cubic) PR

o — k = 3 (quadratic) —
* P[ '--.._‘:;
5

k = 2 (linear)

FIGURE 5-51 Effect of the degree of B-spline curve on its shape.



B-Spline Curve

P
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B-Spline Curve

P, S
P.; PS
FIGURE 5-53
— One point at P;

Multiple control point
pB i P —— Two points at P;
~SPNINR CATVOS. —————— Three points at P3



B-Splin

The characteristics of B-spline curves that are useful in design can be sum-

marized as follows:

e 1. The local control of the curve can be achieved by changing the position of a

control point(s), using multiple control points by placing several points at the
same location, or by choosing a different degree (k — 1). As mentioned earlier,
changing one control point affects only k segments. Figure 5-50 shows the
local control for a cubic B-spline curve by moving P, to P¥ and P%¥*. The four
curve segments surrounding P change only.

. A nonperiodic B-spline curve passes through the first and last control points

P, and P,., and is tangent to the first (P, — P,) and last (P,,, — P,)

segments of the control polygon, similar to the Bezier curve, as shown in
Fig. 5-50.

. Increasing the degree of the curve tightens it. In general, the less the degree,

the closer the curve gets to the control points, as shown in Fig. 5-51. When
k = 1, a zero-degree curve results. The curve then becomes the control points
themselves. When k = 2, the curve becomes the polygon segments themselves.

. A second-degree curve is always tangent to the midpoints of all the internal

polygon segments (see Fig. 5-51). This is not the case for other degrees.

5. If k equals the number of control points (n + 1), then the resulting B-spline

curve becomes a Bezier curve (see Fig. 5-52). In this case the range of u
becomes zero to one [see Eq. (5.108)] as expected.

. Multiple control points induce regions of high curvature of a B-spline curve.

This is useful when creating sharp corners in the curve (see Fig. 5-53). This
effect is equivalent to saying that the curve is pulled more towards a control
point by increasing its multiplicity.

. Increasing the degree of the curve makes it more difficult to control and to

calculate accurately. Therefore, a cubic B-spline is sufficient for a large number
of applications.



- e e where 0<j<n+k (5107

basis functions.

I
(a) Linear function i

(k=2) :
I |
0 05 1 13 2

Closed B-Spline Curve

Thus far, open or nonperiodic B-spline curves have been discussed. The
same theory can be extended to cover closed or periodic B-spline curves. The
only difference between open and closed curves is in the choice of the knots and
the basic functions. Equations (5.106) to (5.108) determine the knots and the
spacing between them for open curves. Closed curves utilize periodic B-spline
functions as their basis with knots at the integers. These basis functions are cyclic
translates of a single canonical function with a period (interval) of k for support.
For example, for a closed B-spline curve of order 2 (k = 2) or a degree 1 (k — 1),
the basis function is linear, has a nonzero value in the interval (0, 2) only, and has
a maximum value of one at u = 1, as shown in Fig. 5-54. The knot vector in this
case is [0 1 2]. Quadratic and cubic closed curves have quadratic and cubic
basis functions with intervals of (0, 3) and (0, 4) and knot vectors of [0 1 2 3]
and[0 1 2 3 4]respectively.

The closed B-spline curve of degree (k — 1) or order k defined by (n + 1)
control points is given by Eq. (5.103) as the open curve. However, for closed
curves Egs. (5.104) to (5.108) become

and the range of u is
O<usn—k+2 (5.108)




N {1, U, <u<u,, 0, j<k where 0<j<n+k (5.107)
(1

10, otherwise u;=4j—k+1, k<j<n and the range of uis
(5.105) n—k+2  j>n O<u<n—k+2 (5.108)
Closed B-Spline Curve ru=3env.w osusu. 103
i=0
N; - (u N, _
Now) = — ) k=t gy Nornmi®
Uipg—1 — Y Uipk — Uit

The closed B-spline curve of degree (k — 1) or order k defined by (n + 1)
control points is given by Eq. (5.103) as the open curve. However, for closed
curves Egs. (5.104) to (5.108) become

N ) = No xl(u—i+n+1)mod (n+1) (5110

u; = j, 0<j<n+1 (5.111)
0<j<n+1 (5.112)
and the range of u is
O<u<n+1 (5.113)
The mod (n + 1) in Eq. (5.110) is For example, 3.5 mod 6 = 3.5, 6 mod 6 = 0,

and 7 mod 6 = 1. The mod function

the modulo function. It is defined as
enables the periodic (cyclic) translation

&A’ A<n [mod (n + 1)] of the canonical basis func-
A mod n =10, A=n (5.114) tion Ng . No , is the same as for open
| remainder of A/n, A >n curves and can be calculated using Egs.

(5.104) and (5.105).



Clgsed B-Spline Curve

! v FIGURE 5-54
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An open B-spline curve
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Closed B-Spline Curve

Like open curves, closed B-spline curves enjoy the properties of partition of
unity, positivity, local support, and continuity. They also share the same charac-
teristics of the open curves except that they do not pass through the first and last
control points and therefore are not tangent to the first and last segments of the
control polygon. In representing closed curves, closed polygons are used where
the first and last control points are connected by a polygon segment. It should be
noticed that a closed B-spline curve can not be generated by simply using an
open curve with the first and last control points being the same (coincident). The
resulting curve is only C° continuous, as shown in Fig. 5-55. Only if the first and
last segments of the polygon are colinear does a C* continuous curve result as in
a Bezier curve.

Based on the above theory, the database of a B-spline curve includes the
type of curve (open or closed), its order k or degree (k — 1), and the coordinates
of the control points defining its polygon stored in the same order as input by the
user. Other information such as layer, color, name, font, and line width of the
curve may be stored.



given by

=[2 2 07, P,=[2 3 0]%, P,=[3 3 0],

Example 5.19. The coordinates of four control points relative to a current WCS are

and P,=[3 2 0]

Find the equation of the resulting Bezier curve. Also find points on the curve for

u=0,%1% 2 and 1.

Solution. Equation (5.91) gives

Pw)=PyBy ;+PB, ;+P,B, ;+ P, B, ;,

Using Egs. (5.92) and (5.93), the above equation becomes

P(u) = Po(l — 1)® + 3P, u(l — u)? + 3P, u*(l — u) + Pyu’,

Substituting the u values into this equation gives

PO)=P,=[2 2 0]7

1 27 27 9 1

o) = —P.=1[2156 2563 Q17
P(4) 64P° 64P+ P2+64 s=1[ ]

1 1 3 3 1
P(5)=§P0+§PI+§P2+§P3=[2.5 2.75 O]T

3 1 9 27

)= _— — =[2844 2563 017
P(4) 64P°+64P P2+64P3 [ ]

P()=P,=[3 2 0]7

3
Observe that y, B; 5 is always equal to unity
i=0

for any u value. Figure 5-49 shows the curve and the points.

O0<ux<l

u=2~0

L . . S — — ——— —

u=

FIGURE 5-49
Bezier curve
and generated points.

O<u<l1

1 —
3 u=j

=1



Example 5.20. A cubic spline curve is defined by the equation
Pu=Cyu’ +C,u* +Ciu+Cy, 0<uxl (5.100)

where C,, C,, C,, and C,, are the polynomial coefficients [see Eq. (5.76)]. Assuming
these coefficients are known, find the four control points that define an identical
Bezier curve.

Solution. The Bezier equation 1s
Puy=PyBy, 3 +PB; ;+P,B, 3 +P3B; , (5.101)
where
Bys=1—3u+3u’—u® B, ;=23u—6u’+3u
B, 3 =3u?* -3’ By =11’
Substituting all these functions into Eq. (5.101) and rearranging, we obtain
P(u) = (=P, + 3P, — 3P, + Py)u® + (3P, — 6P, + 3P )u’ + (=3P, + 3P )u + P,

Comparing the coefficients of (5.102)

Egs. (5.100) and (5.102) gives
P,=C,

P,=1C, +C,

P, = $(C, + 2C, + 3C,)
P,=C;+C,+C,+C,



Example 5.21. Find the equation of a cubic B-spline curve defined by the same
control points as in Example 5.19. How does the curve compare with the Bezier
curve?

Solution. This cubic spline has k = 4 and n = 3. Eight knots are needed to calculate
the B-spline functions. Equation (5.106) gives the knot vector
(up u, u, u; wu, us ug u;] as [0 0 0 0 1 1 1 1]
The range of u [Eq. (5.108)] is 0 < u < 1. Equation (5.103) gives
P() =PoNo o+ P.N, o + PN, o+ P3N, O<u<l (5115

To calculate the above B-spline functions, use Egs. (5.104) and (5.105) together with
the knot vector as follows:

1, u=>0
0, elsewhere

1, O<u<l1
N3,1={

No,l"—"Nl.lﬁNz.xﬂ{

0, elsewhere
1, u=1
a1 51 &1 {0, elsewhere
N uN (—u)N
Na o= (u— . . 1,1 0.1 L1_ g
0,2 = (u— up) — o+(u2 m)uz__u1 3 5
N N ulN —u)N
Ny2=@u—u) 1 + (U3 — u) A1 L1, (=¥ 21 _0
U —uy 3~ Uz 0 0
N uN 1 —u)N
Ny o= (u—uy) 2L 4 (g —u)—2 = 21 { )31—(1 u)N; ,
ua_ 2 u4-—u3 0 1
1 —-uN
N p=(u— us) —2—+ (45 — u) —=—=uN; , +£—-——-—-—--)—--&—1———uN_q,_l

