
BLG 540E

TEXT RETRIEVAL SYSTEMS

Arzucan Özgür

The Term Vocabulary and
Postings Lists

Faculty of Computer and Informatics, İstanbul Techical University

February 18, 2011

Previous lecture

 Basic inverted indexes:
 Structure: Dictionary and Postings

 Key step in construction: Sorting

 Boolean query processing
 Intersection by linear time “merging”

 Simple optimizations

 Overview of course topics

Ch. 1

Does Google use the Boolean model?

 On Google, the default interpretation of a query [w1 w2. . .wn]
is w1 AND w2 AND . . .AND wn

 Cases where you get hits that do not contain one of the wi :

 anchor text

 page contains variant of wi (morphology, spelling correction,
synonym)

 long queries (n large)

 boolean expression generates very few hits

 Simple Boolean vs. Ranking of result set

 Simple Boolean retrieval returns matching documents in no
particular order.

 Google (and most well designed Boolean engines) rank the result set
– they rank good hits (according to some estimator of relevance)
higher than bad hits.

Plan for this lecture

Elaborate basic indexing

 Preprocessing to form the term vocabulary

 Documents

 Tokenization

 What terms do we put in the index?

 Postings

 Faster merges: skip lists

 Positional postings and phrase queries

Recall the basic indexing pipeline

Tokenizer

Token stream. Friends Romans Countrymen

Linguistic modules

Modified tokens.
friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to

be indexed.

Friends, Romans, countrymen.

Parsing a document

 What format is it in?

 pdf/word/excel/html?

 What language is it in?

 What character set is in use?

 ASCII, Unicode UTF-8, national or vendor specific

Each of these is a classification problem,

which we will study later in the course.

But these tasks are often done heuristically …

Sec. 2.1

Complications: Format/language

 Documents being indexed can include docs from many
different languages

 A single index may have to contain terms of several languages.

 Sometimes a document or its components can contain
multiple languages/formats

 Turkish email with an English pdf attachment.

 What is a unit document?

 A file?

 An email? (Perhaps one of many in an mbox.)

 An email with 5 attachments?

 A group of files (PPT or LaTeX as HTML pages)

Sec. 2.1

Tokens and Terms

Tokenization

 Input: “Friends, Romans and Countrymen”

 Output: Tokens

 Friends

 Romans

 Countrymen

 A token is an instance of a sequence of characters

 Each such token is now a candidate for an index entry,

after further processing

 Described below

 But what are valid tokens to emit?

Sec. 2.2.1

Tokenization

 Issues in tokenization:

 Turkey’s capital

 Turkey? Turkeys? Turkey’s?

 Hewlett-Packard Hewlett and Packard as two
tokens?
 state-of-the-art: break up hyphenated sequence.

 co-education

 lowercase, lower-case, lower case ?

 İstanbul Technical University: one token or two
tokens, or three tokens?
 How do you decide it is one token?

Sec. 2.2.1

Numbers

 2/18/2011 Feb. 18, 2011

 18/2/2011

 55 B.C.

 (800) 234-2333

 Often have embedded spaces

 Older IR systems may not index numbers

 But often very useful: think about things like looking up error

codes/stacktraces on the web

 (One answer is using n-grams: will be discussed later in the course)

 Will often index “meta-data” separately

 Creation date, format, etc.

Sec. 2.2.1

Tokenization: language issues

 French

 L'ensemble one token or two?

 L ? L’ ? Le ?

 Want l’ensemble to match with un ensemble

 Until at least 2003, it didn‟t on Google

 German noun compounds are not segmented

 Lebensversicherungsgesellschaftsangestellter

 „life insurance company employee‟

 German retrieval systems benefit greatly from a compound splitter

module

 Can give a 15% performance boost for German

Sec. 2.2.1

Tokenization: language issues

 Chinese and Japanese have no spaces between words:

 莎拉波娃现在居住在美国东南部的佛罗里达。

 Not always guaranteed a unique tokenization

 Further complicated in Japanese, with multiple

alphabets intermingled

 Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!

Sec. 2.2.1

Tokenization: language issues

 Arabic (or Hebrew) is basically written right to left, but

with certain items like numbers written left to right

 Words are separated, but letter forms within a word

form complex ligatures

 ← start

 „Algeria achieved its independence in 1962 after 132 years

of French occupation.‟

Sec. 2.2.1

Stop words

 With a stop list, you exclude from the dictionary

entirely the commonest words. Intuition:

 They have little semantic content: the, a, and, to, be

 There are a lot of them.

 But the trend is away from doing this:

 Good compression techniques (will be discussed later in the course)

means the space for including stopwords in a system is very small

 Good query optimization techniques mean you pay little at query time

for including stop words.

