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Geometric model is defined by solids,  
surfaces, curves, and points. 
Solids are bounded by surfaces.  
They represent solid objects. Analytic shape.  
Surfaces are bounded by lines.  They represent 
surfaces of solid objects, or planar or shell objects.  
Curves are bounded by points.   
They represent edges of objects.  
Lines, polylines, curve. 
Points are locations in 3-D space.  They represent  
vertices of objects. A set of points, point clouds. 

Geometric Modeling 



There is a built-in hierarchy among solid model entities.  
Solids (volumes) from surfaces,  
Surfaces (faces) from curves,  
Curves (edges) are built from the points,  
Points (vertices) are the foundation  
entities.    
The wire frame models does’nt have  
the surface and volume definition. 
Difference between  
wire, surface and solid models : 

Geometric Modeling 



 

geometric elements 
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Curve tools in CAD programs 

Sketching curve tools 



Analytic and Free Form Synthetic Curves 
Analytic Curves are points, lines, arcs  
and circles, fillets and chamfers, and  
conics (ellipses,  
parabolas,  
and hyperbolas) 
 
Free form synthetic curves include  
various types of splines  
(cubic spline, B-spline)  
and Bezier curves. 



Splines -- a mechanical beam with bending deflections, 
or a smooth curve under multiple constraints.  
Natural Spline : mathematical approximation of the 
spline historically used in naval construction.  

Splines 



. 

Physical Splines 



The splines were once physical things. In an era prior to CAD 
and large-format printing, when draftsmen needed to lay out full-
sized curves for boatbuilding, airplane manufacturing and the like 
this is how they did it  

Physical Splines 



 

Physical Splines 



To be clear, the "spline" is the actual strip of wood being bent and 
held in place. The things holding it in place are called spline 
weights, or colloquially, "ducks" or "whales." They weigh about 
five pounds apiece. 

Physical Splines 



Spline weights were typically cast in lead, then painted to prevent 
the user from transferring lead smudges from his hands onto the 
drawing. The bottom was lined in felt, to prevent tearing the 
paper it sat on. A protruding hook was used to pin the spline itself 
down. 

Physical Splines 



The surfaces of these  
heavy objects were  
purposely cast rough,  
which made them  
easier to pick up. 

Physical Splines 



In 2005 a company named Edson began manufacturing 
spline weights out of bronze rather than lead, to 
reduce the health risk. They go for $50 a pop. 

Physical Splines 



Anyways, next time you CAD jockeys are trying to 
massage the carpal tunnel out of your wrist, just be 
glad your mouse doesn't weigh five pounds. 

Physical Splines 



Motivations 
Techniques for Object Representation 
Curves Representation, Free Form Representation 
Approximation and Interpolation 
Parametric Polynomials 
Parametric and Geometric Continuity 
Polynomial Splines 
Hermite Interpolation 
Primitive Based Representation,  
Line segments:  A curve is approximated  
by a collection of connected line segments 

Curves Representations,  
Splines 



(1) Parametric vs. Nonparametric Curve Equation 
(2) Various free-form curves (some mathematics) :  
Hermite, Bezier, B-Spline Curve,  
NURBS (Nonuniform Rational B-Spline) Curves 
Applications: CAD, CAM, FEM, Design Optimization  
Examples: car bodies, ship hulls, airplane fuselage and 
wings, propeller blades, shoe insoles, and bottles 

Parametric Curves 
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Bézier curves and B-splines are generalized to rational 
Bézier curves and Non-Uniform Rational B-splines 
(NURBS).  
Rational Bézier curves are more powerful than Bézier 
curves since the former now can represent analitical 
curves, circles and ellipses.  
Similarly, NURBS are more powerful than B-splines.  

 

Bezier curves, Spline curves, NURBS 

B-spline 

NURBS 
Bezier 

Rational Bezier 



Parametric vs. Nonparametric  
Curve Representations 
(1) Parametric equation is good for calculating  
the points at a certain interval along a curve. 
x, y, z coordinates are related by a parametric  
and independent variable (u or θ)  
Point on 2-D, 3-D curve :  p = [x(u)   y(u)] 
                                                     p = [x(u)   y(u)  z(u)] 
(2) Nonparametric equation  
x, y, (z=0) coordinates are related by a function 
Explicit: 
 
Implicit:  



3D circle of radius R 
 
 
 
 
 
 
Other 2D representations of a circle  
is p(t)=(x(t),y(t)) coordinate functions 
and homogenous coordinates.   
 

Other Representations 



 
 
 
 
 
Circular helix parametric equation 

Circle Represented in Recursive Fashion 



Nonparametric equation: related to x, y, z 
Explicit   z = f(x, y) 
Implicit   f(x,  y, z) = 0 
 
Parametric: 
A one-to-one mapping  
from parametric space  
into the Euclidean space 
 

Curve representation equations 
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Other Parametric Curves 



APT Statements 

2D CAD 



. 

Representations of curves and surfaces 
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Explicit Form  z = f(x, y) 
• Easy to render 
• Unique representation 
• Difficult to represent all (vertical) tangents  
Implicit Form   f(x, y, z) = 0 
• Easy to test and determine if a point (object) lies on, 

inside, or outside a curve or surface 
• Unique representation 
• Difficult to connect two curves in a smooth manner 
• Not efficient for drawing. Difficult to render.  
Parametric Representation   p(u) = [x(u)  y(u)  z(u)] 
• Easy to render and common in modeling 
• Representation is not unique 

Comparison of  
representations 

https://www.google.com/url?sa=i&url=https://it.mathworks.com/help/curvefit/examples/how-to-construct-splines.html&psig=AOvVaw1BJzmmJ7CQnTI7hwqpqDVH&ust=1584018354836000&source=images&cd=vfe&ved=0CAIQjRxqGAoTCMi94au-kugCFQAAAAAdAAAAABCxAQ


Disadvantages 
Explicit    z = f(x, y) 
Infinite slopes are impossible if f(x,y) is a polynomial. 
Axis dependent (difficult to transform). 
Closed and multivalued curves are difficult to represent. 
Implicit      f(x, y, z) = 0 
Difficult to fit and manipulate free form shapes. 
Axis dependent.  Complex to trace. 
Parametric    p(t)=(x(t), y(t), z(t))  
High flexibility complicates intersections  
and point classification. 

Comparison of curve, surface reps 
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Advantages 
Explicit   z = f(x, y)   Easy to trace. 
Implicit     f(x, y, z) = 0 
Closed and multivalued curves and  
infinite slopes can be represented 
Point classification (solid modeling, interference check) is easy 
Intersections/offsets can be represented. 
Parametric   p(t)=(x(t), y(t), z(t))  
Closed and multivalued curves and infinite slopes can be 
represented.  Axis independent (easy to transform). 
Easy to generate composite curves.  Easy to trace. 
Easy in fitting and manipulating free-form shapes 

Comparison of curve, surface reps 
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• Let P1 and P2 be points in space.  
• if  0 ≤ t ≤ 1 then P is somewhere  
 on the line segment joining P1 and P2 . 
• We may utilize the following notation 
 P = P(t) = (1 - t) P1+ t P2 
 
• We can then define a combination  
 of two points  P1 and P2  to be  
• P = α1 P1+ α2 P2  where  α1 + α2 = 1 
• derive the transformation by setting  α2 = t 
 

Line  
(Combinations of Points) 

P1 

P2 

P1+ t (P2 - P1) 

t (P2 - P1) 
P 

α2 = t α1= 1- t 
1 

0 
P1 P2 

Linear  
interpolation 

t 1 



Three ways of writing a line segment: 
1. Weighted average of  
 the control points:  
 Q(t) = (1-t)p0 + tp1   

Basis Blending Functions: 
B0(t)=1-t        B1(t)=t       B0(t)+B1(t)=1 
Q(t) = B0(t)p0 + B1(t)p1 
 

2. Polynomial in t:  Q(t) = (p1-p0 )t + p0 
 

3. Matrix form:  

Line (Linear Interpolation) 

B1 B0 

1 

0 
p0 p1 

t 1 

p0 
t=1 

0<t<1 

Q(t) 

t=0 

p1 



The geometrical constraints for x(u) are: 
 
 
Solving the coefficients for x(u) we get: 
 
 
 
 
Solving for [x(u) y(u) z(u)] we get: 

Example: Linear Polynomial 



. 

Example: Linear Polynomial 



Parametric representation 
 
 
Parametric representation is not unique 
 
 
In general 
 
Re-parameterization  
(variable transformation) 

 

Line equation 



• Linear interpolation: 
 

• Local coordinates: 
 

• Reparameterization: 
 
 

• Affine transformation: 

Reparameterization 



• Points on 3D curves can be represented in a 
parametric form, as a function of a single variable      
u ∈ [0, 1]: 

• x(u), y(u), z(u) are polynomials, usually cubic curves 
 

• Any point on such a parametric curve is defined by 
the components of the vector p(u).  Thus, the 
boundary conditions are defined by the vectors  
[p(0), p(1), p′(0), p′(1)], where 

Geometric Modeling - Points and Curves 
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Let V(u)=[x(u), y(u), z(u)], u→[0,1] be a continuous 
univariate parametric curve in R3 

The tangent vector at u0 , T(u0), is: 
 
 
 
V(u) may be thought of as the trajectory of a point in 
time. In this case, T(u0) is the instantaneous velocity 
vector at time u0 . 

Tangent Vector 



Let V1(u) and V2(u) , u→[0,1], be two parametric curves. 
Level of parametric continuity of the curves  
at the joint between V1(1) and V2(0): 
C-1: The joint is discontinuous, V1(1)≠V2(0) 
C0: Positional continuous, V1(1)=V2(0) 
C1: Tangent continuous, C0 & V’1(1)=V’2(0) 
Ck, k>0: Continuous up to the k-th derivative, 
V1(j) (1)=V2(j) (0), 0 ≤ j ≤ k 

Parametric Continuity 



Geometric Continuity 
In computer aided geometry design,  
we also consider the notion of  
geometric continuity: 
G-1, G0: Same as C-1 and C0 

G1: Same tangent direction:  
V’1(1)=αV’2(0) 
 
Given a set of points {pi}: 
A piecewise constant interpolant is C-1 

A piecewise linear interpolant is C0 



Parametric and Geometric Continuity 
G-1, G0: Same as C-1 and C0 

G1: Same tangent direction: V’1(1)=αV’2(0) 
Gk: All derivatives up to the k-th order are proportional 
In general, Ci implies Gi (not vice versa). 
 