Uy — Uy Us — U, 0



'[1 —u)Ns

=(u—u +u—u {u-+1] =0
Nga2=( ) ur — (ug — u) 5,—u5 )
N, 1 (u—1)Ns , (1 —u)Ng,
Ns.z"'["—“s)uﬁ_u!‘l‘{“‘r “]“T_uﬁ“‘ 0 + 0 0
Ny, 0 0 _
Nn.:"{“—“u)uz_uﬂ*}'(“:—'“)u:_ul “D"": u]'o—
Ny, N, Ny, (I—=uN,, 2
=(u— - Ly b = (1 — u)*N
Niyas=(u ul}“:"‘“1+(u‘ “)u‘_ﬂz u 0 + 1 ( u)y*Nsy 4
N, 2 _
Njya=(u—u) + (us — u) =uN, ; + (1 —u)Ny ; =2u(l —u)N, ,
4 — Uz Us = Uy
N, Ne s
Ns.:__'["_us}usii;-'-{“ﬁ_“)uﬁ—;:uz”a.l""[1—“] == = 1N, 4
= (u— 2 - = (u— =0
Nys=(u uy) uﬁ_u4+{“1 u) Uy — Uy (u—1 0
N N
No, s = (u—up) 03 '5'{“4““]”’?‘&:{1—“}31”3.1
3 — Hp Uy — Uy
Ny s N, 5 2
= —u) —23 = 3u(1 — uPN
N, (u — uy) ‘_u1+[u5 u}us—uz u( u)*N; 4
Nu—{u—uz} +(u6—u} Na.s = 3u3(1 — u)N, , This equation is the same as the one for
Ye— s the Bezier curve in Example 5.19. Thus the
Ny o= (u—uy) 2+ (uy — u) Nas =N, , cubic B-spline curve defined by four control
e = 15 points is identical to the cubic Bezier
Substituting N; , into Eq. (5.115) gives 0<u<l

curve defined by the same points. This fact
P(u) = [Po(1 — u)® + 3P,u(l — u)* + 3P, u?(1 — u) + Py u’IN, , can be generalized for a (k — 1)-degree
Substituting N , into this equation gives the curve equation as curve as mentioned earlier.



B-Spline Curve

Substituting N; , into Eq. (5.115) gives
P(u) = [Py(l — u)® + 3P, u(l — u)* + 3P, u*(1 —u) + P3u?IN; ,, O<u<l
Substituting N , into this equation gives the curve equation as

Pu) = Po(1 —u)® + 3P, u(l — u)* + 3P,u*(l —w) + Py, 0O0<u<l

This equation is the same as the one for the Bezier curve in Example 5.19. Thus the
cubic B-spline curve defined by four control points is identical to the cubic Bezier
curve defined by the same points. This fact can be generalized for a (k — 1)-degree
curve as mentioned earlier.

There are two observations that are worth mentioning here. First, the sum
of the two subscripts (i, k) of any B-spline function N; , cannot exceed (n + k).
This gives a control on how far to go to calculate N; .. In this example six
functions of N, ,, five of N; ,, and four of N; ; were needed such that (6 + 1) for
the first, (5 + 2) for the second, and (4 + 3) for the last are always equal to 7
(n + k). Second, whenever the limits of u for any N, , are equal, the u range
becomes one point.



Example 5.22. Find the equation of a closed (periodic) B-spline curve defined by
four control points. B

Tl
Solution. This closed cubic spline has k = 4, n = 3. Using Eqgs. (5.111) to (5.113), the
knot vector [u, u, u, u; wug]istheintegers[0 1 2 3 4] and the range of
uis 0 < u < 4. Equation (5.103) gives the curve equation as

Pu)=PyNo 4+ PN, s +P;N, 4 + P3N, 4,

0<u<4 (5116)

To calculate the above B-spline functions, use Eq. (5.110) to obtain

Ny, 4(u) = No, 4((u + 4) mod 4)
Ny, 4(u) = No 4((u + 3) mod 4)
N3, 4(u) = Ny, 4((u + 2) mod 4)
Nj i) = No 4((u + 1) mod 4)

In the above equations, N, , on the right-hand side is the function for the open
curve and on the left-hand side is the periodic function for the closed curve. Substi-
tuting these equations into Eq. (5.116) we get

P(u) = Py No, 4((u + 4) mod 4) + P N, 4((u + 3) mod 4)
+ P, N, o((u +2) mod 4) + P, N, (4 + 1) mod 4),

O0<u<4 (5117)

In Eq. (5.117), the function N, 4 has various arguments, which can be found if
specific values of u are used. To find N, ., similar calculations to the previous
example 5.21 are performed using the above knot vector as follows:

N = 1, D<su<l
%1710, elsewhere
N 1, 1<u<?
L1770, elsewhere
N. .= 1, 2<u<3
2170, elsewhere
N.  — 1, I<u<4
1700,  elsewhere



N N
No, 2= (u — tg) —— + (u, — ) —=—=uN, | + 2 —u)N, ,

Uy — U U —uy

N N
Niz=@—u)—=—4(uy—u) —=—=@u— )N, ; + 3—uN, ,

uz_ul u3_u2

N N
N2-2=(u_u2)u3i':42+(u4_u)u4—3-.:‘3=(u_2)NZ.1+(4-‘u)N3.1

NOZ le 1 1
Nos=u—u = + (u; — =—==uN;y , +=(3—uN
0.3 = (u O)uz“‘uo (us u]“a—‘ﬁ 2" 0,2 2( ulNy,,

= 3u*Ny , + 3[u — u) + (3 — u)u — 1)IJN, | + 33 — u)®N, ,

N N
L2 4y — 1) 2,2
Uy Uy — Uy

1 1
Nys=@u—uy) =§(u—l)N1.2+5(4—u)N2.2

us""
=3 — 1Ny + 3[w— 13 —u) + @ — 2@ —wIN,, , + 34 — u)’N;

Nl.3 1

' 1
NO.3 ='3'uhro.3+'§(4—u)N1_3

+ Uy, —u

= (N, 1 + [WP2 — ) + u@ — wu — 1) + (4 —w)u — 1)’IN,
+[u(3 — u)? + (4 —ufu— B — ) + (4 — )’ u — 2)IN; y + (4 —w’N;, 1}

Nj o= (u — uy)

or
No.s = 2[1*No, 1 + (=30 + 12u* — 12u + 4N, , + (34> — 24u” + 60u — 44N, ,
+ (_u3 + 12“2 - 48u + 64)N3_ 1]

Due to the non-zero values of the functions N, , for various intervals of u, the above
equation can be written as

12, O<us<l
=3 +12u* - 12u+4), 1=<ux<?2
3(3u® — 24u* + 60u — 44), 2<u<3
H—uP+12u* —48u+64), 3<u<x<4

N ) = (5.118)



To check the correctness of the above expression of N, 4(u), one would expect to
obtain Fig. 5-54c if this function is plotted. Indeed, this figure is the plot of Ny 4. If
u=0, 1, 2, 3, and 4 are substituted into this function, the corresponding values of
N, , that are shown in the figure are obtained.

Equations (5.117) and (5.118) together can be used to evaluate points on the
closed B-spline curve for display or plotting purposes. As an illustration, consider
the following points:

P(0) = P, N, 4(4 mod 4) + P,N, (3 mod 4)
+ P, N, (2 mod 4) + Py Ny, ,(1 mod 4)
= Py Ny 4(0) + PyNo 4(3) + P, Ng 4(2) + P3Ny 4(1)
= ¢P, + 3P, + 5P;
Similarly,
P(0.5) = Py N 4(0.5) + PN, 4(3.5) + P, Ng 4(2.5) + P3 Ny 4(1.5)

1 1 23 23
EEPO+EP1+EP1+EP3

P(1) = Py No, 4(1) + PN 4(0) + P, Ng 4(3) + P3Ny 4(2)

=$Po +¢P, + 3P,
P(2) = Py Ny 4(2) + P Np 4(1) + Py No 4(0) + Py No 4(3) = §P + ¢P; + 3P,
P(3) = Py Ny, 4(3) + PNo 4(2) + Py No o(1) + P3N 4(0) = 3Py + §P, + 3P,
P(d) = Py Ny, 4(0) + P,Ng 4(3) + Py No_4(2) + P3Ng 4(1) = §P; + 3P, + 5P,

In the above calculations, notice the cyclic rotation of the N,_, coefficients of the
control points for the various values of u excluding u = 0.5. Notice also the effect of
the canonical (symmetric) form of N, , on the coefficients of the control points. If
the u values are 0.5, 1.5, 2.5, and 3.5, or other values separated by unity, a similar
cyclic rotation of the coeflicients is expected. Finally, notice that P(0) and P(4) are
equal, which ensures obtaining a closed B-spline curve.
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B-Spline Curve

The theory of the B-spline has been extended further to allow more control
of the curve shape and continuity. For example, f-spline (beta-spline) and
v-spline (nu-spline) curves provide manipulation of the curve shape and maintain
its geometric continuity rather than its parametric continuity as provided by
B-spline curves. The f-spline (sometimes called the spline in tension) curve is a
generalization of the uniform cubic B-spline curve. The f-spline curve provides
the designer with two additional parameters: the bias and the tension to control
the shape of the curve. Therefore, the control points and the degree of the
f-spline curve can remain fixed and yet the curve shape can be manipulated.

Although the f-spline curve is capable of applying tension at each control
point, its formulation as piecewise hyperbolic sines and cosines makes its compu-
tation expensive. The v-spline curve is therefore developed as a piecewise poly-
nomial alternative to the spline in tension.



ational
Curves

5.64 Rational Curves

A rational curve is defined by the algebraic ratio of two polynomials while a
nonrational curve [Eq. (5.103) gives an example] is defined by one polynomial.
Rational curves draw their theories from projective geometry. They are impor-
tant because of their invariance under projective transformation; that is, the per-
spective 1mage of a rational curve is a rational curve. Rational Bezier curves,
rational B-spline and f-spline curves, rational conic sections, rational cubics, and
rational surfaces have been formulated. The most widely used rational curves are
NURBS (nonuniform rational B-splines). A brief description of rational B-spline
curves is given below.

The formulation of rational curves requires the introduction of homoge-
neous space and the homogeneous coordinates. This subject is covered in detail
in Chap. 9 (Sec. 9.2.5). The homogeneous space is four-dimensional space. A
point in E* with coordinates (x, y, z) is represented in the homogeneous space by
the coordinates (x*, y*, z*, h), where h is a scalar factor. The relationship between
the two types of coordinates is given by Eq. (9.59).

