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Previous lecture 

 Basic inverted indexes: 
 Structure: Dictionary and Postings 

 
 

 

 

 

 Key step in construction: Sorting 

 Boolean query processing 
 Intersection by linear time “merging” 

 Simple optimizations 

 Overview of course topics 

Ch. 1 



Does Google use the Boolean model? 

 On Google, the default interpretation of a query [w1 w2. . .wn] 
is w1 AND w2 AND . . .AND wn 

 Cases where you get hits that do not contain one of the wi : 

 anchor text 

 page contains variant of wi (morphology, spelling correction, 
synonym) 

 long queries (n large) 

 boolean expression generates very few hits 

 Simple Boolean vs. Ranking of result set 

 Simple Boolean retrieval returns matching documents in no 
particular order. 

 Google (and most well designed Boolean engines) rank the result set 
– they rank good hits (according to some estimator of relevance) 
higher than bad hits. 



Plan for this lecture 

Elaborate basic indexing 

 Preprocessing to form the term vocabulary 

 Documents 

 Tokenization 

 What terms do we put in the index? 

 Postings 

 Faster merges: skip lists 

 Positional postings and phrase queries 



Recall the basic indexing pipeline 

Tokenizer 

Token stream. Friends Romans Countrymen 

Linguistic modules 

Modified tokens. 
friend roman countryman 

Indexer 

Inverted index. 

friend 

roman 

countryman 

2 4 

2 

13 16 

1 

Documents to 

be indexed. 

Friends, Romans, countrymen. 



Parsing a document 

 What format is it in? 

 pdf/word/excel/html? 

 What language is it in? 

 What character set is in use? 

 ASCII, Unicode UTF-8, national or vendor specific 

Each of these is a classification problem, 

which we will study later in the course. 

But these tasks are often done heuristically … 

Sec. 2.1 



Complications: Format/language 

 Documents being indexed can include docs from many 
different languages 

 A single index may have to contain terms of several languages. 

 Sometimes a document or its components can contain 
multiple languages/formats 

 Turkish email with an English pdf attachment. 

 What is a unit document? 

 A file? 

 An email?  (Perhaps one of many in an mbox.) 

 An email with 5 attachments? 

 A group of files (PPT or LaTeX as HTML pages) 

Sec. 2.1 



Tokens and Terms 



Tokenization 

 Input: “Friends, Romans and Countrymen” 

 Output: Tokens 

 Friends 

 Romans 

 Countrymen 

 A token is an instance of a sequence of characters 

 Each such token is now a candidate for an index entry, 

after further processing 

 Described below 

 But what are valid tokens to emit? 

Sec. 2.2.1 



Tokenization 

 Issues in tokenization: 

 Turkey’s capital   

     Turkey? Turkeys? Turkey’s? 

 Hewlett-Packard  Hewlett and Packard as two 
tokens? 
 state-of-the-art: break up hyphenated sequence.   

 co-education 

 lowercase, lower-case, lower case ? 

 

 İstanbul Technical University: one token or two 
tokens, or three tokens?   
 How do you decide it is one token? 

Sec. 2.2.1 



Numbers 

 2/18/2011    Feb. 18, 2011   

 18/2/2011 

 55 B.C. 

 

 (800) 234-2333 

 Often have embedded spaces 

 Older IR systems may not index numbers 

 But often very useful: think about things like looking up error 

codes/stacktraces on the web 

 (One answer is using n-grams:  will be discussed later in the course) 

 Will often index “meta-data” separately 

 Creation date, format, etc. 

Sec. 2.2.1 



Tokenization: language issues 

 French 

 L'ensemble  one token or two? 

 L ? L’ ? Le ? 

 Want l’ensemble to match with un ensemble 

 Until at least 2003, it didn‟t on Google 

 

 

 German noun compounds are not segmented 

 Lebensversicherungsgesellschaftsangestellter 

 „life insurance company employee‟ 

 German retrieval systems benefit greatly from a compound splitter 

module 

 Can give a 15% performance boost for German  

Sec. 2.2.1 



Tokenization: language issues 

 Chinese and Japanese have no spaces between words: 

 莎拉波娃现在居住在美国东南部的佛罗里达。 

 Not always guaranteed a unique tokenization  

 Further complicated in Japanese, with multiple 

alphabets intermingled 

 Dates/amounts in multiple formats 

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円) 

Katakana Hiragana Kanji Romaji 

End-user can express query entirely in hiragana! 