C1 => G1, unless tangent vector = [0, 0, 0]. 
Exception when the tangents are zero. 
 



G0 geometric continuity:  
 Two curve segments join together. 
G1 geometric continuity: The direction of the two segments’ 

tangent vectors are equal at the join point.  
C0 continuity: Curves share the same point where they join.  
C1 continuity: Tangent vectors of the two segments are 

equal in magnitude and direction (share the same 
parametric derivatives).  

C2 continuity: Curves share the same  
 parametric second derivatives  
 where they join.  

Parametric and  
Geometric Continuity 



S joins C0 , C1 , and C2 with  
C0 , C1 ,and C2 continuity, respectively.  
 
Q1 and Q2 are C1 continuous because  
their tangents, TV1 and TV2 are equal.  
 
Q1 and Q3 are only G1 continuous.  
 
Q1-Q2 both C1 and G1 

Q1-Q3 is G1 but not C1 

 

Joining Curve Segments 

S-C0 is C0 
S-C1 is C1 
S-C2 is C2 

 



Curve fitting to points 
Two possible approaches to  
curve-fitting to a set of data points  
collected through experimentation:   
 
Least-squares fit :  The best curve  
would most likely not pass through  
any one of the points; and, 
 
Spline fit :  A set of curves pass  
through all the given points and  
provide any desired degree of  
continuity at meeting points. 

 



Interpolated vs. Approximated Curves 
Given a set of control points Pi  
known to be on the curve,  
find a parametric curve  
that interpolates/ 
approximates the points 



Interpolation 
• Goes through all specified points 
• Sounds more logical 
• But can be more unstable 
 
Approximation 
• Does not go through all points 
• Turns out to be convenient 

 
We will do something in between. 

Interpolated vs. Approximated Curves 



Point:         Line: 
 
 
Quadratic curve: 
 
 
Parametric domain  
 
 
and reparameterization: 

Mathematical curve equations 
p0 

u=1 
0<u<1 

l(u) 

u=0 

p1 



Cubic Polynomial Curve 
Definition  (0≤u≤1)  
P(u) = [x(u) y(u) z(u)] T  = a0 + a1u + a2u2 + a3u3 
Major Drawback 
a0, a1, a2, a3 are simply algebraic vector coefficients.  
They do not reveal any relationship with the shape 
of the curve itself. In other words, the change of the 
curve’s shape cannot be intuitively anticipated from 
changes in their values. 
Why not quadric? 
P(u) = a0 + a1u + a2u2       (0≤u≤1)  



Quadric Polynomial Curve 
Definition   quadric curve to interpolate 
P(u) = [x(u) y(u) z(u)] T  = a0 + a1u + a2u2            (quadric)  

     (0≤u≤1)                P(u) = a0 + a1u + a2u2 + a3u3     (cubic ) 
An example: 
the parabola  
(x=cu2, y=u, z=0) 
               (quadric)  
                   (cubic ) 
a0, a1, a2, a3 are  
algebraic vector  
coefficients.  



Quadric Polynomial Curve 
P(u) = a0 + a1u + a2u2   (0≤u≤1)     
Given two 3D points P0 , P1 , and their tangents P0’ , P1’, 
find a quadric curve to interpolate them.  
Quadric curve’s use is limited. 



Cubic polynomials defining a curve in R3 have the form: 
 
 
 
 
where u is in [0,1].  Defining: 
 
 
The curve can be rewritten as: 
[x(u)   y(u)   z(u)]  =  VT(u)  =  UT(u)  Q 

Parametric Cubic Curves 



[x(u) y(u) z(u)] = VT(u) = UT(u) Q 
 
 
 
The coefficients Q are unknown  
and should be determined. For this purpose,  
we have to supply 4 geometrical constraints.  
Different types of constraints  
define different types of Splines. 

Parametric Cubic Curves 



Hermite Cubic  
Polynomial Curve 
When the conditions are the positions and two tangent 
vectors of two end points, a Hermite cubic spline 
parametric equation results. 



 
       Algebraic coefficients 
 
 
 
 
 
 
Rearrange the above cubic polynomial curve equation 

Hermite Cubic  
Polynomial Curve 



 
 
Blending (Basis) Functions 

Hermite Cubic Curve  
Blending Functions 



Hermite curve 
 
 
 
First derivative of curve, tangent of curve  
 
 
Second derivative of curve, inverse of radius curvature 

Derivatives of Hermite Cubic Splines 



High-order Parametric Polynomials 
Polynomial interpolation has several disadvantages: 
 
Polynomial coefficients are geometrically meaningless. 
Polynomials of high degree introduce unwanted 
(wiggles) oscillations.  
 
 
Polynomials of low degree give little flexibility. 
Solution: Polynomial Splines 



High-order polynomials 
 
 
 
No intuitive insight for the curved shape.  
Difficult for piecewise smooth curves.  
 

Parametric Polynomials 



∑
=

=
n
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Parametric Polynomials 
Polynomial interpolation curve  
using equal parameter distance 
ui = i/n , 0≤u≤1 , i=0..n    pi =p(ui) 
 
 
 
 



The main motivation for using splines instead of a single 
polynomial is to avoid the oscillations in high-degree 
interpolating polynomials that can occur between interpolation 
points. A spline-fit curve may have undesirable infliction points.  
undesirable infliction points. 
 

Motivation of Splines 



• Lowest degree for specifying curve in space 
• Lowest degree for specifying points to interpolate 

and tangents to interpolate 
• Commonly used in computer graphics 
• Lower degree has too little flexibility 
• Higher degree is unnecessarily complex, exhibit 

undesired wiggles 
 

Why Cubic Polynomials 



Piecewise, low degree polynomial curves for different parts 
of the curve with continuous joints 
 
 
 
Advantages: 
• Low-degree, Flexible, Rich representation 
• Geometrically meaning coefficients 
• Local effects 
• Interactive sculpting capabilities 
Disadvantages:  
• How to ensure smoothness at the joints (continuity) 

 
 

Piecewise Polynomial Splines 



Assume we have n control points {pk} with their 
tangents {Tk} 
V(u) represents a parametric cubic function for the 
section between pk and pk+1 
For V(u) we have the following geometric constraints: 
V(0)  = pk ;     V(1)  = pk+1 
V'(0) = Tk ;     V'(1) = Tk+1 

Hermite Curves 
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Hermite Curves 



 
 
 
 
 
 
 
 
 
 
 
                                          Hermite blending functions 

Hermite Curves 



Properties: The Hermite curve is composed of a linear 
combinations of tangents and locations (for each u).  
Alternatively, the curve is a linear combination of 
Hermite basis functions (the matrix M).  
It can be used to create geometrically intuitive curves.  
The piecewise interpolation scheme is C1 continuous.  
The blending functions have local support; changing  
a control point or a tangent vector, changes its local 
neighborhood while leaving the rest unchanged.  
Main Drawback: Requires the specification of the 
tangents.  This information is not always available.  

Hermite Curves 



Benefits 
If the designer changes P0 or P1 , he/she immediately 
knows what effect it will have on the shape – the end 
point moves.  
Similarly, if he modifies P0’ or P1’, he/she knows at least 
the tangent direction at that end point will change 
accordingly.  
Deficiency  It is not easy to predict curve shape 
according to changes in size of the tangents P0’ or P1’.  
 

Hermite Curves 



. 

The effect of tangents on a Hermite Curve 



k0: magnitude of tangent at p0 

k1: magnitude of tangent at p1 

The tangent directions at p0 and p1 are fixed. 

 
 

Effect tangents’ Magnitudes on a Hermite 



. 

Parametric polynomial Cubic Curve 



 
 
 
 
Hermite Blending functions 
Hermite Curve 
 
 
 
 

Hermite Curve 



 
Hermite  

Basis  
Blending  

Functions 
V is geometry vector 
  (boundary conditions)                                                    Linear  
Hermite matrix                                                               blending  

functions 
for line 

 

Hermite Curve 

1 

0 1 

P1 
P2 

P(t) = (1 - t) P1+ t P2 



Rather than use a very high degree curve to interpolate 
a large number of points, it is more common to break 
the curve up into several simple curves. For example, a 
large complex curve could be broken into cubic curves, 
and would therefore be a piecewise cubic curve.  
For the entire curve to look smooth and continuous,    
it is necessary to maintain C1 continuity across 
segments, meaning that the position and tangents 
must match at the endpoints. For smoother looking 
curves, it is best to maintain the C2 continuity as well.  

Piecewise Hermite  
Cubic Spline Curve 



The above equation is for one cubic spline segment.  
It can be generalized for any two adjacent spline 
segments of a spline curve that are to fit a given 
number of data points.  
This introduces the problem of blending or joining 
cubic spline segments.  
Given a set of n points P0, P1,...Pn-1  and the end 
tangent vectors P'0, P'n-1 connect  
the points with a cubic spline curve.  

Piecewise Hermite Cubic Spline Curve 



Fit a given number of data points and two end tangent 
vectors. 
For curvature continuity between the first two 
segments, we can write  
For 2’nd and 3’rd segm. :  

Hermite Cubic Spline Curve 
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Hermite Cubic Spline Curve 



for next cubic spline segments 
 
 
 
If we have m-1 segments on cubic spline defined  
by P0 . . . Pm-1 points. 
a) if the end point tangents are known  
b) and the second derivatives at P0 . . . Pm-1 end points 

are equal to 0, 
this curve is named as Natural Cubic Spline. 

Hermite Cubic Spline Curve 
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Hermite Cubic Spline Curve 



A Bézier curve only interpolates the first and last 
control points (p0, pn) and the order of the polynomial 
is defined by the number of control points considered, 
e.g., 

Bezier Curves 

3
3

2
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1
2

0
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Bezier Curves 



User specifies 4 control points P1 ... P4 
Curve goes through (interpolates) the ends P1, P4 
Approximates the two other ones 
The weights describe the influence  
of each control point  
Cubic polynomial : 

Cubic Bezier Curve 
3

3
2

2
1

2
0
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Cubic polynomial : 
 
 
 
 
 
 
 
 
Verify what happens for t=0 and t=1  

Cubic Bezier Curve 
3

3
2

2
1

2
0

3 )1(3)1(3)1()( ppppp uuuuuuu +−+−+−=



Cubic Bezier Curve 
4 control points 
Curve passes through first & last control point 
Curve is tangent at P1 to (P1-P2) and at P4 to (P4-P3) 
A Bézier curve is bounded by the convex hull of its 
control points. 

convex hull 
of a point set nonconvex 

polygon 



P(t) is a weighted linear combination  
of the 4 control points with weights: 
 
B1(t)=(1-t)³  
B2(t)=3t(1-t)²  
B3(t)=3t²(1-t)  
B4(t)=t³  
 
First, P1 is the most influential 
point, then P2, P3, and P4 . 
P2 and P3 never have full influence.  
Not interpolated! 