A rational B-spline curve defined by n + 1 control points P; is given by

P(u) = 2 PR ,u), O<u<u,, (5.119)

i=0
R; W(u) are the rational B-spline basis functions and are given by

kN, {w)
R; iu) = Yoo Ny (v

The above equation shows that R, ,(u) are a generalization of the nonrational
basis functions N; ,(u). If we substitute h; = 1 in the equation, R; i(u) = N ,(u).
The rational basis functions R; () have nearly all the analytic and geometric
characteristics of their nonrational B-spline countcrparts All the discussions
covered in Sec. 5.6.3 apply here.

(5.120)



Conversion between curve representation

Hemite Bezier B-Spline
2 21 1 -1 3 31 -1 3 31
M_—33—2—1 M_3—630 M13—630
H™ 10 0 1 o BTl 33 0 o0 ST%6l3 0 3 0
1 0 0 0 1 0 00 1 4 10
p(u) := U-My-V p(w) :=U-Mp-Pg P;(t) := U-Mg-Pg
300 0 1 00 0) 1 4 1
1|3 01 0 0 001 0 1 41
HtoB = —- BtoH = BStoH =
3 30 -1 3300 3 0 30
0 300 0 0 -3 3) 0 -3 03
-3 6 -7 2 6 -7 2 0) 1
116 -3 2 1 02 -10 0 4
HtoBS := —- BtoBS := BStoB :=
3/-3 6 -1 =2 0 -1 20 02
6 -3 2 7 0 2 -7 6) 0 1
Cubic Bezier representation Conversion to B-Spline representation
-6 0 01 -9 =36 0 1
-3 4 01 -9 12 0 1
P:= Vg := BtoBS-P Vg=
3 -4 01 9 =12 0 1
6 0 01 9 36 01



Hermite <— Bezier
- -1 ._
V=My -MgPg V:=
-1
BtoH = MH MB
Bezier <— Hemite

-1

-1
HtoB = Mg My

a1
Pg:=Mp -MgPg Pp=

(po
P

Py

Py

Py
v 1
3-(Py — Py)
3(P3—P2)
4 PO
P, + —-P'
0t %0
P=
p, - Lp
1= 3%
\ Py
BStoB
1410)
0420
0240
0141
4 1 0)
1 41 .
0 30|85
30 3

Conversion between cu

BtoH
1

MB’ My =

. -1
Pg:=Mg -Mp-Pg

HtoBS

a1
Pg:=Mg MgV

rve representation

/P,
00 0 3
0 0 1 Py
P:=
30 0 P,
0 -3 3
\Po)
\
0 0 (po\
L o
3 Pl
vi=|
0_1 PO
3 2
0 0 )
p(u) :=U-B-P
BtoBS
(6 =7 2 0
. 02 -10 .
STlo-1 2 0|8
L0 2 -7 6
(-3 6 -7 =2
116 -3 2 1
313 6 -1 -2
6 -3 2 7




Comparison of curve/surface rep. methods

Property Ferguson | Hermite- | Bézier | Lagrange | Composite | Cardinal
Coons Bézier Spline | B-Splines | NURBS
Easy geometric
representation low med high med high Medium high high
Convex hull no no yes no yes no yes yes
Variation
diminishing * no no yes no yes no yes yes
Easiness for
creation low med med inappr. med high high high
Local yes but
control no no no no complex no yes yes
Approximation
ease med med high low high medinm high high
Interpolation high but
ease med med med inappr. med high high high
Generality med med med med med med med high
Popularity ** low low med low med med high very high
Ferguson : cubic (or higher order) polynomials

Lagrange:

interpolation polynomial curve




B-Spline Curve

B-Spline Curve



B-Spline Curve

Motivation Bezier representation is good, but has these drawbacks:

1. High degree

The degree is determined by the number of control points which tends to be
large for complex curves. This causes oscillation and other computational
problems.

2. Global propagation of local change

When modifying a control point, the designer wants to see the shape change
locally around the moved control point. In Bezier case, the change however
tends to be strongly propagated throughout the entire curve.

3. Intractable linear equations

If we are interested in interpolation rather than just approximating a shape,
we need to compute the control points from the points on the curve. This
leads to systems of linear equations, and solving such systems can be
impractical when the degree of the curve is large.
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f(u) = [113

Bezier Blending
Functions

B-Spline 3
\N.

u’ u I]M

B-Spline Blending

0.501
0.601
8,401
8.281

x
a.08

(=1
,5_'(,:.,:.::.:..:..:‘:.:
fa 2 B 5 & 5 B 8 8 & o

>
b

a.08 9.20 9.40 9.60 0.80 1.00

Py

Bspline —

repeat point, forcing interpolation

)

oo Y e S <o




B-Spline Curve

A pictorial illustration

P, p4 pS

Unlike Bezier basis function B; (u), the degree of the B-Spline basis
function N, ((u) is NOT dependent on the number of control points n;
instead, it is controlled by another integer K independent of n.
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B-Spline Curve

174

Definition of B-Spline basis function N,  (u)

Step 1. Choose an appropriate K (usually 4); K-1 will be the
degree of N; ,(u).

Step 2. Choose n+K+1 real numbers called knots
ftor Ly oo Ly (ST,

Step 3. N, ,(u) =1 ift<u<t,
=0 otherwise

(U _ti)Ni,K—l(u) n (ti+K B U)Ni+1,K—1(u)

ti+K—1 o ti ti+K _ ti+1

and
N;  (u) =




Non-periodic and uniform B-Spline

B i S p | i n e C U rve o Step 1. Select an integer k, called the erder of the B-spline curve,

o Step 2. Define (n+k +1) numbers tg to tyy, called Anof vadues:

Knots vectors 5 0<i <k
g:{z-kﬂ k<i<n
n=k+2 n<i<n+k

- Uniform (U)
t,=o, L =1,...,1

®»  Step 3. Compute the nt1 blending function N x(u) recursively:

1 P T
M = ] i+l
i) {O atherwise

n+K = n+K.
- Nonunlform and clamped (NU&C) M eV
t - IfJ < K ol g1 — 4 Livk ~hin
t _J —_ K + 1 |f K <J < N o Step 4. Puttogether: Plu)= ﬁNj‘xﬁu)E (b Su <t,,,)
t—n K+2 ifj>n

forj=0, ..., n+K.

- Nonuniform (NU)

Any, as long ast; <t forall j=0,1,..., n+K.

tJ+1
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B-Spline Curve
NU&C example1(n=5, K=1)

1. Since n+K = 6, there are seven knots and their values are:
t,=o t=1 =2 =3 t=4 1L=5

2. By recursive definition of N, _(u) 1 Moy )
0 | | | |
N,.(u) =1 ifo<u<a < ",
=0 otherwise
N,,(u) =1 ifi1<u<2 ; TN
, =0 otherwise i e
N, (u) =1 if2<u<3 0 -
=0 otherwise
= . Ure N, ()
N,,(u) =1 if3<u<y |
=0 otherwise e |
N, (u) =1 if 4 <u<g i \
=0 otherwise
N51(U) =1 ifc<u<6 ' | i

=0 otherwise (
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B-Spline Curve
NU&C example 1 (n =5, K=1) (cont'd)

177

3. Whatisthecurve ? P(u)= ipi N.,(u)
i=0 |

P(u)
P(u)
P(u)
P(u)
P(u)
P(u)

foro<u<a
fori<u<2
fora<u<3
for3<uc<y
for4<u<g
for;<u<6



B-Spline Curve
NU&C example 2 (n=5, K=2)

1. Since n+K =7, there are eight knots and their values are:
t,=0 L=0 =12 £=2 1 =30l =% =51 =5
2. By definition of N, ,(u)

N,.(u) =1 ifu=o0
=0 otherwise
N,,(u) =1 ifo<u<z
=0 otherwise
N,,(u) =1 ifi<u<2
=0 otherwise
N,,(u) =1 if2<u<3
=0 otherwise
N, (u) =1 if3<u<yg
=0 otherwise
N, ,(u) =1 if 4 <u<pg

=0 otherwise
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B-Spline Curve
NU&C example 2 (n =5, K=2) (cont'd)
3. By definition of N, ,(u) N

I L

N, ,(U) =(1-U)N, ,(U)
N, ,(u) =uN__(u) +(2—-u)N, .(u)

N, () =(U=DN, () +G-UN ) | X

N ,(U) =(U=2)N; (V) + (4 - UN, ,(u) A

N, ,(U) = (U=3)N, ,(U) + (5= VN, ,(u) N

‘
N_,(u) =(u=4)N_,(u) |
|
| J
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B-Spline Curve

NU&C example 2 (n =5, K=2) (cont'd)

4. Whatisthecurve ?  P(u) = ipi N; , (u)
i=0

P(u) =P_(u) = (2-u)p, + up,

P(u) = P,(u) =(2-u)p, + (U-1)p,
P(u) = P,(u) = (3-u)p, + (u-2)p,
P(u) =P,(u) = (4-u)p, + (U-3)p,
P(u) =P (u) =(5-u)p, + (U-4)p.

foro<u<a
forar<ux<2
fora<u<3
for3<u<y
fora<u<g




B-Spline Curve
NU&C example3(n=5, K=3)

1. Since n+K = 8, there are nine knots and their values are:
,=0 t,=0 =0 L=1 1 =2 =3 =4 L= =4

2. By definition of N, ,(u)

N, ,(u) =1 ifu=o0

’ =0 otherwise
N, (u) =1 ifu=o0

’ =0 otherwise
N, (u) =1 ifo<u<z

’ =0 otherwise
N,,(u) =1 ifi<u<2

’ =0 otherwise
N, (u) =1 if2<u<3

’ =0 otherwise
N, .(u) =1 if3<u<y4

’ =0 otherwise
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B-Spline Curve
NU&C example 3 (n=5, K=3) (cont'd)
3. By definition of N, ,(u)

N,,(U) =0

N,,(u) =@-uUN,,(u)

Nz,z(U) = UN2,1(U) +(2— u)N3,1(u)
N3,2(u) =(u-— 1)N3,1(u) +(3- U)N[Hl(U)
N,.(U) =(U=2)N_,(u)+(4-UN,, ()
N;(U)  =(U=3)N; ()

The u-range for N, ,(u) is determined by that of N, ,(u) and N, , (u). For

example, N, ,(v) is non-zero onI_y in1<u<3,since N, (u) non-zeroonly in1 <
u<2andN, (u)isdefined onlyin2<u<3.
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B-Spline Curve

NU&C example 3 (n =5, K=13) (cont'd)
4. By definition of N, 5(u)

N, (U) =(1-u)*N, ()

0.5U(4 —3U)N, () + 0.5(2 —U)>N, . (v)

0.5U%N, _(u) + 6.5(-2u? + 6U -3)N3 1](u) +0.5(3-U)?N, ,(v)
o.5(u-13’21N J(u) +0.5(-2u% + 10U =12)N, (U) + o.5(4-’u)2N5 ,(u)
o.5(u-2)2N3’ (u) + 0.5(-3u? + 20U -32)/\f’5’11(u) ’

1

(u=3)3N, ,{0)

The u-range for N, ,(u) is determined by that of
N,,(u), N,,,,(u), and N,,, ,(u).

|+1,1( i

!