Sec. 2.2.1 



Tokenization: language issues 

 Arabic (or Hebrew) is basically written right to left, but 

with certain items like numbers written left to right 

 Words are separated, but letter forms within a word 

form complex ligatures 

 

 

                                                               ← start 

 „Algeria achieved its independence in 1962 after 132 years 

of French occupation.‟ 

 

 

Sec. 2.2.1 



Stop words 

 With a stop list, you exclude from the dictionary 

entirely the commonest words. Intuition: 

 They have little semantic content: the, a, and, to, be 

 There are a lot of them. 

 But the trend is away from doing this: 

 Good compression techniques (will be discussed later in the course) 

means the space for including stopwords in a system is very small 

 Good query optimization techniques mean you pay little at query time 

for including stop words. 

 You need them for: 

 Phrase queries: “King of Denmark” 

 Various song titles, etc.: “Let it be”,  well known verse “To be or not to be” 

 “Relational” queries:  “flights to İstanbul” 

Sec. 2.2.2 



Normalization to terms 

 We need to “normalize” words in indexed text as well as 

query words into the same form 

 We want to match U.S.A. and USA 

 Result is terms: a term is a (normalized) word type, which 

is an entry in our IR system dictionary 

 We most commonly implicitly define equivalence classes 

of terms by, e.g.,  

 deleting periods to form a term 

 U.S.A., USA    USA 

 deleting hyphens to form a term 

 anti-discriminatory, antidiscriminatory    antidiscriminatory 

Sec. 2.2.3 



Normalization: other languages 

 Accents: e.g., French résumé vs. resume. 

 Umlauts: e.g., German: Tuebingen vs. Tübingen 

 Should be equivalent 

 Most important criterion: 

 How are your users like to write their queries for these 

words? 
 

 Even in languages that standardly have accents, users often 

may not type them 

 Often best to normalize to a de-accented term 

 Tuebingen, Tübingen, Tubingen  Tubingen 

Sec. 2.2.3 



Normalization: other languages 

 Normalization of things like date forms 

 7月30日 vs. 7/30 

 

 

 Tokenization and normalization may depend on the 

language and so is intertwined with language detection 

 Crucial: Need to “normalize” indexed text as well as 

query terms into the same form 

Morgen will ich in MIT …  

Is this 

German “mit”? 

Sec. 2.2.3 



Case folding 

 Reduce all letters to lower case 

 exception: upper case in mid-sentence? 

 e.g., General Motors 

 Fed vs. fed 

 Often best to lower case everything, since 

users will use lowercase regardless of 

„correct‟ capitalization… 
 

 Google example: 

 Query C.A.T.   

 #1 result used to be for “cat” (animal) not 

Caterpillar Inc.  Now it is the company 

(even when we query for cat) 

Sec. 2.2.3 



Normalization to terms 

 

 An alternative to equivalence classing is to do asymmetric 

expansion 

 An example of where this may be useful 

 Enter: window Search: window, windows 

 Enter: windows Search: Windows, windows, window 

 Enter: Windows Search: Windows 

 Potentially more powerful, but less efficient 

Sec. 2.2.3 



Thesauri and soundex 

 Do we handle synonyms and homonyms? 

 E.g., by hand-constructed equivalence classes 

 car = automobile  color = colour 

 We can rewrite to form equivalence-class terms 

 When the document contains automobile, index it under car-
automobile (and vice-versa) 

 Or we can expand a query 

 When the query contains automobile, look under car as well 

 What about spelling mistakes? 