 
Bezier blending functions, weights 
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Bezier, Bernstein basis polynomials 
For Bézier curves, the basis polynomials/vectors are 
Bernstein polynomials  
For cubic Bezier curve: 
B1(t)=(1-t)³  
B2(t)=3t(1-t)²  
B3(t)=3t²(1-t)  
B4(t)=t³  
 
(careful with indices, many authors start at 0) 
Defined for any degree 



 
 
• Sum to 1 for every t 
• called partition of unity 
• These two together are the  
     reason why Bézier curves lie  
     within convex hull 
• B1(0) =1 
• Bezier curve interpolates P1 
• B4(1) =1 
• Bezier curve interpolates P4 

Properties of Bernstein Polynomials 



• P(t) = P1B1(t) + P2B2(t) + P3B3(t) + P4B4(t) 
• Pi are 2D points (xi , yi) 
• P(t) is a linear combination of the control points with 

weights equal to Bernstein polynomials at t 
• But at the same time, the control points (P1, P2, P3, 

P4) are the “coordinates” of the curve in the 
Bernstein basis 

• In this sense, specifying a Bézier curve with control 
points is exactly like specifying a 2D point with its x 
and y coordinates. 

Bézier Curves in Bernstein Basis 
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How do we go from Bernstein basis to  
the canonical monomial basis 1, t, t², t³ and back? 
• With a matrix! 
B1(t)=(1-t)³  
B2(t)=3t(1-t)²  
B3(t)=3t²(1-t)  
B4(t)=t³  

Change of Basis,  
How You Get the Matrix 



Given B1...B4, how to get back to canonical 1, t, t², t³ ? 
That’s right, with the inverse matrix!  
 
 
 
 
 
The cubic basis can be extended to higher-order 
polynomials. Higher-dimensional vector space, more 
control points 

Change of Basis, Other Direction 



 
Change of Basis with matrices 

• Cubic polynomials form a 4D vector space.  
• Bernstein basis is canonical for Bézier.  
• Can be seen as influence function of data points  
• Or data points are coordinates of the curve in the 

Bernstein basis.  
• We can change between  
     basis with matrices.  

 



. 

More Matrix-Vector Notation 



. 

Cubic Bézier in Matrix Notation 



> 4 control points 
Bernstein Polynomials as the basis functions 
For polynomial of order n, the ith basis function is 
 
 
 
• Every control point affects the entire curve 
• Not simply a local effect 
• More difficult to control for modeling 
• You will not need this in this class 

Higher-Order Bézier Curves 
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• Can we split a Bezier curve in the middle into two 
Bézier curves? 

• This is useful for adding detail 
• It avoids using nasty higher-order curves 
• The resulting curves are again a cubic (Why? A cubic 

in t is also a cubic in 2t) 

Subdivision of a Bezier Curve 



• Take the middle point of each of the 3 segments 
• Construct the two segments joining them 
• Take the middle of those two new segments 
• Join them 
• Take the middle point P’’’ 

 
De Casteljau Construction  



The two new curves  
are defined by 
P1, P’1, P’’1, and P’’’ 
P’’’, P’’2, P’3, and P4 
Together they exactly replicate the original curve! 
Originally 4 control points, now 7 (more control) 
Ref. MIT OpenCourseWare http://ocw.mit.edu6.837 
Computer Graphics Fall 2012 For information about 
citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms. 

Result of Split in Middle 



Actually works to construct a point at any t, not just 0.5  
Just subdivide the segments with  
ratio (1-t), t (not in the middle). 
Linear combination  
of basis functions.  
Bernstein polynomials  

 
Subdivision by  
de Casteljau algorithm  
All linear, matrix algebra  
 

De Casteljau Construction 



Four control points, Curve geometry 
Cubic Bezier curve geometry 
 
 
Control points and basis functions 
Image and properties of basis functions 
               Recursive  
               Linear 
               Evaluation 

Cubic Bezier Curves 



Cubic Bezier Curve Properties 
• The curve passes through the  
     first and the last points  
     (end-point interpolation). 
• Linear combination of control  
     points and basis functions. 
• Basis functions are all polynomials 
• Basis functions sum to one (partition of unity) 
• All basis functions are non-negative 
• Convex hull (both necessary and sufficient) 
• Predictability 



• Curve Subdivision 

de Casteljau’s Algorithm 



. 

Tangent, Normal, Curvature of a Curve 



Measures the degree of “smoothness” of a curve. 
 
C0 continuous – position continuous 
 
C1 continuous – slope continuous 
 
C2 continuous – curvature continuous 
 
C1 is the minimum acceptable curve for engineering design.  
Cubic polynomial is the lowest-degree polynomial that can 
guarantee the generation of C0, C1, and C2 curves.  
Higher order curves tend to oscillate about control points. 
 

Continuity 



Bezier curves can represent complex curves by 
increasing the degree and thus the number of control 
points.  
Alternatively, complex curves can be represented 
using composite curves, which can be formed by 
joining several Bezier curves end to end.  
If this method is adopted, the continuity between 
consecutive curves must be addressed. 

Continuity algorithm 
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i obtained 

from old polygon by 
piecewise linear interpolation 
at parameter values i/(n+1). 

Degree Elevation of a Curve 



A Bezier curve can be evaluated at a specific parameter 
value t0 and the curve can be split at that value using 
the de Casteljau algorithm 
 
 
 
 
Symmetry property: If we renumber the control 
points as b*

n-i = bi  , 

Evaluation and subdivision algorithm 



Piecewise, low degree polynomial curves for different parts 
of the curve with continuous joints 
 
 
 
Advantages: 
• Low-degree, Flexible, Rich representation 
• Geometrically meaning coefficients 
• Local effects 
• Interactive sculpting capabilities 
Disadvantages:  
• How to ensure smoothness at the joints (continuity) 

 
 

Piecewise Polynomial Splines 



B3, B4/C1, C2 must lie in straight line 

Bezier curves – Continuity 



Joining adjacent curve segments                                                                
is an alternative to degree elevation. 
 
Collinearity of cubic Bezier                                                                  
control points produces                                                                                    
G1 continuity at join point: 
 
Evaluate at u=0 and u=1 to show                                                
tangents related to first and last                                                           
control polygon line segment. 
 
For G2 continuity at join point, 5 vertices must be coplanar. 

Composite Bezier Curves 

)(3)0( 01 ppp −=u )(3)1( 23 ppp −=u



Both Bézier curves and B-splines are polynomial 
parametric curves. Polynomial parametric forms can  
not represent some simple analytic curves such as 
circles, conics (ellipses, parabolas, and hyperbolas).  
 
Composite Curves by using Continuity 
 

Curves 



Smoothly interpolate an ordered list of points by many 
Bezier curves. To interpolate points ●, first construct 
temporary points ○, the two sets of points induce 4 
quadric Bezier curves that meet smoothly at the points 
to be interpolated. Problem: How to determine these 
temporary points ○? By what criteria? Is quadric Bezier 
enough? 

Interpolation using Bezier curve  



Bezier curves of degree n 
 
 
 
Control points and basis  
functions (Bernstein  
polynomials of degree n): 
 
Recursive Computation: 

Bezier Splines 



 
N+1 levels 

Recursive Computation 



• Basis functions are non-negative 
• The summation of all basis functions is unity 
• End-point interpolation 
• Binomial expansion theorem 
• Convex hull: the curve is bounded by the convex hull 

defined by control points 
• Recursive subdivision  
     and evaluation 
• Symmetry: c(u) and c(1-u) are defined by the same 

set of points, but different ordering 

Properties of Bezier Splines 



• Use its control polygon to approximate the curve 
• Recursive subdivision till the tolerance is satisfied 
• Algorithm go here 
• If the current control polygon is flat (with tolerance), 

then output the line segments, else subdivide the 
curve at u=0.5 

• Compute control points for the left half and the right 
half, respectively 

• Recursively call the same procedure for the left one 
and the right one 

Bezier Curve Rendering 



 

 

 

The shape of the curve can be changed by emphasizing certain 
desired points by creating pseudo-points coinciding at the same 
location: 

Points and Curves  (cont.) 



Effect of the weights of  
the control points  
of a Rational Bezier curve 

 

Rational Bezier curve 



n=3      i=0,…,n     binomial const.  C(n,i) = n! / ( i! (n-i)!)  

B(i,n,u) = C(n,i) ui (1-u)n-i     Bezier weights 

 

Bezier curves by Bernstein polynomials 

P(u) = ∑ B(i,n,u) Pi 
i=0 

n 



 
 

(a) degree three,    (b) degree four 

Bernstein polynomials 



. 

The de Casteljau algorithm 



. 

Properties of the Berntein polynomials 



• . 

Derivative of a Bernstein polynomial 



(in-class derivation) 

 
 
 
The right hand is a Bezier curve of degree (n-1), if you take 
n(Pi+1-Pi) as a new control point. At u=0 and u=1, the two ends 
of the Bezier curve, their tangents are n(P1-P0) and n(Pn-Pn-1) 
respectively.  

Derivative of a Bezier Curve 



(2700 if for cubic n = 3) 

Evaluation of Bezier Curves  



De Casteljau Algorithm  

(vs. 2700 of naïve way) 
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Blending function  

. 



If the degrees of the two polynomials are the same, i.e. 
m = n,  we simply add or subtract the coefficients 
 
 
 
If m > n, we need to first degree elevate g(t), m-n times 
and then add or subtract the coefficients 

Addition and subtraction 



Multiplication of two polynomials of degree m and n 
yields a degree m+n polynomial 
 
 
 
 
Geometry invariance property: Partition of unity 
property of the Bernstein polynomial assures the 
invariance of the shape of the Bezier curve under 
translation and rotation of its control points. 