5(U)
(V)
5(U)
5(V)
5(U)

For example, N, .(u) is non-zeroonlyino<u<
since outside 0 Lu <3 all N _(u) (u), and (u) are zero
_ 3 211 ! 3[1 ! 4[1 )

Pictures of NB(U).
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B-Spline Curve
NU&C example 3 (n=5, K=3) (cont'd)

5. Pictures of N, ,(u) T

N3.3 (1)

Ny 3

Example: On interval
1<u<2, only N, ,(u), I_
N, ,(u), and N, ,(u) are
non-zero; therefore, 00
only the three control ; Lo e e
points p,, p,, and p, will v 4 5

affect on this interval. Nonuniform B-Spline basis functions for
=5 K=3"
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B-Spline Curve
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NU&C example 3 (n=5, K=3) (cont'd)
5

6. What is the curve ? P(U) - Z(:)pl Ni,3 (U)
P(u) =P, (u) = (1 —u)?p, + 0.5U(4-3U)p, + 0.5U?Pp, = foro<u<a
P(u) =P,(u) =0.5(2 —u)?p, + 0.5(-2u> + 6U -3)p, + o.5(u-1)2p3 fori<u<2
P(u) = P3(u) = 0.5(3 —u)?p, + 0.5(-2U? + 10U -11)p3 + o.5(u—2)2p4 for2<u<3
P(u) =P, (u) = 0.5(4 —U)?p, + 0.5(-3U* + 20U -32)p, + (U-3)°p, for3<u<y
Thisis a C* curve with:

P(1) =P (1) = P,(2); P’(1) =P’ (1) = P",(2)

P(2) = P,(2) = P,(2); P'(2) = P’(2) = P',(2)
P(3) =P,(3)=P,(3); P'(3) =P,(3) =P",(3)



B-Spline Curve
NU&C example 3 (n=5, K=3) (cont'd)

7. Pictureof  P(u) = ipi N; 5(u)
i=0
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B-Spline Curve
Properties of NU&C (n, K)

1. ltisa CX2curvein[o<u < n-K+2].

2. It consists of n-K+2 independent C** curves (segments) defined
respectively on[o,1), [1,2), ..., [Nn-K+1, n-K+2].

3. The curve passes the first and last control points p, and p,..

4. Thetangents at the two ends, p, and p,, are parallel to p,- p,and p,- p,..,
respectively.

5. Each segment is influenced by only K control points, and, conversely,
each control point influences only K curve segments.
http://theory.lcs.mit.edu/~boyko/classes/b-spline.html
http://www.cs.berkeley.edu/~]-yen/splines/bsplinecurve/
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B-Spline Curve
Properties of NU&C (n, K) (cont’d)

6.

188

Except for the very few segments near the end points (depending on K),
the segment P,(u) is only dependent on K, not n.

K=2: P, (U)=(+1-u)p,+(U-i)p., (iu<i+1)

K=3:
P...(U) = 0.5(i+1-u)?p; + 0.5[(U—i+1)(i+1-U) + (i+2-U)(u-i)]p;,, + 0.5(u-i)?p;,,

(i<u<i+1)
K=g4: 777
Each segment P,(u) is a C** continuous curve.

The B-Spline curve itself is C*2 continuous at the knots t, i =1, ..., n—K+1,
i.e., the end points of the segments.



B-Spline Curve
Normalized B-Spline segment (NBS)
Segment

P...(u) = 0.5(i+2—u)?p, + 0.5[(u—i+1)(i+1-u) + (I+2-U)(U-1)]p.,, +
O'S(U_i)zpi+2

is defined on the interval (i <u <i+1). Re-parameterize the
domain by replacing u with u + i, the same segment now is
defined onthe interval (0o<u<1)as:

P...(u)=0.5[(1-u)?p, + (-2u2 + 2Uu + 1)p,,, + U?P.,.]
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B-Spline Curve

Matrix form of NBS
K=3:

P.(u) = 0.5(1-u)?p, 4 + 0.5(-2u? + 2u + 1)p, + 0.5u?p;,4]

Pi(u):[u2 u 1]%

_pi—l_
Pi

_pi+1_

= UM,

_pi—l_
Pi

_pi+1_



B-Spline Curve

Matrix form of NBS
K= 4.
-1 3 -3 1__pi_1_ _pi—l_
3 6 3 - :
Pi(u):[u3 u’ u 1]} ol Pi|_ UM, P
6 -3 0 3 0 pi+1 pi+1
1 4 1 0] pj.]  Pii2 |




B-Spline Curve
Uniform B-Spline curve (n=5, K=3)

- Fora NU&C B-Spline (n =5, K=13)
P.(U) = (1-U)*p, + 0.5U(4-3U)p, + 0.5U°p,
P,(u) = UM([p, p, p.I'
Py(u) = UMp, p, p,I"
P,(U) = 0.5(4 — u)*p, + 0.5(-3u* + 20U -32)p, + (U-3)*p,

- Represent both P_(u) and P, (u) same as UM([p,, p; p;..]"
P,(u) = UM,[p, p, p.]’
P.(u) = UM,[p, p, p,]'
P,(u) = UM([p, p,p,]
P,(u)=UM[p,p, p5:|T

This is called a Uniform or Periodic B-Spline. It is “periodic” because the basis
function UM, repeats itself identically over successive intervals of the
parameter variable u, whereas a NU&C only does it for some interior
intervals.
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B-Spline Curve

Uniform B-Spline curve (n, K)
- Knots vector
{t, . tud =10, 1, ..., n+K}

- Parameter u range [0, n-K+2]

- n-K+2 normalized B-Spline segment P_(u), ... P, «,,(U)

P(u) =P_(u)®@P,(u)®... ®P_ .. (u) o<u<n-K+2
P(u) =P_(u) = UM([p, P, --- Px.l" foro<u<a
P(u) = Pi(u.—i+1) = UM{P.,P: - Pxsin]" fori-1<ux<i

P(U) =P, ,,(U-n+K-1) = UM[P, k21 Prkss - PalT  forn-K+1<u<n-K+2
- Question: Why the knots range from o to n+K, but the parameter u range is

only
from o to n-K+2?

193



B-Spline Curve

Uniform B-Spline curve examples
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B-Spline Curve

e B-Spline basis functions UM,

| ] 1
0 —
1, l(—u‘.).fr=1—>—’
==
K=3
Nialan)
0 /L I ] I I_ i
11—
K=4
o1, | | e | 1

Uniform B-Spline basis functions: N;,(u), N;s(u),

195
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B-Spline Curve

e Quadratic and cubic B-Spline basis functions

- Quadratic (K=3)
N, =U,M, =[N, ;(u) N, (u) N,,(U)]
N1,3(U) =0.5(u?—2U +1)
N2,3(u) = 0.5(-2U% + 2U + 1)
N3I3(U) = 0.5U?
- Cubic (K =4)
N,=UM,=[N, () N, (u) N,(u) N, (u)]
N, (u)= (2/6)(-u3 +3u% -3U + 1)
N, (V) = (1/6)(3U3 — 6V + 4)
N3I4(U) = (2/6)(-3U3 +3U2+3U +1)
N, (V) = (2/6)u3

- Partition of unity

K
Z Ni,K(u) =1 for any u (proof!)
i—1
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B-Spline Curve

e Quad

gy

197

Quadratic basis functions: F; ;= N;

Cubic basis functions: F; =N, ,

ratic and cubic B-Spline basis functions
1
K=3 K=4
Pt #_‘H‘Ej F 3
/ 2.4
N~
\‘ Fy 3 Fy 5 ’/ .r// \\‘
\\\ ’// z/' N-\.
>< <""‘-. Fia Fa 4 )
B2 ~ ———
0 0 1



B-Spline Curve
Closed uniform B-Spline curves

- For open uniform B-Spline curves (n, K)
P.(U) =UMpP.,P: - Prsinl i=1,2,...,n-K+2

- For closed uniform B-Spline curves (n, K)

— T.
_Pi(U) - UI\/ls[p(i-1) mod (n+1) Pi mod (n+1) - p(K+i-2) mod (n+1):| /
1=1,2,...,N+1

Example: (n =5, K=4)
P,(u)=UM,[p,p, p,P;]’
P.(u)=UM,[p,p,p,p,I!
P,(u) = UM,Ip, P, p,PsI"

P,(u)=UM,[p,p, pPsPo]’
P.(u) = U;M.[p; p. p.p.I"
Ps(u) =U.M,[p.p, P.P,]"
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B-Spline Curve

Closed uniform B-Spline curves (n=5, K=4)

P,

To the open curve, only three
segments P_(u), P,(u) and P.(u)
are defined.
http://theory.lcs.mit.edu/~boyko/
classes/b-spline.html

But to the closed curve, three
more segments P4(u), PS(U) and
P.(u) are defined to form a
closed loop.
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B-Spline Curve

A self-intersecting closed uniform B-Spline

Py P2
o o)




B-Spline Curve

Effect of moving the control points
Example (n=3, K=4):

P(U) is a closed B-Spline consisting of:
P.(u)=UM,[p,p,p,p,I"
P,(u)=U,M,[p, P, P;P,I"
P.(u)=U,M,[p,p,P,P.I"
P,(u)=UM,[p,p, P, P,I"

Pulling p, affects the curve mostly near p.,.