 One approach is soundex, which forms equivalence classes of 
words based on phonetic heuristics 



Lemmatization 

 Reduce inflectional/variant forms to base form 

 E.g., 

 am, are, is  be 

 car, cars, car's, cars'  car 

 the boy's cars are different colors  the boy car be different 

color 

 Lemmatization implies doing “proper” reduction to 

dictionary headword form 

Sec. 2.2.4 



Stemming 

 Reduce terms to their “roots” before indexing 

 “Stemming” suggest crude affix chopping 

 language dependent 

 e.g., automate(s), automatic, automation all reduced to 

automat. 

for example compressed  

and compression are both  

accepted as equivalent to  

compress. 

for exampl compress and 

compress ar both accept 

as equival to compress 

Sec. 2.2.4 



Porter’s algorithm 

 Commonest algorithm for stemming English 

 Results suggest it‟s at least as good as other stemming options 

 Conventions + 5 phases of reductions 

 phases applied sequentially 

 each phase consists of a set of commands 

 sample convention: Of the rules in a compound command, select 

the one that applies to the longest suffix. 

 

Sec. 2.2.4 



Typical rules in Porter 

 sses  ss    ex: caresses -> caress 

 ies  i   ex: ponies -> poni 

 ss  ss   ex: caress -> caress 

 s           ex: cats -> cat 

 

  Weight of word sensitive rules 

   (m>1) EMENT → 

 replacement → replac 

 cement  → cement 

 

Sec. 2.2.4 



Other stemmers 

 Other stemmers exist, e.g., Lovins stemmer  
 http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm 

 Single-pass, longest suffix removal (about 250 rules) 
 

 Full morphological analysis – at most modest benefits for 

retrieval 
 

 Do stemming and other normalizations help? 

 English: very mixed results. Helps recall for some queries but 

harms precision on others 

 E.g., operative (dentistry) ⇒ oper 

 Definitely useful for Spanish, German, Finnish, … 

 30% performance gains for Finnish! 

Sec. 2.2.4 



Language-specificity 

 Many of the above features embody transformations that 

are 

 Language-specific and 

 Often, application-specific 

 These are “plug-in” addenda to the indexing process 

 Both open source and commercial plug-ins are available 

for handling these 

 

Sec. 2.2.4 



Dictionary entries 

ensemble.french 

時間.japanese 

MIT.english 

mit.german 

guaranteed.english 

entries.english 

sometimes.english 

tokenization.english 

These may be grouped by 

language (or not…).   

More on this in 

ranking/query processing. 

Sec. 2.2 



Faster postings merges: 

Skip pointers/Skip lists 



Recall basic merge 

 Walk through the two postings simultaneously, in time 

linear in the total number of postings entries 

128 

31 

2 4 8 41 48 64 

1 2 3 8 11 17 21 

Brutus 

Caesar 

2 8 

If the list lengths are m and n, the merge takes O(m+n) 

operations. 

Can we do better? 

Yes (if index isn’t changing too fast). 

Sec. 2.3 



Augment postings with skip pointers (at 

indexing time) 

 Why? 

 To skip postings that will not figure in the search results. 

 How? 

 Where do we place skip pointers? 

128 2 4 8 41 48 64 

31 1 2 3 8 11 17 21 

31 11 

41 128 

Sec. 2.3 



Query processing with skip pointers 

128 2 4 8 41 48 64 

31 1 2 3 8 11 17 21 

31 11 

41 128 

Suppose we’ve stepped through the lists until we 

process 8 on each list. We match it and advance. 

We then have 41 and 11 on the lower.  11 is smaller. 

But the skip successor of 11 on the lower list is 31, so 

we can skip ahead past the intervening postings. 

Sec. 2.3 



Where do we place skips? 

 Tradeoff: 

 More skips  shorter skip spans  more likely to skip.  But 

lots of comparisons to skip pointers. 

 Fewer skips  few pointer comparison, but then long skip 

spans  few successful skips. 

Sec. 2.3 



Placing skips 

 Simple heuristic: for postings of length L, use L evenly-

spaced skip pointers. 

 This ignores the distribution of query terms. 

 Easy if the index is relatively static; harder if L keeps 

changing because of updates. 

 

 This definitely used to help; with modern hardware it may 

not unless you‟re memory-based 

 The I/O cost of loading a bigger postings list can outweigh the 

gains from quicker in memory merging! 