Multiplication 



The first and last control points are the endpoints of 
the curve. In other words, b0 = r(0) and bn = r(1). 
The curve is tangent to the control polygon at the 
endpoints. This can be easily observed by taking the 
first derivative of a Bezier curve 

End points geometric property: 



• The order of the degree of curve is variable and related 
to the number of points defining it. n+1 points define an 
n'th degree curve which permit higher-order continuity.  

• Control points form the vertices of what is called 
characteristic polygon.  Curve lies entirely within the 
convex hull defined by the polygon vertices.  

• Only the first and the last control points or vertices of 
the polygon actually lie on the curve. The other vertices 
define the order, derivatives, and the shape of the curve. 

• The curve is also always tangent to the first and last 
polygon segments. In addition, the curve shape tends 
to follow the polygon shape.  
 

Bezier curves 



One set of continuity conditions are the geometric 
continuity conditions, designated by the letter G with 
an integer exponent.  
Position continuity, or G0 continuity, requires the 
endpoints of the two curves to coincide.   
 
 
 
The superscripts denote the first and second curves.  
 
 

Continuity conditions 



Tangent continuity, or G1 continuity, requires G0 
continuity and in addition the tangents of the curves to 
be in the same direction,  
 
 
where t is the common unit tangent vector and α1, α2 
are the magnitude of vectors. G1 continuity is 
important in minimizing stress concentrations in 
physical solids loaded with external forces and in 
helping prevent flow separation in fluids.  
 

G1 tangent continuity 



Curvature continuity, or G2 continuity, requires G1 
continuity and in addition the center of curvature to 
move continuously past the connection point. 
 
 
 
where µ is an arbitrary constant. G2 continuity is 
important for aesthetic reasons and also for helping 
prevent fluid flow separation. 
 
 

G2 Curvature continuity 



More stringent continuity conditions are the 
parametric continuity conditions, where Ck continuity 
requires the kth derivative (and all lower derivatives) of 
each curve to be equal at the joining point. In other 
words, 
 
 
Figure illustrates the  
connection of two  
cubic Bezier curve  
segments at t = ti+1 

Ck continuity (all lower derivatives)  



. 

Examples of Bezier Curves  



. 

Quadratic Bézier curves 



. 

Cubic Bézier curves 



 
 
 
 
 
 
 
Fifth Order Bezier Curve 
For fifth-order curves, one can  
construct similar intermediate points. 

Quartic Bezier Curve 



. 

Bezier curve defined by 4 points 



Why and What To Do?  

 The culprit is the Bezier curve’s blending functions                 
fi(u) = Bi,n(u): because Bi,n(u) is non-zero in the entire 
parameter domain [0,1],  if the control point Pi moves,             
it will also affect the entire curve.  

 
 What we need is some blending function fi(u) such that: 
  1. It is non-zero over only a limited portion of the parameter  
 interval of the entire curve, and this limited portion is 

different for each blending function. (Therefore, when Pi 
moves, it only affects a limited portion of the curve.)  

 
 2. It is independent of the number of control points n. 
 Answer:   
 B-Splines 



Let’s Search for a Good Blending Function fi(u)  

Two properties that fi(u) must  
have: (1)  fi(u) ≥ 0 for all i   and (2)  

P(u) = f0(u)P0 + f1(u)P1 + f2(u)P2+ … + fn(u)Pn      (umin≤u≤umax) 
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Step 1. Allocate an interval of u for each fi(u),  
 say we let umin=0, umax=n+1, and interval [i,i+1] is for fi(u). 
Step 2. Look at the simplest case of fi(u), i.e., fi(u) is of degree 0,             

a constant. Let  this special blending function be called Ni,1(u)       
(where 1 indicates the order of fi(u)). 

Step 3. Look at the 2nd simplest case of fi(u), i.e., fi(u) is linear;               
it is now denoted as Ni,2(u). 

Step 4. One more step further, fi(u) = Ni,3(u), i.e., quadratic function of u. 
Step 5. Finally, how about fi(u) is of an arbitrary degree k-1 of u, i.e., 

Ni,k(u)? 



Geometric form (non-uniform,  
non-rational case),  
where K controls degree  
(K -1) of basis functions:  
 
 
 
ti are n+1+K knot values that relate u to the control points. 
Uniform case: space knots at equal intervals of u. Repeated 
knots move curve closer to control points. Cubic B-splines can 
provide C2 continuity at curve segment join points.  
Rational form (NURBS) where hi are weights. 
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Convex combination, so B-spline curve points all lie 
within convex hull of control polygon. 



Definition of B-Spline curve  

. 



Properties of B-Spline curve  

. 



. 

B-Spline Curve 



. 

B-Spline Curve 



. 

B-Spline Curve 



. 

B-Spline Curve 



. 

B-Spline Curve 



. 

B-Spline Curve 



. 

B-Spline Curve 



. 

B-Spline Curve 
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Closed B-Spline Curve 



. 

Closed B-Spline Curve 



. 

Closed B-Spline Curve 



. 

Closed B-Spline Curve 



. 

B-Spline Curve 



. 

Cubic Spline Bezier Curve 



. 

Closed B-Spline Curve 



. 

Closed B-Spline Curve 



. 

B-Spline Curve 



. 

Closed B-Spline Curve 



. 

Closed B-Spline Curve 
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Closed B-Spline Curve 



. 

β-Spline Curve 



. 

Rational  
Curves 



. 

Conversion between curve representation 



. 

Conversion between curve representation 



. 

Comparison of curve/surface rep. methods 

Ferguson : cubic (or higher order) polynomials 

Lagrange : interpolation polynomial curve 



 
 
 
 

B-Spline Curve 

B-Spline Curve 
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B-Spline Curve 
Motivation  Bezier representation is good, but has these drawbacks: 
1. High degree 
The degree is determined by the number of control points which tends to be 
large for  complex curves. This causes oscillation and other computational 
problems. 
 
2. Global propagation of local change 
When modifying a control point, the designer wants to see the shape change 
locally around  the moved control point. In Bezier case, the change however 
tends to be strongly propagated throughout the entire curve.  
 
3. Intractable linear equations 
If we are interested in interpolation rather than just approximating a shape, 
we need to compute the control points from the points on the curve. This 
leads to systems of linear equations, and solving such systems can be 
impractical when the degree of the curve is large. 



B-Spline 
 
 
 
 
B-Spline Blending 
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p0 

p1 

p2 

p3 

p4 
p5 

p6 

B-Spline Curve 
A pictorial illustration 
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Unlike Bezier basis function Bi,n(u), the degree of the B-Spline basis 
function Ni,K(u) is NOT dependent on the number of control points n; 
instead, it is controlled by another integer K independent of n.   



174 

B-Spline Curve 
Definition of B-Spline basis function Ni,K(u)  
 
Step 1.  Choose an appropriate K (usually 4); K-1 will be the 
degree of Ni,K(u). 
 
Step 2. Choose n+K+1 real numbers called knots  
 {t0, t1, …, tn+K} (tj ≤ tj+1).  
 
Step 3.   Ni,1(u) = 1 if ti ≤ u ≤ ti+1 

    = 0 otherwise 
 and 
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B-Spline Curve 
Knots vectors 
 
- Uniform (U) 
  t0 = 0, t1 = 1, . . . , tn+K = n+K.  
 
- Nonuniform and clamped (NU&C) 
  tj = 0  if j < K 
  tj = j – K + 1 if K ≤ j ≤ n 
  tj = n – K + 2 if j > n 
 
  for j = 0, …, n + K. 
 
- Nonuniform (NU) 
  Any, as long as tj ≤ tj+1 for all j=0,1,…, n+K.  
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B-Spline Curve 
NU&C example 1 (n = 5, K =1 ) 
 
1. Since n+K = 6, there are seven knots and their values are: 
 t0 = 0 t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5  t6 = 6  
  
 
2. By recursive definition of Ni,1(u) 
 
N0,1(u)  = 1 if 0 ≤ u < 1 
 = 0 otherwise 
N1,1(u)  = 1 if 1 ≤ u < 2 
 = 0 otherwise 
N2,1(u)  = 1 if 2 ≤ u < 3 
 = 0 otherwise 
N3,1(u)  = 1 if 3 ≤ u < 4 
 = 0 otherwise 
N4,1(u)  = 1 if 4 ≤ u < 5 
 = 0 otherwise 
N5,1(u)  = 1 if 5 ≤ u < 6 
 = 0 otherwise 
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B-Spline Curve 
NU&C example 1 (n = 5, K =1 ) (cont’d) 

 
3. What is the curve ? 
    
 
P(u)  = p0  for 0 ≤ u < 1 
P(u)  = p1  for 1 ≤ u < 2 
P(u)  = p2  for 2 ≤ u < 3 
P(u)  = p3  for 3 ≤ u < 4 
P(u)  = p4  for 4 ≤ u < 5 
P(u)  = p5  for 5 ≤ u < 6 
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B-Spline Curve 
NU&C example 2 (n = 5, K =2 ) 
 
1. Since n+K = 7, there are eight knots and their values are: 
  t0 = 0    t1 = 0    t2 = 1    t3 = 2    t4 = 3    t5 = 4    t6 = 5    t7 = 5 
2. By definition of Ni,1(u) 
  N0,1(u)  = 1 if u = 0 
   = 0 otherwise 
  N1,1(u)  = 1 if 0 ≤ u < 1 
   = 0 otherwise 
  N2,1(u)  = 1 if 1 ≤ u < 2 
   = 0 otherwise 
  N3,1(u)  = 1 if 2 ≤ u < 3 
   = 0 otherwise 
  N4,1(u)  = 1 if 3 ≤ u < 4 
   = 0 otherwise 
  N5,1(u)  = 1 if 4 ≤ u < 5 
   = 0 otherwise 
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B-Spline Curve 
NU&C example 2 (n = 5, K =2 ) (cont’d) 
 

3.  By definition of Ni,2(u) 
 
N0,2(u)  = (1 - u)N0,1(u)  
N1,2(u)  = uN1,1(u) + (2 – u)N2,1(u) 
N2,2(u)  = (u – 1)N2,1(u) + (3 – u)N3,1(u)  
N3,2(u)  = (u – 2)N3,1(u) + (4 – u)N4,1(u)  
N4,2(u)  = (u – 3)N4,1(u) + (5 – u)N5,1(u)  
N5,2(u)  = (u – 4)N5,1(u) 
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B-Spline Curve 
NU&C example 2 (n = 5, K =2 ) (cont’d) 