Question: Does the perturbation of p,
affects the entire curve? How about when

e,

z Py n=47?
Closed B-Spline curve with n=3, K=4.
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B-Spline Curve

e Effect of multiply coincident control points

Py
>

Ps

202

Example (K=3):

n = 4:
P.(u)=UM,[p, P, P,P,]’
P,(u)=UM,[p,p,p,pI"
P.(u)=U,M,Ip, p,p,P,]"
P,()=UM,Ip,p, P, P.I"
P,()=UM,p, P, P, P,I"
n=s5andp.=p,:

P.(u) = U,M,[p, p. P, P,]'
P,(u)=UM,[p,p,p;p,]"

P,(u)=U,M,[p, Py P,Psl'
P, (U)=UM,Ip,p,PsP,I"
P.(u)=UM,[p, P P, P.I"
Ps(u) =UM,[p, p, P.P.I"



B-Spline Curve

Continuity of uniform B-Spline curves

- The basis function N. (u) is a polynomial of degree K-1
Example: N, (u)=(1/6)(3u3—-6u2+4) (K=4)

- The segment P,(u) = N_ ((u)p., + N, ((U)p; + ... + Ny I%(u)pm(_z is a simple
summation of the N;  (u) and hence is of class C*

- The B-Spline curve P(u) = P_(u)®P,(u)®... ®P, ,.(u) is a curve of class
CK-2, j.e., the (K-2)th-derivative exists and is continuous on the entire

P(u).

Example (K=4):
P() — =Pf1)  =(/0)p;+ 4Py, + Pia) =Py (0)
P()  =P.) =0.5(p;+Pp.) =P, (0) |,
PUUJ')_ = I:,i (1) = Pi-2Pis1 * Pis2 = I:,i+1 (O)
P"() =777
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B-Spline Curve

Continuity of B-Spline curves

Atu=i: P iy=po"?

(1) =P.,." (o)

1+1




B-Spline Curve

Conversion between Bezier and B-Spline (K = 4)

Bezier: P(u) = UM;Pg
B-Spline: P(u) = UMP.

B-Spline = Bezier:
UMgPz= UMcP. > Py=M " ;M-P > Py =

Bezier = B-Spline:
UM.P.= UM P;> P.=M"M_P;> P.=
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B-Spline Curve
Bezier curve as a special NU&C B-spline
- A nonuniform and clamped B-Spline curve
P)= 20 Nigc (1
i
with knots vectorfo...o0 12 ...n-K+1 n-K+2 ... n-K+2}
—= —

K n-K K
- If n =K, then it becomes a Bezier curve of order K, as now

N; (u) = B; ((u) fori=1,2,..., K.



B-Spline Curve

Knot insertion

Old B-spline: n
n+K+1 knots: U={u_, U, ..., U, k. ki P(u)=>_p; N; k (u)
i=0
New B-spline: ‘ ‘ -
n+K+2 knots: {t, t, ..., t. ...} Q(u) = Zqi Nix (u)
i=0
E ”.1 2 21 :HK ”.H.JrKH
O—3 {3 & o @
h 4 £ fv I PRI
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B-Spline Curve

Knot insertion

Fori=o,1,...,j-K: Nik (U) = N; « (u)
Fori=j+1,...,n: Niak (U)=N, . (u)
j T
Foruely,u;,,]: i:j;@gi Ni (U) = i:g:((jli Nk (U)
g =p: 1=0,1,...,J-K

qg..,=p: I=j+1,..,n
How about the other K+1 control points g, .., Gz -+1Gjsa?
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B-Spline Curve

Knot insertion

qj-K+1 = pj-K+1
g, =op;+(1-0,)p;.,
qj+1 = pJ

where:

j-K+2<i<]



Knot Insertion

B-Spline Curve f/’"ﬁ“‘\q

Knot insertion

P; = Q,
Ph=Q
An example: PO_q/\ a
P, = Q, e P,
- Q;
|

Q;
1

K=4¢4

}Hin ! | uj T
U = {Ololololll2’3’4’5’5’5’5} ' | | ’
(a)
) =51, =5/2 :
N =N e /N4 Ng = Ny
0 1 2 /’4\‘ 3 4 .
g

210 (b)



B-Spline Curve

211

NonUniform Rational B-Spline (NURBS)

Zn:Wi Pi Nik (U)
P(u)="=0 foro<u<n-K+2
;)WiNi,K(u)

with knots vector {t_, t, ..., t. .}

If weights w, =1 for all i, then it reduces to a nonrational B-Spline.

NURBS is the most general and popular representation.
1. All Hermite, Bezier, and B-spline are special cases of NURBS.
2. It can represent exactly conics and other special curves. _ _
3. The weights w;, add one more de?ree of freedom of curve manipulation.
4. It enjoys all the nice properties of nonrational B-splines (such as

affine transformation invariant and convex hull property).




Effect of Weights

The coefficient before control point Py 1s:

WV, (1)

> N, (1)

Co(u) =

The larger w, is, the closer cunve is pulled toward P,. When w, is imfinite, the curve
passes through P,; on the other hand, when w, is 0. P, does not effect the cunve at all.
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B-Spline Curve

Unit partitioning property of NURBS basis functions

Zn:Wi Pi Nj k (u)
P(u)="=%

_Z_(:JWiNi,K(u)

WoNo,k (U) N Wi Ny (U)

ot _
D WiN; () > wWiN; i (u) Z(:)WiNi,K(u) Z(:)WiNi,K(u)
i—0 i—0 i -

W, N« (U)

Zn:WiNi,K(U)

_i=0

=1



Exercise

1. Consider a cubic uniform B-Spline curve (n=5, K=4). Please give the
representation of its first derivative.

2. Given a Bezier curve of order 10 (i.e., it has 10 control points), can you
represent it by a cubic B-Spline (n, K=4)? Why?

3.  Nonuniform and nonclamped B-Spline

5
Consider a (n=5, K=3) B-Spline  P(u) =) p; N; 3(u) with knots vector
i=0

{l,=0 =0 =1 1=2 1,=3 =4 =5 L=5 t3=5}

Please derive the basis functions N; ,(u) and give the equations of P(u) on
different intervals (i-12 < u <i), i=1,2, ...,

5. What are P(0) and P(5)? What are the derivatives of P(u) at u=0 and u=5?
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B-Spline Synthetic Curves

* B-spline curves are specified by giving set of
coordinates, called control points, which indicates
the general shape of the curve.

* B-splines can be eitherinterpolating or
approximating curves. Interpolation splines used for
construction and to display the results of
engineering.



B-Spline Synthetic Curves

* Approximation B-spines defined as linear and 2nd
degree and the flexibility is provided by the basic
functions with (n+1) control points, B-splines are
defined as

Cay=Y PN, @)  O<u<ug,

P : set of control points
u : knot vector
k : spline’s degree



B-Spline Synthetic Curves

P is the set of control points as shown in Figure, N is the
B-spline blending functions and they are defined as,

e | u. <u<u,,
.0

otherwise

N, . (u) N N i+1,p—l(u)

N (u) — (u _u_) (uf-l-p _“ﬁ) (uilp _u“l)

i I (uilp _ui)




Cu) =3P N, ()

Effect of curve order O<u<i. 2<k<n+sl

The range of u is related to the number of control
points and the knot vectors. The effect of the degree of
the B-spline curves on the shape of the curve is shown
in Figure. Bspline curve lays in the control polygon.




Local control property of B-Spline curve

Control point P4 moves to a new position P4’
only a portion of the original curve has changed.

Ps




The derivative of the B-spline curve

Basic functions defined from the knot vector U={u,...u_} and
for 1=0,...m-1 ,y,; < u,,, . u,knot vector, U is the set of knot
vectors. Specifically, a B-spline order p (or degree p-1) basic
functions are defined as N, ,(u).

The derivative of the B-spline curve

N,

i

(ui+p+l B ui+l)




B-Spline Synthetic Curves

With (m+1) control points, there are always (n=m+p-1) basic
functions. The basis functions are 1, at the end points of
the curve defined as a and b. If there’s no other definition,
then a=0 and b=1. {P} the set of the control points forms
the control polygon from Figure.

s @.hPE'
= DT T
2 ,@ S
Control J/ B-spline cuwe\gpa
Polygon , (b)
/ N, (@)=1
P1 "\.",P{b)=1



ol

inear, quadratic, cubic B-spline

Py P2




Influence of control point position




Blending functions for linear B-spline

I .. P

Quadratic B-spline blending fn (k=3)



B-spline Curves

Piecewise Polynomials




B-spline Curves

a B-spline curve is the i

C — continuous

union of a number of : ! ceemente
- 5 o «c 1
Bezier curves joining |
c i
together with .
\ ) |
C - continuity. Vo knot points o1
Vo
\ l
Vo /
"1 'i. fj
v 4
v /
S /4
\‘ ':1 ]I f; f,
—————}

k, k, k, Kk,

knots



B-spline Curve

N; (u)= {

N; (u) = (u

Blending functions

Nijl(u}

1T

&

N|-1'1{U} Nlrz{u:l

Nuq}:[”]

L, y,<u<u,,
0, otherwise

Ni,k—l(u)

— u)

i+k=1 U;

&

1T

i+1

s
5
|
lllll
Lot !
']
LT

+ (Ui — )

Ni+1.k—1(u)

Uipg — Uiy

N|-1‘3{U} N|r3{|.|:| N|,1J3|:U}

YONSNN

i i+1  i+2 43 U




B-spline curves Noo Noo Moo No N, N,
No, Ny, N, N, N
Since a NURBS curve W -
N04 N1,4 N2,4 N34

is rational, circles,
ellipses and
hyperbolas

can be represented

NURBS

n
E'::'LL:' : Z R;-i_p'::'m:'P'.i
i=l(
N p(u)w;
3o Njp(u)w,

Rip(u) =




Bezier curves

Bezier curve difficulties

Bernstein basis is global, No local control

Order (degree) fixed, Equal to number of control
vertices

High order (degree) required for flexibility
Wiggles

Difficult to maintain continuity

ref. Sigg2002 Courses7 NURBS.pdf



B-spline curves — Definition

n-+1

P(t)= ). BiN;i(t) tam <t<t 2<k<n+1
i=1

‘mas =

B;s are the polygon control vertices

N;1(t) are the normalized B-spline
basis functions of order k

n-+1 1s the number of control vertices



B-spline curves — Basis functions

T 1 it <t <a.
(1) 0 otherwise

(t — ;) N; o1 (1)

i — )Ny o1 (t
:\T;JI.(IL) _ | ( i+ ) i+1.k l( )
Xitk—1 — Xy itk — Ljal

;S are the elements of a knot vector

Note 0/0=0



B-spline curves — Properties

N;i(t) =1 for all t

N, (t) > 0 for all t

Maximum order k,,,, =n + 1

Maximum degree, n, is one less than the order
Exhibits the variation diminishing property
Follows shape of the control polygon
Transform curve — transform control polygon

:—2 -
Everywhere C"~? continuous



B-spline curves — Convex hulls

B-spline curves stronger than for Bezier curves.