Sec. 2.3 



Phrase queries and positional 

indexes 



Phrase queries 

 Want to be able to answer queries such as “istanbul 

university” – as a phrase 

 Thus the sentence “I went to university at Istanbul” is not a 

match.  

 

 For this, it no longer suffices to store only 

   <term : docs> entries 

 

 

Sec. 2.4 



A first attempt: Biword indexes 

 Index every consecutive pair of terms in the text as a 

phrase 

 For example the text “Friends, Romans, Countrymen” 

would generate the biwords 

 friends romans 

 romans countrymen 

 Each of these biwords is now a dictionary term 

 Two-word phrase query-processing is now immediate. 

Sec. 2.4.1 



Longer phrase queries 

 

 istanbul university turkey can be broken into the 

Boolean query on biwords: 

istanbul university AND university turkey 

 

Without the docs, we cannot verify that the docs matching 

the above Boolean query do contain the phrase. 

Can have false positives! 

Sec. 2.4.1 



Extended biwords 

 Parse the indexed text and perform part-of-speech-tagging 
(POST). 

 Bucket the terms into (say) Nouns (N) and 
articles/prepositions (X). 

 Call any string of terms of the form NX*N an extended 
biword. 

 Each such extended biword is now made a term in the 
dictionary. 

 Example:  catcher   in the rye 

                N           X   X    N 

 Query processing: parse it into N‟s and X‟s 

 Segment query into enhanced biwords 

 Look up in index: catcher rye 

Sec. 2.4.1 



Issues for biword indexes 

 False positives, as noted before 

 Index blowup due to bigger dictionary 

 Infeasible for more than biwords, big even for them 

 

 Biword indexes are not the standard solution (for all 

biwords) but can be part of a compound strategy 

Sec. 2.4.1 



Solution 2: Positional indexes 

 In the postings, store, for each term the position(s) in 

which tokens of it appear: 

 

<term, number of docs containing term; 

doc1: position1, position2 … ; 

doc2: position1, position2 … ; 

etc.> 

Sec. 2.4.2 



Positional index example 

 For phrase queries, we use a merge algorithm 

recursively at the document level 

 But we now need to deal with more than just equality 

<be: 993427; 

1: 7, 18, 33, 72, 86, 231; 

2: 3, 149; 

4: 17, 191, 291, 430, 434; 

5: 363, 367, …> 

Which of docs 1,2,4,5 

could contain “to be 

or not to be”? 

Sec. 2.4.2 



Processing a phrase query 

 Extract inverted index entries for each distinct term: to, 
be, or, not. 

 Merge their doc:position lists to enumerate all positions 
with “to be or not to be”. 

 to:  

 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ... 

 be:   

 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ... 

 Same general method for proximity searches 

Sec. 2.4.2 



Proximity queries 

 LIMIT! /3 STATUTE /3 FEDERAL /2 TORT  

 Again, here, /k means “within k words of”. 

 Clearly, positional indexes can be used for such queries; 

biword indexes cannot. 

Sec. 2.4.2 



Positional index size 

 You can compress position values/offsets: we‟ll talk about 

that later. 

 Nevertheless, a positional index expands postings storage 

substantially 

 Nevertheless, a positional index is now standardly used 

because of the power and usefulness of phrase and 

proximity queries … whether used explicitly or implicitly 

in a ranking retrieval system. 

Sec. 2.4.2 



Positional index size 

 Need an entry for each occurrence, not just once per 

document 

 Index size depends on average document size 

 Average web page has <1000 terms 

 books, even some epic poems … easily 100,000 terms 

 Consider a term with frequency 0.1% 

100 1 100,000 

1 1 1000 

Positional postings Postings Document size 
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Rules of thumb 

 A positional index is 2–4 as large as a non-positional 

index 

 Positional index size 35–50% of volume of original text 

 Caveat: all of this holds for “English-like” languages 

 

Sec. 2.4.2 



Combination schemes 

 These two approaches can be profitably combined 

 For particular phrases (“Michael Jackson”, “Britney 

Spears”) it is inefficient to keep on merging positional 

postings lists 

 Even more so for phrases like “The Who” 

 

Sec. 2.4.3 
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