 
4. What is the curve ? 
    
P(u) = P1(u) = (1-u)p0 + up1   for 0 ≤ u < 1 
P(u) = P2(u) = (2-u)p1 + (u-1)p2  for 1 ≤ u < 2 
P(u) = P3(u) = (3-u)p2 + (u-2)p3  for 2 ≤ u < 3 
P(u) = P4(u) = (4-u)p3 + (u-3)p4  for 3 ≤ u < 4 
P(u) = P5(u) = (5-u)p4 + (u-4)p5  for 4 ≤ u < 5 
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B-Spline Curve 
NU&C example 3 (n = 5, K = 3 ) 
 
1. Since n+K = 8, there are nine knots and their values are: 
 t0 = 0    t1 = 0    t2 = 0   t3 = 1    t4 = 2    t5 = 3    t6 = 4    t7 = 4    t8 = 4 
  
2. By definition of Ni,1(u) 
 
N0,1(u)  = 1 if u = 0 
  = 0 otherwise 
N1,1(u)  = 1 if u = 0 
  = 0 otherwise 
N2,1(u)  = 1 if 0 ≤ u < 1 
  = 0 otherwise 
N3,1(u)  = 1 if 1 ≤ u < 2 
  = 0 otherwise 
N4,1(u)  = 1 if 2 ≤ u < 3 
  = 0 otherwise 
N5,1(u)  = 1 if 3 ≤ u < 4 
  = 0 otherwise 
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B-Spline Curve 
NU&C example 3 (n = 5, K = 3 ) (cont’d)  
 
3.  By definition of Ni,2(u) 
 
N0,2(u)  = 0 
N1,2(u)  = (1 – u)N2,1(u) 
N2,2(u)  = uN2,1(u) + (2 – u)N3,1(u)  
N3,2(u)  = (u – 1)N3,1(u) + (3 – u)N4,1(u)  
N4,2(u)  = (u – 2)N4,1(u) + (4 – u)N5,1(u)  
N5,2(u)  = (u – 3)N5,1(u) 
 
The u-range for Ni,2(u) is determined by that of Ni,1(u) and Ni+1,1(u). For 
example, N3,2(u) is non-zero only in 1 ≤ u < 3, since N3,1(u) non-zero only in 1 ≤ 
u < 2 and N4,1(u) is defined only in 2 ≤ u < 3.  
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B-Spline Curve 
NU&C example 3 (n = 5, K = 3 ) (cont’d) 
 
4.  By definition of Ni,3(u) 
 
N0,3(u)  = (1 – u)2N2,1(u) 
N1,3(u)  = 0.5u(4 – 3u)N2,1(u) + 0.5(2 – u)2N3,1(u) 
N2,3(u)  = 0.5u2N2,1(u) + 0.5(-2u2 + 6u -3)N3,1(u) + 0.5(3-u)2N4,1(u)  
N3,3(u)  = 0.5(u-1)2N3,1(u) + 0.5(-2u2 + 10u -11)N4,1(u) + 0.5(4-u)2N5,1(u)  
N4,3(u)  = 0.5(u-2)2N4,1(u) + 0.5(-3u2 + 20u -32)N5,1(u)  
N5,3(u)  = (u – 3)3N5,1(u) 
 
The u-range for Ni,3(u) is determined by that of  
Ni,1(u), Ni+1,1(u), and Ni+2,1(u).  
 
For example, N2,3(u) is non-zero only in 0 ≤ u < 3,  
since outside 0 ≤ u < 3  all N2,1(u), N3,1(u), and N4,1(u) are zero. 
 
  Pictures of Ni,3(u). 
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B-Spline Curve 
NU&C example 3 (n = 5, K = 3 ) (cont’d) 
 
5.  Pictures of Ni,3(u) 
 
 
 

Example: On interval 
1≤u<2, only N1,3(u), 
N2,3(u), and N3,3(u) are 
non-zero; therefore, 
only the three control 
points p1, p2, and p3 will 
affect on this interval. 
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B-Spline Curve 
NU&C example 3 (n = 5, K = 3 ) (cont’d) 
 
6.  What is the curve    ? 
    
P(u) = P1(u) = (1 – u)2p0 + 0.5u(4-3u)p1 + 0.5u2p2  for 0 ≤ u < 1 
   
P(u) = P2(u) = 0.5(2 – u)2p1 + 0.5(-2u2 + 6u -3)p2 + 0.5(u-1)2p3 for 1 ≤ u < 2 
 
P(u) = P3(u) = 0.5(3 – u)2p2 + 0.5(-2u2 + 10u -11)p3 + 0.5(u-2)2p4 for 2 ≤ u < 3 
 
P(u) = P4(u) = 0.5(4 – u)2p3 + 0.5(-3u2 + 20u -32)p4 + (u-3)2p5 for 3 ≤ u < 4 
 
   
This is a C1 curve with:   
   P(1) = P1(1) = P2(1);  P’(1) = P’1(1) = P’2(1) 
   P(2) = P2(2) = P3(2);    P’(2) = P’2(2) = P’3(2)  
   P(3) = P3(3) = P4(3);    P’(3) = P’3(3) = P’4(3) 

∑
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B-Spline Curve 
NU&C example 3 (n = 5, K = 3 ) (cont’d) 
 
7.  Picture of                  

    
   

∑
=

=
5

0
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B-Spline Curve 
Properties of NU&C (n, K) 
  
1.   It is a CK-2 curve in [0≤ u ≤ n–K+2]. 
 
2.   It consists of n-K+2 independent CK-1 curves (segments) defined 

respectively  on [0,1), [1,2), …, [n-K+1, n-K+2].  
 
3.   The curve passes the first and last control points p0 and pn. 
 
4. The tangents at the two ends, p0 and pn, are parallel to p1- p0 and pn- pn-1 

 respectively.  
 
5. Each segment is influenced by only K control points, and, conversely, 

each  control point influences only K curve segments. 
  http://theory.lcs.mit.edu/~boyko/classes/b-spline.html  

 http://www.cs.berkeley.edu/~j-yen/splines/bsplinecurve/ 

http://theory.lcs.mit.edu/~boyko/classes/b-spline.html
http://theory.lcs.mit.edu/~boyko/classes/b-spline.html
http://theory.lcs.mit.edu/~boyko/classes/b-spline.html
http://www.cs.berkeley.edu/~j-yen/splines/bsplinecurve/
http://www.cs.berkeley.edu/~j-yen/splines/bsplinecurve/
http://www.cs.berkeley.edu/~j-yen/splines/bsplinecurve/
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B-Spline Curve 
Properties of NU&C (n, K) (cont’d) 
  
6.   Except for the very few segments near the end points (depending on K), 

the  segment Pi(u) is only dependent on K, not n. 
 
 K = 2:    Pi+1(u) = (i + 1 – u)pi + (u – i)pi+1  (i ≤ u < i+1) 
 
 K = 3:     
 Pi+1(u) = 0.5(i+1–u)2pi + 0.5[(u–i+1)(i+1-u) + (i+2-u)(u-i)]pi+1 + 0.5(u-i)2pi+2  
 
                  (i ≤ u < i+1) 
 
 K = 4:    ??? 
 
7. Each segment Pi(u) is a CK-1 continuous curve. 
 
8. The B-Spline curve itself is CK-2 continuous at the knots ti, i = 1, …, n–K+1,  
  i.e., the end points of the segments. 
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B-Spline Curve 
Normalized B-Spline segment (NBS) 
 
Segment  
   
Pi+1(u) = 0.5(i+1–u)2pi + 0.5[(u–i+1)(i+1-u) + (i+2-u)(u-i)]pi+1 + 

0.5(u-i)2pi+2  
  
is defined on the interval (i ≤ u < i+1). Re-parameterize the 

domain by replacing u with u + i, the same segment now is 
defined on the interval  (0 ≤ u < 1) as: 

 
Pi+1(u) = 0.5[(1–u)2pi + (-2u2 + 2u + 1)pi+1 + u2pi+2] 
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B-Spline Curve 
Matrix form of NBS 
 
 K = 3: 
 
Pi(u) = 0.5(1–u)2pi-1 + 0.5(-2u2 + 2u + 1)pi + 0.5u2pi+1] 
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B-Spline Curve 
Matrix form of NBS 
 
  K = 4: 
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B-Spline Curve 
Uniform B-Spline curve (n=5, K=3) 
-  For a NU&C B-Spline (n = 5, K = 3) 
  P1(u) = (1 – u)2p0 + 0.5u(4-3u)p1 + 0.5u2p2                  
  P2(u) = UMs[p1 p2 p3]T 

  P3(u) = UMs[p2 p3 p4]T 

  P4(u) = 0.5(4 – u)2p3 + 0.5(-3u2 + 20u -32)p4 + (u-3)2p5 
 
-  Represent both P1(u) and P4(u) same as UMs[pi-1 pi  pi+1]T 
  P1(u) = UMs[p0 p1 p2]T

                  
  P2(u) = UMs[p1 p2 p3]T 

  P3(u) = UMs[p2 p3 p4]T 

  P4(u) = UMs[p3 p4 p5]T 

 
This is called a Uniform or Periodic B-Spline. It is “periodic” because the basis 

function UMs repeats itself identically over successive intervals of the 
parameter variable u, whereas a NU&C only does it for some interior 
intervals. 
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B-Spline Curve 
Uniform B-Spline curve (n, K) 
-  Knots vector 
  {t0, …, tn+K} = {0, 1, …, n+K} 
 
-  Parameter u range [0, n-K+2]  
 
-  n-K+2 normalized B-Spline segment P1(u), … Pn-K+2(u)  
 
  P(u) = P1(u)⊕P2(u)⊕… ⊕Pn-K+2(u)   0 ≤ u < n-K+2 
 
  P(u) = P1(u) = UMs[p0 p1 … pK-1]T

  for 0 ≤ u < 1 
 

   . 
  P(u) = Pi(u-i+1) = UMs[pi-1 pi … pK+i-2]T   for i-1 ≤ u < i 
   . 