A point on the curve P(t) lies within the convex hull of k
neighboring control vertices.

Notice for order, k = 2 the degree is one — a straight
line. The B-spline curve is the control polygon.

NS




B-spline curves — Convex hulls

Fork =3 alargerregion may
contain the curve.

The B-spline curve will not
exactly follow polygon.

The higher the order
the less closely the B-spline
curve follows the control

polygon.




Non-uniform rational B-spline

* NURBS is a mathematical model commonly used in
computer graphics for generating and representing
curves and surfaces. It offers great flexibility and
precision for handling both analytic and modeled
shapes.

e NURBS are commonly used in CAD, CAM and CAE
and are part of numerous industry standards, such
as IGES, STEP, ACIS, and PHIGS.



Non-uniform rational B-spline

Most modern CAD systems use the NURBS curve
representation scheme.

Uniformity deals with the spacing of control points.
Rational functions include a weighting value at
each control point for effect of control point.

very popular due to their flexibility in curve
generation.

NURBS permit definition of surfaces from ratios of
polynomials. (Rational functions permit much
better control over the derivatives of curves, hence
the surface curvature, than polynomials alone.)



NURBS modelling

Flexibility to create sculptural shapes—
Tension to keep surfaces smooth¢ ===l
and taught i
Alignment to create smooth,
invisible joins

Control Vertices (CV, control points),
Degree and Spans control

the flexibility and shape of the curve.
the smoothness determined by the
Degree and Spans of the NURBS.




Corner (}‘utﬁng

L L]
. # .
S 'l‘ -. '5 - b
— = * L
- "
& "

7 Stro;':_ig

De Boor’s algorithm v/ bt ol

is implemented
by repeated knot
Insertion.

IIIIII!II r. \ L"I
{{{I -y r Y Y S kEJ’ S S Y
f 1 1 1 1 1 1 1 1 3
0 0 0 0 U 0 0 0 0 1
4 i 4 4 5 . B & 0
0 2 5 7 il : 9 5 7 0
i i 0 0 0 (R 0 0
(]

™
Division Ratios '_"._



Shape Editing

The local modification property guarantees that only
part of the curve will be affected when a control point
changes its position.

In fact, position change
is parallel to the 1
Movement of |
the control point.




Weight Change

Increasing weight pulls
the curve toward the
selected control point.

Decreasing weight
pushes the curve
away from the
selected control point.




Effect of Weights

The coefficient before control point Py 15:

wN, (u
= @)

SN, @)

The larger w, is, the closer curve is pulled toward P,. When w, is infinite, the curve
passes through P,: on the other hand, when »w,is 0, P, does not effect the curve at all.



Unit partitioning property of NURBS basis functions

Zn:Wi Pi N  (U)
P(u) ="=2

Zi:)WiNi,K(u)

Zn:WiNi,K(U)

WoNo k (U) N Wy Ny i (U) - W, Ny,  (U) _ iz

. =1
2 WN; () 2 WN; ¢ (u) Z(:)WiNi,K(u) Z(:)WiNi,K(u)
i-0 i-0 i =




Degree o (order 1) B-Spline Function N, (u)

A

Ni,l(U)

1+

v
c

[ i+1
Problem (serious): discontinuity of the curve

P(u) , Oo— L
P.o—  o— P(u)=2>.p; N;  (u)
=0

P O— o—

(0]

p,0——




Degree 1 (order 2) B-Spline Function N, ,(v)

Ni/2(u) Ni+1/2(U) Ni-1 2(U) Ni 2(U) Ni+1 2(U)
1 —— ,'A\ 1 1 /] /\\\ 1 /\\\ /]
= = » U > U
i i+1 ) : : :
i i+1 42 i+3
This can't be allowed; it would violate
. u-—i I<u<i+l ) ( 2)
n— : : : u—i i+2)-u
i - N; = 2)— 1< 2 = N; ——————N:
Eé) f,(u)=1 foranyue[01] Ni2) ('+0) u '+0tr<]el:\;i;;r I .,1(U)+(i+2)_(i+1) +1(u)
Problem: discontinuity of tangents
N N
P(u) 4 - - k-1 - - +1, k-1
2 N_ . (u)= (n — U ) : + (H_ — n)- E
i,k 1 u —u ik u —u
k-1 i i+k i+1

max

Puy= Y P,N, (u, O<u<u
i=0

v



Degree 2 (order 3) B-Spline Function N; 5(u)

N. . _(u
1 |-1'3( ) Ni,3(U)
i+1,3(U)
5 . 5 . > U
I 41 1+2 143
I<u<i+l
N. (u)zu—_iN_ (u)+ (i+3)—u N. (u)= i+1<u<i+?2
BT (+2)-i 2T (i+3)=(i+2)
I+2<u<i+3
otherwise

(What are the u-domains for N; ,(u) and N, ,(u)?)

Curve now has continuous tangents!



Degree k-1 (order k) B-Spline Function N; ()

Ny (U)+ ( S —ki_)k—)(_l:l—l) Nis1ka(u)

Change partitioning of u-domain from integers to arbitrary real values (so to have more flexibility):

0,1,2,3, i 3Dttty oo by )
U-—t lix —U
N (u) = N; g (U)+ Nis1 ()
T ¥ Gk — i
Demonstrations

(http://www.people.nnov.ru/fractal/Splines/Basis.htm)
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Representing Curves and Surfaces

We need smooth curves and surfaces in many
applications:

e computer-aided design (CAD)

 model real world objects

* high quality fonts, data plots, artists sketches

Most common representation for surfaces
e polygon mesh

* parametric surfaces

e quadric surfaces



Polygon mesh surfaces

e set of connected planar surfaces bounded by polygons

e good for boxes, cabinets, building exteriors

e bad for curved surfaces

e errors can be made arbitrarily
small at the cost of space
and execution time

e enlarged images show
geometric aliasing

Mesh with gradual
adjustment of edge length.



Parametric polynomial surface patches

Parametric bivariate (two-variable) surface patches:

e point on 3D surface = (x(u,v), y(u,v), z(u,v))

e boundaries of the patches are parametric

nolynomial curves

e many fewer parametric patches than polynomial
patches are needed to approximate a curved surface
to a given accuracy

 more complex algorithms though




Parametric cubic curves

Polylines and polygons:
e large amounts of data to achieve good accuracy
e interactive manipulation of the data is tedious

Higher-order curves:
e more compact (use less storage)
e easier to manipulate interactively

Possible representations of curves:
o explicit, implicit, and parametric



Parametric cubic curves

Explicit functions: y=1(x), z=g(x)

impossible to get multiple values for a single x
break curves like circles and ellipses into segments

not invariant with rotation
rotation might require further segment breaking

problem with curves with vertical tangents
infinite slope is difficult to represent



Parametric cubic curves

mplicit equations: f(x,y,z) =0

equation may have more solutions than we want
circle: x2+y2=1 , halfcircle: ?

problem to join curve segments together
difficult to determine if their tangent directions
agree at their joint point



Parametric cubic curves

Parametric representation:
x =X(t), y =y(t), z=z(t)

e overcomes problems with explicit and implicit forms

e no geometric slopes (which may be infinite)

e parametric tangent vectors instead (never infinite)

* acurveisapproximated by a piecewise polynomial
curve



Parametric cubic curves
e Why cubic?

e |ower-degree polynomials give too little flexibility in
controlling the shape of the curve

e higher-degree polynomials can introduce unwanted
wiggles and require more computation

e |owest degree that allows specification of endpoints
and their derivatives

e |owest degree thatis not planarin 3D



Parametric cubic curves

Kinds of continuity:

e GO two curve segments join together

e G directions of tangents are equal at the joint

e (% directions and magnitudes of tangents are equal
at the joint

e (C": directions and magnitudes of n-th derivative are
equal at the joint



Parametric cubic curves

Major types of curves:

Hermit
defined by two endpoints and two tangent vectors

Bezier
defined by two endpoints and two other points that
control the endpoint tangent vectors

Splines
several kinds, each defined by four points
uniform B-splines, non-uniform B-splines, [3-splines



Parametric cubic curves

e General form:
x(t)=at’+bt°+ct +d,
3 2
y(t)=at’+bt°+ct +d,

z()=at’+bt’+ct +d,

a, |
b, b,
C =
CZ

T=[t° t* t 1]

d d, d

X y Z

QW =[x(t) YO z(B]=T-C=T-M-G



Parametric cubic curves

It is not necessary to choose a single representation,
since it is possible to convert between them.
Interactive editors provide several choices, but
internally they usually use NURBS, which is the most
general.

Generalization of parametric cubic curves.

Q(s,1)=T-C(t) =T -M -G(t)

For each value of s there is a family of curvesiin t.



General Spline Formulation
Q(t) = GBT(t) = Geometry G . Spline Basis B . Power Basis T(t)

e Geometry: control points coordinates assembled into a
matrix (P1, P2, ..., Pn+1)

e Spline matrix: defines the type of spline

e Bernstein for Bezier

e Power basis: the monomials (3, t, ..., tn)

e Advantage of general formulation

e Compact expression

e Easy to convert between types of splines —

e Dimensionality (plane or space) does not really matter

1 {1ttt




y(t) = ap +art+as t2 + ast’
Polynomials as a Vector Space

e Polynomials ¥(t) = ap + a1t + aot® + ...+ a,t"
e Can be added: just add the coefficients

(y + 2)(t) = (ap + by) + (a1 + b))t + 1. {1-t-t21f3}/

‘ n |
(a2 + bg)fz + ...+ (an +b0)t" 1
e Can be multiplied by a scalar:

multiply the coefficients 1
s-y(t) = (s-ap) + (s (Il)t + (s - (I.Q)If2 + ...+ (.s' : (1,,,1,)1‘,“‘

e Inthe polynomial vector space, {1, t, ..., tn} are the
basis vectors, ao, a1, ..., an are the components



Detecting intersection by convex hulls

Comparison of convex hulls of Bezier curves as means
of detecting intersection

=

Variation diminishing ¢
property of a cubic Bezier |/

Impossible




Detecting intersection by polygon

Linear approximation of curves in finding intersections

(a) Approximation
by linear segments

(b) approximation
by polygon




Detecting intersection by polygon

Bounding wedges of curves in finding intersections




dmo*

Bezier Clipping Method

. . d,miﬂ
Fat line bounding

a quartic curve

refs.
cad methods - me 554-farouki.pdf
surface intersection algorithms.pdf

g

If L is defined in its normalized implicit equation
az+by+c=0 (a’+b>=1)
then, the distance d(z,y) from any point (z,y) to L is

diz,y) =az+by+c

{(I:y”dmin < d(riy) < dmu:}



Bezier Clipping Method

Fat line bounding d1
for a polynomial ;
quartic curve \ —*11’
dlz,y)=az+by+c

d(t) = 2t(1 - t)d,

d
dl }s dﬂ‘mr —_— ma,:{{[}, —1}

dl"l"l.ll"-l — ITHH{{], E E



Examples of intersection problems

Contouring of surfaces through intersection with a
series of parallel planes or coaxial circular cylinders or
cones for visualization ]

A marine propelleris visualized
through intersection with a series
of parallel planes




Examples of intersection problems

Numerical control machining (milling) involving

intersection of offset surfaces with a series of parallel
planes, to create machining paths for ball (spherical)
cutters

Z (mm)
=

Offset surface is
intersected with a series
of parallel planes to
generate a tool path
for 3-D NC machining s R

Y (mm)

R

S
oy

A

SR,

)

R

N

A
S




Intersection Problems

Representation of complex geometries in the Boundary
Representation (B-rep) scheme; for example, the
description of the internal geometry and of structural
members of automobiles, airplanes, and ships involves
 Intersections of free-form parametric surfaces with low
order algebraic surfaces (planes, quadrics, torii cyclldes)
 Intersections of low order algebraic surfaces; -
in a process called boundary evaluation, in whichthe [
Boundary Representation is created by evaluating a |
Constructive Solid Geometry —
(CSG) model of the object > e =

./' 7 - - M ’,/
T AN -~ - - . -~ - -~
- /,{_\ /?/./_ e //./ ~ T e - -
S \ T N > - -~ =] \ s
T - - - \ -~ ~ -~ s N, .
| - \ - e
\ )(/ - " - /f-'/ S -
_ < - P =
(-
\ i
\_F
.
- -
— -~ -~ —
e - /./,

Two Primitives Union Intersection Difference




Intersection Problems

When studying intersection problems, the type of curves and
surfaces can be classified as follows:

Rational polynomial parametric (RPP)

Procedural parametric (PP),

Implicit algebraic (IA), Implicit procedural (IP)

In order to solve general surface to surface (S/S) intersection
problems, the following auxiliary intersection problems need to
be considered:

1. point/point (P/P)

2. point/curve (P/C)

3. point/surface (P/S)

4. curve/curve (C/C)

5. curve/surface (C/S)



Variation diminishing property

2-D: The number of intersections of a straight line with
a planar Bezier curve is no greater than the number of
intersections of the line with the control polygon.

A line intersecting the convex hull of a planar Bezier
curve may intersect the curve transversally, be
tangent to the curve, or not intersect the curve at all.
It may not, however, intersect the curve more times
than it intersects the control polygon

3-D: The same relation
holds true for a plane
with a space Bezier curve.

Possible ‘. Impossible



Variation diminishing property

From this property, we can roughly say that a Bezier
curve oscillates less than its control polygon,

or in other words, the control polygon's segments
exaggerate the oscillation of the curve.

This property is important in intersection algorithms
and in detecting the fairness of Bezier curves.




Cubic Curves

CSE167: Computer Graphics
Instructor: Steve Rotenberg
UCSD, Fall 2006



Cubic Curves
Polynomial Functions

e Linear: f(t)=at+b /

e Quadratic: f(t)=at’ +bt+c

* Cubic: f(t)=at®+Dbt*+ct+d \/

Ref.
CSEa167: Computer Graphics
Instructor: Steve Rotenberg,UCSD, Fall 2006



Vector Polynomials (Curves)

e |Linear: f(t):at+b

e Quadratic:  f(t)=at?+bt+c

e Cubic: f(t)=at®+bt?+ct+d

e
N
e

We usually define the curveforo<t=<a



Linear Interpolation

e Linearinterpolation (Lerp)is a common technique for
generating a new value that is somewhere in between two
other values

e A'value’ could be a number, vector, color, or even something
more complex like an entire 3D object...

e (Consider interpolating between two points a and b by some

parametert
b

t=1
e

t=0
Lerp(t,a,b)=(1-t)a+tb



Bezier Curves

e Bezier curves can be thought of as a higher order
extension of linear interpolation

I | 1
1\
T
\
! AY

Py

Po Po

Linear Quadratic Cubic



Bezier Curve Formulation

e There are lots of ways to formulate Bezier curves
mathematically. Some of these include:
— de Casteljau (recursive linear interpolations)
— Bernstein polynomials (functions that define the

influence of each control point as a function of t)

— Cubic equations (general cubic equation of t)
— Matrix form

e We will briefly examine each of these



Bezier Curve

e Findthe point x on the
curve as a function of
parameter t:

Po

Py

X(t)

P3

P,



de Casteljau Algorithm

e The de Casteljau algorithm describes the curve as a
recursive series of linear interpolations
e This form is useful for providing an intuitive

understanding of the geometry involved, but it is not
the most efficient form



de Casteljau Algorithm

Po

e We start with our original
set of points

e |nthe case of a cubic Bezier
curve, we start with four
points

P3

P,



de Casteljau Algorithm

g, = Lerp(t,p,,p;)
4, = I—erp(t1p11p2)
g, = Lerp(t,p,,ps)

Lerp(t,a,b)=(1—-t)a+tb by



de Casteljau Algorithm

r, = Lerp(t,q,,q,)
r, = Lerp(t,q,,q,)

P
______

\ ’
\ ’
N7
Ny
’
’
’
’
’
’



de Casteljau Algorithm

X = Lerplt,r,,I;




Bezier Curve

3



Recursive Linear Interpolation

x = Lerp(t,r,,r,)

O O O O

r, = Lerp(t,q,,q,)
r, = Lerp(t,q,,q,)

o

|

N

w

0
O
O

» = Lerp(t,p,,p;)
.= Lerp(t,p,,p,)
, = Lerp(t,p,,p,)

o

(@) (@) (@) (@)
N |

w



Expanding the Lerps

(1_t)po +1p,
(1—'[)p1 +1p,
(1—t)p2 +1p,

g, = Lerp(t, p,.p;)
g, = Lerp(t,p,, p,)
g, = Lerp(t, p,,ps)

I Lerp(t Uy ql):( )(( _t)po +tp1)+t((1_t)pl+tp2)
r, = Lerp(t,g,,q,)= Q—t)(1-t)p, +tp,)+t(1-t)p, +tp,)

x = Lerp(t,r, 1) = (L-tN(L-tNA-t)p, +tp, )+ t{1-t)p, +tp, )
+t(@-tN@-thp, +tp,)+t(A-t)p, +1p,))



Bernstein Polynomial Form

x=(1-th(L- @~ 1), +tp, )+ t(A-t)p, +1p, )
+t(Q-tN@-thp, +tp,)+t(A-t)p, +tp;))

x=(1-t)p, +3A-t)tp, +3(1-t)t’p, +t°p,

(-t3+3t2 =3t +1)p, + (33— 6t% + 3t )p,

(
+ (— 3t° +3t2)|o2 + (t3)|o3

X



Cubic Bernstein Polynomials

X(t)= (1 +3t? =3t +1)p, + (3t> -6t +3t Jp, +(3t° — 6t + 3t o, + (t* o,

X(t)=2_B(t)p

X = Bs(t)p, + B/ (t)p, + B; (t)o, + B (t)ps

B3(t)=—t*+3t° -3t +1
B3(t)=3t* -6t +3t
B3(t)= -3t + 3t°
B3(t)=t°



Bernstein Polynomials

f(t)
A




Bernstein Polynomials

B3(t)=—-t*+3t> -3t +1
Bz(t)—3t3—6t2+3t (1)=t 21+
i BZ(t)=—2t* + 2t
B3(t)=—3t> +3t’ A
B3(t)_t3 Z(t)_t

e




Bernstein Polynomials

e Bernstein polynomial form of a Bezier curve:

n)

BY(t)=| . [1-1)"'(1)

W

()= Bt




Bernstein Polynomials

e We start with the de Casteljau algorithm, expand
out the math, and group it into polynomial functions
of t multiplied by points in the control mesh

e The generalization of this gives us the Bernstein
form of the Bezier curve

e This gives us further understanding of what is
happening in the curve:

— We can see the influence of each point in the
control mesh as a function of t

— We see that the basis functions add up to 1,
indicating that the Bezier curve is a convex
average of the control points



Cubic Equation Form

x = (~t2+3t2 =3t +1)p, +(3t> -6t + 3t J,

F(=3t+3t% ), + (),

X = (_po +3p, —3p, +p3)t3 +(3po —6p, +3p2)t2
+(_ 3P, +3p1)t ""(po)l



Cubic Equation Form

X = (_ Py +3P; — 3P, +p3)t3 +(3po —6p, +3p2)t2
"‘(_ 3P, —|—3p1)[ T (po)l

X=at’+bt°+ct+d




Cubic Equation Form

If we regroup the equation by terms of exponents of
t, we get it in the standard cubic form

This form is very good for fast evaluation, as all of
the constant terms (a,b,c,d) can be precomputed
The cubic equation form obscures the input
geometry, but there is a one-to-one mapping
between the two and so the geometry can always be
extracted out of the cubic coefficients



Cubic Matrix Form

X = at® +bt? +ct +d

x=[t* t* t 1]

o o T 2

a:(_po+3p1
b:(3p0_6p1+3p2)
c=(-3p, +3p,)
d:(po)

al [-1 3 -3
b 3 -6 3
c| |-3 3 0
d| |1 0 o0

o O O -




Cubic Matrix Form
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Matrix Form

> >

t°BBez °GBez

Xx=t-C

X




Matrix Form

e We can rewrite the equations in matrix form

e This gives us a compact notation and shows how
different forms of cubic curves can be related

e |talsoisavery efficient form as it can take
advantage of existing 4x4 matrix hardware
support...