 

  P(u) = Pn-K+2(u-n+K-1) = UMs[pn-K+1 pn-K+2 … pn]T for n-K+1 ≤ u < n-K+2 
   
-  Question: Why the knots range from 0 to n+K, but the parameter u range is 

only   
    from 0 to n-K+2? 
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B-Spline Curve 
Uniform B-Spline curve examples 
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B-Spline Curve 
• B-Spline basis functions UMs 
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B-Spline Curve 
• Quadratic and cubic B-Spline basis functions 
  
 -  Quadratic (K = 3) 
  N3 = U3M3 = [N1,3(u)     N2,3(u)     N3,3(u)] 
  N1,3(u) = 0.5(u2 – 2u + 1) 
  N2,3(u) = 0.5(-2u2 + 2u + 1) 
  N3,3(u) = 0.5u2 
 

 -  Cubic (K = 4) 
  N4 = U4M4 = [N1,4(u)     N2,4(u)     N3,4(u)     N4,4(u)] 
  N1,4(u) = (1/6)(-u3 +3u2 -3u + 1) 
  N2,4(u) = (1/6)(3u3 – 6u2 + 4) 
  N3,4(u) = (1/6)(-3u3 + 3u2 + 3u + 1) 
  N4,4(u) = (1/6)u3 
 
 -  Partition of unity 
   

∑
=

=
K

1
Ki, 1(u)N

i
for any u  (proof!) 
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B-Spline Curve 
• Quadratic and cubic B-Spline basis functions 
  

Quadratic basis functions: Fi,3 = Ni,3 Cubic basis functions: Fi,4 = Ni,4 
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B-Spline Curve 
Closed uniform B-Spline curves 
 
-  For open uniform B-Spline curves (n, K) 
  Pi(u) = UMs[pi-1 pi … pK+i-2]T;   i=1,2,…,n-K+2 
 
-  For closed uniform B-Spline curves (n, K) 
  Pi(u) = UMs[p(i-1) mod (n+1)  pi mod (n+1) …   p(K+i-2) mod (n+1)]T;

 i=1,2,…,n+1 
 
Example: (n = 5, K = 4) 
  P1(u) = U4M4[p0 p1 p2 p3]T

                  
  P2(u) = U4M4[p1 p2 p3 p4]T 

  P3(u) = U4M4[p2 p3 p4 p5]T 
 

  P4(u) = U4M4[p3 p4 p5 p0]T 

  P5(u) = U4M4[p4 p5 p0 p1]T 
  P6(u) = U4M4[p5 p0 p1 p2]T 
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B-Spline Curve 
Closed uniform B-Spline curves (n=5, K=4) 

To the open curve, only three 
segments P1(u), P2(u) and P3(u) 
are defined. 
http://theory.lcs.mit.edu/~boyko/
classes/b-spline.html  

 

But to the closed curve, three 
more segments P4(u), P5(u) and 
P6(u) are defined to form a 
closed loop. 

http://theory.lcs.mit.edu/~boyko/classes/b-spline.html
http://theory.lcs.mit.edu/~boyko/classes/b-spline.html
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B-Spline Curve 
A self-intersecting closed uniform B-Spline  
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B-Spline Curve 
Effect of moving the control points  

Example (n=3, K=4): 

P(U) is a closed B-Spline consisting of: 
 P1(u) = U4M4[p0 p1 p2 p3]T

 
 P2(u) = U4M4[p1 p2 p3 p0]T 

 P3(u) = U4M4[p2 p3 p0 p1]T 

 P4(u) = U4M4[p3 p0 p1  p2]T 
 

Pulling p2 affects the curve mostly near p2. 
 
Question: Does the perturbation of p2 
affects the entire curve? How about when 
n=4?   
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B-Spline Curve 
• Effect of multiply coincident control points 

Example (K=4): 

    n = 4: 
 P1(u) = U4M4[p0 p1 p2 p3]T

                 
 P2(u) = U4M4[p1 p2 p3 p4]T 

 P3(u) = U4M4[p2 p3 p4 p0]T 

 P4(u) = U4M4[p3 p4 p0  p1]T 

 P4(u) = U4M4[p4 p0 p1  p2]T 
 

    n = 5 and p5 = p4 : 
 P1(u) = U4M4[p0 p1 p2 p3]T

                

 P2(u) = U4M4[p1 p2 p3 p4]T 

 P3(u) = U4M4[p2 p3 p4 p5]T 

 P4(u) = U4M4[p3 p4 p5 p0]T 

 P5(u) = U4M4[p4 p5 p0 p1]T 

 P6(u) = U4M4[p5 p0 p1 p2]T 
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B-Spline Curve 
Continuity of uniform B-Spline curves 
  
-  The basis function Ni,K(u) is a polynomial of degree K-1  

Example:  N2,4(u) = (1/6)(3u3 – 6u2 + 4) (K = 4) 
 
-  The segment Pi(u) = N1,K(u)pi-1 + N2,K(u)pi + … + NK,K(u)pi+K-2 is a simple  
       summation of the Ni,K(u) and hence is of class CK-1 

 
-  The B-Spline curve P(u) = P1(u)⊕P2(u)⊕… ⊕Pn-K+2(u) is a curve of class  
     CK-2, i.e., the (K-2)th-derivative exists and is continuous on the entire 

P(u). 
 
 Example (K=4): 
  P(i)  = Pi(1)      = (1/6)(pi + 4pi+1 + pi+2)  = Pi+1(0)  
  P

u
(i)  = Pi

u
(1)      = 0.5(-pi + pi+2)   = Pi+1

u
(0)  

  P
uu 

(i)  = Pi
uu

(1)      = pi - 2pi+1 + pi+2   = Pi+1
uu

(0)  
  P

uuu 
(i)  = ??? 
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B-Spline Curve 
Continuity of B-Spline curves 
  
  

Pi(u-i+1) 

Pi+1(u-i) 

At u=i:    Pu(K-2)
(i) = Pi

u(K-2)
(1) = Pi+1

u(K-2)
(0)  

But,  Pi
u(k-1)

(1) ≠ Pi+1
u(k-1)

(0)  



205 

B-Spline Curve 
Conversion between Bezier and B-Spline (K = 4) 
 
 Bezier: P(u) = UMBPB 
 B-Spline: P(u) = UMSPS 
 
 B-Spline  Bezier: 
   UMBPB = UMSPS   PB = M-1

BMSPS  PB =  
 
 
 
 Bezier  B-Spline: 
   UMSPS = UMBPB   PS = M-1

SMBPB  PS =  
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B-Spline Curve 
Bezier curve as a special NU&C B-spline 
 
-  A nonuniform and clamped B-Spline curve 
 
 
 
with knots vector {0 … 0    1 2 … n-K+1    n-K+2 … n-K+2} 
 
 
-  If n = K, then it becomes a Bezier curve of order K, as now 
 
  Ni,K(u) = Bi,K(u) for i=1,2,…, K.   

∑
=

=
n

i
Kii N

0
(u)(u) ,pP

K n-K K 
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B-Spline Curve 

Knot insertion  
  
Old B-spline: 
 n+K+1 knots: U = {u0, u1, …, un+K+1}; 
  
New B-spline:                                   
 n+K+2 knots: {t0, t1, …, tn+K+2}; 
   

∑
=

=
n

i
Kii N

0
(u)(u) ,pP
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B-Spline Curve 
Knot insertion  
  
For i=0,1,…,j-K: 
 
For i=j+1,…,n: 
 
For u∈[uj,uj+1]:  
 
 
     qi = pi:         i=0,1,…,j-K 
    qi+1 = pi:      i=j+1,…,n 
 
How about the other K+1 control points qj-K+1, qj-k+2, …,qj+1? 

)()( uNuN Kii,K ,=

)()(1 uNuN Ki,Ki ,=+

∑∑
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B-Spline Curve 
Knot insertion  
  qj-K+1 = pj-K+1 
     
  qi = αipi + (1 - αi)pi-1      j-K+2≤i≤j 
 
  qj+1 = pj 
 
 where: 
    

iKi

ij
i uu

ut
−
−

=
−+

+

1
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B-Spline Curve 
Knot insertion  
 

An example:  
K = 4  
 
U = {0,0,0,0,1,2,3,4,5,5,5,5} 
 
j = 5, tj+1 = 5/2 
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B-Spline Curve 
NonUniform Rational B-Spline (NURBS) 
 
 
 
       

      for 0 ≤ u < n-K+2 
 
  
  
  
 
with knots vector {t0, t1, . . . , tn+K}. 
 
If weights wi = 1 for all i, then it reduces to a nonrational B-Spline. 
 
NURBS is the most general and popular representation. 
1. All Hermite, Bezier, and B-spline are special cases of NURBS. 
2. It can represent exactly conics and other special curves. 
3. The weights wi add one more degree of freedom of curve manipulation. 
4. It enjoys all the nice properties of nonrational B-splines (such as  
              affine transformation invariant and convex hull property).   
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Effect of Weights  
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B-Spline Curve 
Unit partitioning property of NURBS basis functions 

∑
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Exercise 
1. Consider a cubic uniform B-Spline curve (n=5, K=4). Please give the 

representation of its first derivative. 
 

2. Given a Bezier curve of order 10 (i.e., it has 10 control points), can you 
represent it by a cubic B-Spline (n, K=4)? Why? 
 

3. Nonuniform and nonclamped B-Spline 
 

 Consider a (n=5, K=3) B-Spline            with knots vector  
 
        {t0 = 0    t1 = 0    t2 = 1   t3 = 2    t4 = 3    t5 = 4    t6 = 5    t7 = 5    t8 = 5} 
 
 Please derive the basis functions Ni,3(u) and give the equations of P(u) on 

different intervals (i-1 ≤ u ≤ i), i=1,2,…,  
 
5. What are P(0) and P(5)? What are the derivatives of P(u) at u=0 and u=5? 

∑
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=
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0
3(u)(u)
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• B-spline curves are specified by giving set of 
coordinates, called control points, which indicates 
the general shape of the curve. 
 

• B-splines can be either interpolating or 
approximating curves. Interpolation splines used for 
construction and to display the results of 
engineering. 

B-Spline Synthetic Curves 



• Approximation B-spines defined as linear and 2nd 
degree and the flexibility is provided by the basic 
functions with (n+1) control points, B-splines are 
defined as 
 
 
 
 

P : set of control points 
u : knot vector 
k : spline’s degree 

B-Spline Synthetic Curves 



P is the set of control points as shown in Figure, N is the 
B-spline blending functions and they are defined as, 

B-Spline Synthetic Curves 



The range of u is related to the number of control 
points and the knot vectors. The effect of the degree of 
the B-spline curves on the shape of the curve is shown 
in Figure.  Bspline curve lays in the control polygon. 

Effect of curve order 



Control point P4 moves to a new position P4’ ,            
only a portion of the original curve has changed. 

Local control property of B-Spline curve 



. 

The derivative of the B-spline curve 



. 

B-Spline Synthetic Curves 



. 

Linear, quadratic, cubic B-spline 



. 

Influence of control point position 



. 

Blending functions for linear B-spline 



Piecewise Polynomials  Approximating Splines   
 
 
 
 
 
 
            Spline eq. 

B-spline Curves 

P(u) = ∑ N(i,k,u) Pi 
i=0 

n 



a B−spline curve is the  
union of a number of  
Bezier curves joining  
together with  
C − continuity. 
 

B-spline Curves 



Blending functions 

B-spline Curve 



Since a NURBS curve  
is rational, circles,  
ellipses and  
hyperbolas  
can be represented 
 
NURBS 

B-spline curves 

N0,0      N1,0    N2,0    N3,0    N4,0    N5,0    N6,0   N7,0 
 
      N0,1      N1,1    N2,1    N3,1    N4,1    N5,1    N6,1 
 
             N0,2      N1,2    N2,2    N3,2    N4,2   N5,2 
 

                             N0,3      N1,3    N2,3    N3,3   N4,3 
 
                         N0,4      N1,4    N2,4     N3,4 



Bezier curve difficulties 
Bernstein basis is global, No local control 
Order (degree) fixed, Equal to number of control 
vertices 
High order (degree) required for flexibility 
Wiggles 
Difficult to maintain continuity 
 
ref.    Sigg2002 Course57 NURBS.pdf 

Bezier curves 



. 

B-spline curves – Definition 



. 

B-spline curves – Basis functions 



. 

B-spline curves – Properties 



B-spline curves stronger than for Bezier curves. 
A point on the curve P(t) lies within the convex hull of k 
neighboring control vertices. 
Notice for order, k = 2 the degree is one – a straight 
line. The B-spline curve is the control polygon. 

B-spline curves – Convex hulls 



 
For k = 3  a larger region may  
contain the curve.  
The B-spline curve will not  
exactly follow polygon. 
 
The higher the order  
the less closely the B-spline  
curve follows the control  
polygon. 

B-spline curves – Convex hulls 



• NURBS is a mathematical model commonly used in 
computer graphics for generating and representing 
curves and surfaces. It offers great flexibility and 
precision for handling both analytic and modeled 
shapes. 

• NURBS are commonly used in CAD, CAM and CAE 
and are part of numerous industry standards, such 
as IGES, STEP, ACIS, and PHIGS. 

Non-uniform rational B-spline 



• Most modern CAD systems use the NURBS curve 
representation scheme. 

• Uniformity deals with the spacing of control points. 
• Rational functions include a weighting value at 

each control point for effect of control point.  
• very popular due to their flexibility in curve 

generation. 
• NURBS permit definition of surfaces from ratios of 

polynomials. (Rational functions permit much 
better control over the derivatives of curves, hence 
the surface curvature, than polynomials alone.) 

Non-uniform rational B-spline 



Flexibility to create sculptural shapes  
Tension to keep surfaces smooth  
and taught  
Alignment to create smooth,  
invisible joins 
Control Vertices (CV, control points),   
Degree and Spans control  
the flexibility and shape of the curve. 
the smoothness determined by the  
Degree and Spans of the NURBS. 

NURBS modelling 



De Boor’s algorithm  
is implemented  
by repeated knot 
insertion. 

De Boor’s Algorithm 



The local modification property guarantees that only 
part of the curve will be affected when a control point 
changes its position. 
 
In fact, position change 
is parallel to the  
Movement of  
the control point. 

Shape Editing 



Increasing weight pulls 
the curve toward the  
selected control point.  
 
Decreasing weight  
pushes the curve 
away from the  
selected control point. 

Weight Change 



 

Effect of Weights  Effect of Weights  
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. Unit partitioning property of NURBS basis functions 
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Degree 0 (order 1) B-Spline Function Ni,1(u)  

i 
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Problem (serious): discontinuity of the curve  
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Degree 1 (order 2) B-Spline Function Ni,2(u)  

Problem: discontinuity of tangents  
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Degree 2 (order 3) B-Spline Function Ni,3(u)  
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Curve now has continuous tangents!  
(What are the u-domains for Ni,2(u) and Ni+1,2(u)?)  
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Degree k-1 (order k) B-Spline Function Ni,k(u)  
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Change partitioning of u-domain from integers to arbitrary real values (so to have more flexibility):  
 

{0, 1, 2, 3, …, i, …}  {t0, t1, t2, t3, …, ti, … } 

Demonstrations 
(http://www.people.nnov.ru/fractal/Splines/Basis.htm)  
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Representing Curves and Surfaces 
We need smooth curves and surfaces in many 
applications: 
• computer-aided design (CAD) 
• model real world objects 
• high quality fonts,  data plots, artists sketches 

 
Most common representation for surfaces 
• polygon mesh 
• parametric surfaces 
• quadric surfaces 

 



Polygon mesh surfaces 
• set of connected planar surfaces bounded by polygons 
• good for boxes, cabinets, building exteriors 
• bad for curved surfaces 
• errors can be made arbitrarily                                         

small at the cost of space                                                     
and execution time 

• enlarged images show                                              
geometric aliasing 



Parametric polynomial surface patches 
Parametric bivariate (two-variable) surface patches: 
• point on 3D surface = (x(u,v), y(u,v), z(u,v)) 
• boundaries of the patches are parametric 

polynomial curves 
• many fewer parametric patches than polynomial 

patches are needed to approximate a curved surface 
to a given accuracy 

• more complex algorithms though 



Parametric cubic curves 
Polylines and polygons: 
• large amounts of data to achieve good accuracy 
• interactive manipulation of the data is tedious 
 
Higher-order curves: 
• more compact (use less storage) 
• easier to manipulate interactively 
 
Possible representations of curves: 
• explicit, implicit, and parametric 



Parametric cubic curves 
Explicit functions:   y = f(x), z = g(x) 
 
• impossible to get multiple values for a single x 
• break curves like circles and ellipses into segments 

 
• not invariant with rotation 
• rotation might require further segment breaking 

 
• problem with curves with vertical tangents 
• infinite slope is difficult to represent 



Parametric cubic curves 
Implicit equations:     f(x,y,z) = 0 
 
• equation may have more solutions than we want 
• circle:  x² + y² = 1   ,   half circle: ? 

 
• problem to join curve segments together 
• difficult to determine if their tangent directions 

agree at their joint point 



Parametric cubic curves 
Parametric representation: 
x = x(t), y = y(t), z = z(t) 

 
• overcomes problems with explicit and implicit forms 
• no geometric slopes (which may be infinite) 
• parametric tangent vectors instead (never infinite) 
• a curve is approximated by a piecewise polynomial 

curve 



Parametric cubic curves 
• Why cubic? 

 
• lower-degree polynomials give too little flexibility in 

controlling the shape of the curve 
• higher-degree polynomials can introduce unwanted 

wiggles and require more computation 
• lowest degree that allows specification of endpoints 

and their derivatives 
• lowest degree that is not planar in 3D 



Parametric cubic curves 
Kinds of continuity: 

 
• G0: two curve segments join together 
• G1: directions of tangents are equal at the joint 
• C1: directions and magnitudes of tangents are equal 

at the joint 
• Cn: directions and magnitudes of n-th derivative are 

equal at the joint 
 



Parametric cubic curves 
Major types of curves: 
• Hermit 
• defined by two endpoints and two tangent vectors 

 
• Bezier 
• defined by two endpoints and two other points that 

control the endpoint tangent vectors 
 

• Splines 
• several kinds, each defined by four points 
• uniform B-splines, non-uniform B-splines, ß-splines 



Parametric cubic curves 
• General form: 
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Parametric cubic curves 
• It is not necessary to choose a single representation, 

since it is possible to convert between them. 
• Interactive editors provide several choices, but 

internally they usually use NURBS, which is the most 
general. 
 

• Generalization of parametric cubic curves. 
 
 

• For each value of s there is a family of curves in t. 

)()(),( tGMTtCTtsQ ⋅⋅=⋅=



Q(t) = GBT(t) = Geometry G . Spline Basis B . Power Basis T(t) 
 

• Geometry: control points coordinates assembled into a 
matrix (P1, P2, …, Pn+1) 

• Spline matrix: defines the type of spline 
• Bernstein for Bézier 
• Power basis: the monomials (1, t, ..., tn) 
• Advantage of general formulation 
• Compact expression 
• Easy to convert between types of splines 
• Dimensionality (plane or space) does not really matter 

General Spline Formulation 



• Polynomials  
• Can be added: just add the coefficients 

 
 
 
• Can be multiplied by a scalar:  
      multiply the coefficients  

 
 

• In the polynomial vector space, {1, t, ..., tn} are the 
basis vectors, a0, a1, ..., an are the components 

Polynomials as a Vector Space 



Comparison of convex hulls of Bezier curves as means 
of detecting intersection 
 
 
 
 
 
 
Variation diminishing  
property of a cubic Bezier 

Detecting intersection by convex hulls 



Linear approximation of curves in finding intersections 
 

(a) Approximation 
by linear segments 
 
 
 
(b) approximation  
by polygon 

Detecting intersection by polygon 



Bounding wedges of curves in finding intersections 
 

 

Detecting intersection by polygon 



Fat line bounding  
a quartic curve 
refs.  
cad methods - me 554-farouki.pdf 
surface intersection algorithms.pdf 

Bezier Clipping Method 



Fat line bounding  
for a polynomial 
quartic curve 
 

Bezier Clipping Method 



Contouring of surfaces through intersection with a 
series of parallel planes or coaxial circular cylinders or 
cones for visualization 
 
 
 
A marine propeller is visualized  
through intersection with a series  
of parallel planes 

Examples of intersection problems 



Numerical control machining (milling) involving 
intersection of offset surfaces with a series of parallel 
planes, to create machining paths for ball (spherical) 
cutters 
 
Offset surface is  
intersected with a series  
of parallel planes to  
generate a tool path  
for 3-D NC machining 

Examples of intersection problems 



Representation of complex geometries in the Boundary 
Representation (B-rep) scheme; for example, the 
description of the internal geometry and of structural 
members of automobiles, airplanes, and ships involves 
• Intersections of free-form parametric surfaces with low 

order algebraic surfaces (planes, quadrics, torii,cyclides); 
• Intersections of low order algebraic surfaces; 
in a process called boundary evaluation, in which the 
Boundary Representation is created by evaluating a 
Constructive Solid Geometry  
(CSG) model of the object 

Intersection Problems 



When studying intersection problems, the type of curves and 
surfaces can be classified as follows: 
Rational polynomial parametric (RPP) 
Procedural parametric (PP),  
Implicit algebraic (IA), Implicit procedural (IP) 
 
In order to solve general surface to surface (S/S) intersection 
problems, the following auxiliary intersection problems need to 
be considered: 
1. point/point (P/P) 
2. point/curve (P/C) 
3. point/surface (P/S) 
4. curve/curve (C/C) 
5. curve/surface (C/S) 

Intersection Problems 



2-D: The number of intersections of a straight line with 
a planar Bezier curve is no greater than the number of 
intersections of the line with the control polygon.  
A line intersecting the convex hull of a planar Bezier 
curve may intersect the curve transversally, be 
tangent to the curve, or not intersect the curve at all.  
It may not, however, intersect the curve more times 
than it intersects the control polygon.  
3-D: The same relation  
holds true for a plane  
with a space Bezier curve. 