Bezier Curves & Cubic Curves

By adjusting the 4 control points of a cubic Bezier curve, we
can represent any cubic curve

Likewise, any cubic curve can be represented uniquely by a
cubic Bezier curve

There is a one-to-one mapping between the 4 Bezier control
points (p,,P.,P,,P;) and the pure cubic coeftficients (a,b,c,d)
The Bezier basis matrix Bg,, (and it's inverse) perform this
mapping

There are other common forms of cubic curves that also
retain this property (Hermite, Catmull-Rom, B-Spline)



Derivatives

e Finding the derivative (tangent) of a curve is easy:

dx
X = at® +bt* +ct +d —— =3at’+2bt+c

dt

x=t* t2 t 1] %2[3’[2 2t 1 0f

O o T QO

o o T Q2




Tangents

e The derivative of a curve represents the tangent
vector to the curve at some point



Convex Hull Property

e |f we take all of the control points for a Bezier curve and
construct a convex polygon around them, we have the convex

hull of the curve
e Animportant property of Bezier curves is that every point on

the curve itself will be somewhere within the convex hull of
the control points




Continuity

A cubic curve defined for t ranging from o to 1 will form a
single continuous curve and not have any gaps

We say that it has geometric continuity, or C° continuity

We can easily see that the first derivative will be a continuous
quadratic function and the second derivative will be a
continuous linear function

The third derivative (and all others) are continuous as well,
butin a trivial way (constant), so we generally just say that a
cubic curve has second derivative continuity or C? continuity

In general, the higher the continuity value, the ‘smoother’ the
curve will be, although it’s actually a little more complicated
than that...



Interpolation / Approximation

e We say that cubic Bezier curves interpolate the two
endpoints (p, & p,), but only approximate the interior
points (p, & p.)

e |n geometric design applications, it is often desirable
to be able to make a single curve that interpolates
through several points



Piecewise Curves

e Rather than use a very high degree curve to
interpolate a large number of points, it is more

common to break the curve up into several simple

curves

e Forexample, alarge complex curve could be broken
into cubic curves, and would therefore be a piecewise

cubic curve

e Forthe entire curve to loo
It is necessary to maintain
segments, meaning that t

kK smooth and continuous,
C* continuity across

ne position and tangents

must match at the endpoints
e Forsmoother looking curves, it is best to maintain

the C2 continuity as well



Connecting Bezier Curves

e Asimple way to make larger curves is to connect up Bezier
curves

 Consider two Bezier curves defined by p,...p; and v,,...v,

* If p,=v,, then they will have C° continuity

o |f (P5-P,)=(V,~V,), then they will have C* continuity

e (2 continuity is more difficult...

Vq

PN
// \\
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-
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CO continuity C* continuity
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Spur Gears with involute profile

The circular pitch, p,

Where d, = 2r, is the pitch circle diameter,

N is the number of gear teeth and « is the tooth angle.

The pitch circle radius wd, P _ -
T 180 Pc = ~ B2 p
a = ? radians or &« = —— degrees L -

We align the involute of one tooth with the XY
coordinate system as shown in Figure 4.4D.

I = T 608

0<6=<6__ " : ¢
/ . max

-\"r = f'hkCOS 9 + 9 S1n 6) d =17 — "l

Xx = —r(sin@ — @ cos )

(4.4) r,=098n00r. =7, +a=r



Spur Gears with involute profile

Example 4.2 Create the CAD model of a spur gear with
r.=60 mm, $=20°, and N=2o.

p
Using the above calculation steps, T .o
we get rb=56-382 mm, — @120 Pitch circle

@ 112.764 Base circle
@ 110.508 Root circle

d=a=3.618 mm,

r,=63.618 mm,

r=r55.254 mm, and a=9°.

There are two methods /

to create the tOOth Step |: Create Sketchl circles and axes:

involute curve. File > New > Part > OK > Front Plane > Circle on
Sketch tab > sketch four circles and dimension as
shown > Centerline on the Sketch tab > sketch
vertical line > File > Save As > example4.2 > Save.




Involute profile curve as spline

We can arbitrarily select a large enough value for 4, .
so that the involute crosses the addendum circle and then trim

it to that circle. Therefore, we create the involute profile by
generating points on it using Eq. (4.4) and connecting them with

a spline curve, or we input Eq. (4.4) into a CAD/CAM system.

Note: Set the part units to mm before you start. The vertical
centerline serves as a validation that the involute bottom
endpoint passes through it when we create it in Step 2. Also,
you will not close the sketch until you finish Step &.



Involute profile curve as spline

In the first method, we use Eq. (4.4) with Af@=5°. We generate
11 points on the involute, fora @ _ . = 50°.

We generate the points on the involute curve. We then use
Insert > Curve > Curve Through XYZ Points.

A better method is to input Eq. (4.4) to SolidWorks and let it
generate the curve. Enter the involute parametric equation
given by Eq. (4.4) into a CAD/CAM system to sketch the involute
curve as a spline. SolidWorks uses the parameter t, requiring us
to replace 8 by t when we input the equation.

Create one gear tooth and use sketch circular pattern to pattern

itto create all gear teeth. s el oa)

O = H = (_)I‘IH,‘{ L—i._H
y = n(cos @ + 6sin )



Step 2: Create Sketchl-tooth involute:

Sketch tab > Spline dropdown on the Sketch tab >
Equation Driven Curve > Parametric > enter x and y
equations and limits as shown > .

Enter a parametric equation in terms of
t between the start parameter t1 and
the end parameter t2.

) Explicit A =
© Parametric

Equation

Xt -56.382*(sin(t)-t*cos(t])

¥t 56382%(cost)+tsin(t)
Parameters
tl 0

‘:l




Step 3: Create
Sketchl-tooth bottom:

Line on Sketch tab >

sketch a line passing
through bottom end of
involute curve and
crossing the root circle =
> Esc on keyboard >
select the line + Ctrl
on keyboard + invo-

Small line
segment

lute curve > Tangent

from Add Relations
options on left pane > |

¢ > Point on Sketch

tab > create a point at intersection of involute and
pitch circle (turn relations on: View > Sketch Rela-
tions to see all) > Center line on Sketch tab > sketch
a line passing through origin and crossing involute at
any point > Esc key > select centerline just created +
Ctrl + point > Coincident from Add Relations

options on left pane > ¢ > Trim Entities on Sketch
tab > Trim to closest > select line below root circle
and select root circle between two centerlines > ¢ >
Fillet on Sketch tab > enter 1 mm for radius > select
line and root circle > Yes to continue > ¢ > select base
circle > Delete key on keyboard.

Step 4: Create
Sketchl-tooth other
half: Trim Entities on
Sketch tab > Trim to
closest > select
involute top part >
Centerline on Sketch
tab > sketch a line
passing through origin and to left of involute > Smart
Dimension on Sketch tab > select the centerline just
created and the other centerline to the right of it >
enter 4.5 > ¢ > Mirror Entities on Sketch tab > select
involute + Ctrl key + line segment connected to
involute + fillet created in Step 3 > click Mirror about
box on left of screen > select the far left centerline > ¢
> Trim Entities on Sketch tab > Trim to closest >
click addendum circle outside tooth > click root circle

inside tooth twice to delete its two segments inside the
tooth > ¢.




Step 5:
Create

Sketch1-all
SpU r Gea [ gear teeth:

Linear
Sketch
Pattern
dropdown on
Sketch tab >
Circular
Sketch
Pattern >
click first box
under Param-
eters on left
pane > select origin to define axis of pattern > click
Entities to Pattern box > select the tooth profile 7
entities > enter 20 for the number of instances to create
> ¢/ > the sketch becomes over defined when you
pattern the tooth because of the profile mirror of first
tooth. Click this sequence to resolve it: Over Defined
(shown red in status bar) > Diagnose > Accept > Trim
Entities > Trim to closest > trim all excess form root
circle (segments inside teeth) > ¢ > exit sketch.




- Spur Gear chamfer

Step 6: Create Gear feature: Select Sketchl > Features
tab > Extruded Boss/Base > Enter 25 for thickness
(D1) > reverse extrusion direction > .

Step 7: Create Sketch2 and Cut-Extrudel-Chamfer:
Select Gear front face > Features tab > Extruded

Cut >
Circle on
Sketch tab
> click
origin and
snap to
teeth root
circle >
exit sketch
> enter 10
for thick-
ness (D1) > check Flip side cut as shown above >
click Draft icon as shown above > enter 60 for draft
angle > v.

Step 8: Create Sketch3 and Cut-Extrude2-Chamfer:
Repeat Step 7, but use the back face of Gear.



‘Spline curve
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