Variation diminishing property 



From this property, we can roughly say that a Bezier 
curve oscillates less than its control polygon,  
or in other words, the control polygon's segments 
exaggerate the oscillation of the curve.  
This property is important in intersection algorithms 
and in detecting the fairness of Bezier curves. 

Variation diminishing property 



CSE167: Computer Graphics 
Instructor: Steve Rotenberg 

UCSD, Fall 2006 

Cubic Curves 



• Linear: 
 

• Quadratic: 
 

• Cubic: 
 
 

Ref. 
CSE167: Computer Graphics 
Instructor: Steve Rotenberg,UCSD, Fall 2006 

Cubic Curves 
Polynomial Functions 
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• Linear: 
 

• Quadratic: 
 

• Cubic: 
 

  
 
We usually define the curve for 0 ≤ t ≤ 1 

Vector Polynomials (Curves) 
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• Linear interpolation (Lerp) is a common technique for 
generating a new value that is somewhere in between two 
other values 

• A ‘value’ could be a number, vector, color, or even something 
more complex like an entire 3D object… 

• Consider interpolating between two points a and b by some 
parameter t 

Linear Interpolation 

a 

b 

t=1 
. 

. 0<t<1 
t=0 

a 

b 

t=1 
. 

. 0<t<1 
t=0 

( ) ( ) baba tttLerp +−= 1,,



• Bezier curves can be thought of as a higher order 
extension of linear interpolation 

Bezier Curves 

p0 

p1 

p0 

p1 
p2 

p0 

p1 

p2 

p3 

Linear Quadratic Cubic 



• There are lots of ways to formulate Bezier curves 
mathematically. Some of these include: 
– de Casteljau (recursive linear interpolations) 
– Bernstein polynomials (functions that define the 

influence of each control point as a function of t) 
– Cubic equations (general cubic equation of t) 
– Matrix form 

• We will briefly examine each of these 

Bezier Curve Formulation 



• Find the point x on the 
curve as a function of 
parameter t: 

Bezier Curve 

p0 

p1 

p2 

p3 

x(t) 
• 



• The de Casteljau algorithm describes the curve as a 
recursive series of linear interpolations 

• This form is useful for providing an intuitive 
understanding of the geometry involved, but it is not 
the most efficient form 

de Casteljau Algorithm 



 
 
 
 

• We start with our original 
set of points 

• In the case of a cubic Bezier 
curve, we start with four 
points 

de Casteljau Algorithm 
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p1 

p2 

p3 



de Casteljau Algorithm 
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de Casteljau Algorithm 
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de Casteljau Algorithm 

r1 x 

r0 • 
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Bezier Curve 

x 
• 
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Recursive Linear Interpolation 

( )
( )
( )322

211

100

,,
,,
,,

ppq
ppq
ppq

tLerp
tLerp
tLerp

=
=
=

( )
( )211

100

,,
,,
qqr
qqr

tLerp
tLerp

=
=

( )10 ,, rrx tLerp=

3

2

1

0

p
p
p
p

2

1

0

q
q
q

1

0

r
r

x

3

2

1

0

p
p
p
p



Expanding the Lerps 
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Bernstein Polynomial Form 
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Cubic Bernstein Polynomials 
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Bernstein Polynomials 
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Bernstein Polynomials 
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• Bernstein polynomial form of a Bezier curve: 

Bernstein Polynomials 
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• We start with the de Casteljau algorithm, expand 
out the math, and group it into polynomial functions 
of t multiplied by points in the control mesh 

• The generalization of this gives us the Bernstein 
form of the Bezier curve 

• This gives us further understanding of what is 
happening in the curve: 
– We can see the influence of each point in the 

control mesh as a function of t 
– We see that the basis functions add up to 1, 

indicating that the Bezier curve is a convex 
average of the control points 

Bernstein Polynomials 



Cubic Equation Form 
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Cubic Equation Form 
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• If we regroup the equation by terms of exponents of 
t, we get it in the standard cubic form 

• This form is very good for fast evaluation, as all of 
the constant terms (a,b,c,d) can be precomputed 

• The cubic equation form obscures the input 
geometry, but there is a one-to-one mapping 
between the two and so the geometry can always be 
extracted out of the cubic coefficients 

Cubic Equation Form 



Cubic Matrix Form 
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Cubic Matrix Form 
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Matrix Form 
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• We can rewrite the equations in matrix form 
• This gives us a compact notation and shows how 

different forms of cubic curves can be related 
• It also is a very efficient form as it can take 

advantage of existing 4x4 matrix hardware 
support… 

Matrix Form 



• By adjusting the 4 control points of a cubic Bezier curve, we 
can represent any cubic curve 

• Likewise, any cubic curve can be represented uniquely by a 
cubic Bezier curve 

• There is a one-to-one mapping between the 4 Bezier control 
points (p0,p1,p2,p3) and the pure cubic coefficients (a,b,c,d) 

• The Bezier basis matrix BBez (and it’s inverse) perform this 
mapping 

• There are other common forms of cubic curves that also 
retain this property (Hermite, Catmull-Rom, B-Spline) 

Bezier Curves & Cubic Curves 



• Finding the derivative (tangent) of a curve is easy: 

Derivatives 
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• The derivative of a curve represents the tangent 
vector to the curve at some point 

Tangents 
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• If we take all of the control points for a Bezier curve and 
construct a convex polygon around them, we have the convex 
hull of the curve 

• An important property of Bezier curves is that every point on 
the curve itself will be somewhere within the convex hull of 
the control points 

Convex Hull Property 
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• A cubic curve defined for t ranging from 0 to 1 will form a 
single continuous curve and not have any gaps 

• We say that it has geometric continuity, or C0 continuity 
• We can easily see that the first derivative will be a continuous 

quadratic function and the second derivative will be a 
continuous linear function 

• The third derivative (and all others) are continuous as well, 
but in a trivial way (constant), so we generally just say that a 
cubic curve has second derivative continuity or C2 continuity 

• In general, the higher the continuity value, the ‘smoother’ the 
curve will be, although it’s actually a little more complicated 
than that… 

Continuity 



• We say that cubic Bezier curves interpolate the two 
endpoints (p0 & p3), but only approximate the interior 
points (p1 & p2) 

• In geometric design applications, it is often desirable 
to be able to make a single curve that interpolates 
through several points 

Interpolation / Approximation 



• Rather than use a very high degree curve to 
interpolate a large number of points, it is more 
common to break the curve up into several simple 
curves 

• For example, a large complex curve could be broken 
into cubic curves, and would therefore be a piecewise 
cubic curve 

• For the entire curve to look smooth and continuous, 
it is necessary to maintain C1 continuity across 
segments, meaning that the position and tangents 
must match at the endpoints 

• For smoother looking curves, it is best to maintain 
the C2 continuity as well 

Piecewise Curves 



• A simple way to make larger curves is to connect up Bezier 
curves 

• Consider two Bezier curves defined by p0…p3 and v0…v3 
• If p3=v0, then they will have C0 continuity 
• If (p3-p2)=(v1-v0), then they will have C1 continuity 
• C2 continuity is more difficult… 

Connecting Bezier Curves 
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Spur Gears 

 
 
 
ref. Mastering SolidWorks,  
Ibrahim Zeid, 
2014, 
pg.105 



The circular pitch , pc   
Where dp = 2rp is the pitch circle diameter,  
N is the number of gear teeth and α is the tooth angle. 
The pitch circle radius                  pc=πdp /N     pc /2=rpα       
α=π/N radians α=180/N deg 
 
We align the involute of one tooth with the XY 
coordinate system as shown in Figure 4.4D.  
x = rb (sin θ  - θ cos θ) 
y = rb (cos θ  + θ sin θ) 
 
 
 

Spur Gears with involute  profile 



Example 4.2 Create the CAD model of a spur gear with 
rp = 60 mm, ϕ=20°, and N=20. 
Using the above calculation steps,  
we get rb=56.382 mm,  
d = a = 3.618 mm,  
ra = 63.618 mm,  
rr= 55.254 mm, and α=9°.  
There are two methods  
to create the tooth  
involute curve. 

Spur Gears with involute  profile 



We can arbitrarily select a large enough value for θmax 
so that the involute crosses the addendum circle and then trim 
it to that circle. Therefore, we create the involute profile by 
generating points on it using Eq. (4.4) and connecting them with 
a spline curve, or we input Eq. (4.4) into a CAD/CAM system.  
 
Note: Set the part units to mm before you start. The vertical 
centerline serves as a validation that the involute bottom 
endpoint passes through it when we create it in Step 2. Also, 
you will not close the sketch until you finish Step 5. 

Involute profile curve as spline 



In the first method, we use Eq. (4.4) with Δθ=5°. We generate 
11 points on the involute, for a θmax = 50°. 

We generate the points on the involute curve. We then use 
Insert > Curve > Curve Through XYZ Points.  

A better method is to input Eq. (4.4) to SolidWorks and let it 
generate the curve. Enter the involute parametric equation 
given by Eq. (4.4) into a CAD/CAM system to sketch the involute 
curve as a spline. SolidWorks uses the parameter t, requiring us 
to replace θ by t when we input the equation.  

Create one gear tooth and use sketch circular pattern to pattern 
it to create all gear teeth. 

 

Involute profile curve as spline 



. 

Involute  profile 
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Involute  profile 
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Spur Gear 
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Spur Gear chamfer 
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Spline curve 
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