 You need them for:

 Phrase queries: “King of Denmark”

 Various song titles, etc.: “Let it be”, well known verse “To be or not to be”

 “Relational” queries: “flights to İstanbul”

Sec. 2.2.2

Normalization to terms

 We need to “normalize” words in indexed text as well as

query words into the same form

 We want to match U.S.A. and USA

 Result is terms: a term is a (normalized) word type, which

is an entry in our IR system dictionary

 We most commonly implicitly define equivalence classes

of terms by, e.g.,

 deleting periods to form a term

 U.S.A., USA USA

 deleting hyphens to form a term

 anti-discriminatory, antidiscriminatory antidiscriminatory

Sec. 2.2.3

Normalization: other languages

 Accents: e.g., French résumé vs. resume.

 Umlauts: e.g., German: Tuebingen vs. Tübingen

 Should be equivalent

 Most important criterion:

 How are your users like to write their queries for these

words?

 Even in languages that standardly have accents, users often

may not type them

 Often best to normalize to a de-accented term

 Tuebingen, Tübingen, Tubingen Tubingen

Sec. 2.2.3

Normalization: other languages

 Normalization of things like date forms

 7月30日 vs. 7/30

 Tokenization and normalization may depend on the

language and so is intertwined with language detection

 Crucial: Need to “normalize” indexed text as well as

query terms into the same form

Morgen will ich in MIT …

Is this

German “mit”?

Sec. 2.2.3

Case folding

 Reduce all letters to lower case

 exception: upper case in mid-sentence?

 e.g., General Motors

 Fed vs. fed

 Often best to lower case everything, since

users will use lowercase regardless of

„correct‟ capitalization…

 Google example:

 Query C.A.T.

 #1 result used to be for “cat” (animal) not

Caterpillar Inc. Now it is the company

(even when we query for cat)

Sec. 2.2.3

Normalization to terms

 An alternative to equivalence classing is to do asymmetric

expansion

 An example of where this may be useful

 Enter: window Search: window, windows

 Enter: windows Search: Windows, windows, window

 Enter: Windows Search: Windows

 Potentially more powerful, but less efficient

Sec. 2.2.3

Thesauri and soundex

 Do we handle synonyms and homonyms?

 E.g., by hand-constructed equivalence classes

 car = automobile color = colour

 We can rewrite to form equivalence-class terms

 When the document contains automobile, index it under car-
automobile (and vice-versa)

 Or we can expand a query

 When the query contains automobile, look under car as well

 What about spelling mistakes?

 One approach is soundex, which forms equivalence classes of
words based on phonetic heuristics

Lemmatization

 Reduce inflectional/variant forms to base form

 E.g.,

 am, are, is be

 car, cars, car's, cars' car

 the boy's cars are different colors the boy car be different

color

 Lemmatization implies doing “proper” reduction to

dictionary headword form

Sec. 2.2.4

Stemming

 Reduce terms to their “roots” before indexing

 “Stemming” suggest crude affix chopping

 language dependent

 e.g., automate(s), automatic, automation all reduced to

automat.

for example compressed

and compression are both

accepted as equivalent to

compress.

for exampl compress and

compress ar both accept

as equival to compress

Sec. 2.2.4

Porter’s algorithm

 Commonest algorithm for stemming English

 Results suggest it‟s at least as good as other stemming options

 Conventions + 5 phases of reductions

 phases applied sequentially

 each phase consists of a set of commands

 sample convention: Of the rules in a compound command, select

the one that applies to the longest suffix.

Sec. 2.2.4

Typical rules in Porter

 sses ss ex: caresses -> caress

 ies i ex: ponies -> poni

 ss ss ex: caress -> caress

 s ex: cats -> cat

 Weight of word sensitive rules

 (m>1) EMENT →

 replacement → replac

 cement → cement

Sec. 2.2.4

Other stemmers

 Other stemmers exist, e.g., Lovins stemmer
 http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

 Single-pass, longest suffix removal (about 250 rules)

 Full morphological analysis – at most modest benefits for

retrieval

 Do stemming and other normalizations help?

 English: very mixed results. Helps recall for some queries but

harms precision on others

 E.g., operative (dentistry) ⇒ oper

 Definitely useful for Spanish, German, Finnish, …

 30% performance gains for Finnish!

Sec. 2.2.4

Language-specificity

 Many of the above features embody transformations that

are

 Language-specific and

 Often, application-specific

 These are “plug-in” addenda to the indexing process

 Both open source and commercial plug-ins are available

for handling these

Sec. 2.2.4

Dictionary entries

ensemble.french

時間.japanese

MIT.english

mit.german

guaranteed.english

entries.english

sometimes.english

tokenization.english

These may be grouped by

language (or not…).

More on this in

ranking/query processing.

Sec. 2.2

Faster postings merges:

Skip pointers/Skip lists

Recall basic merge

 Walk through the two postings simultaneously, in time

linear in the total number of postings entries

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar

2 8

If the list lengths are m and n, the merge takes O(m+n)

operations.

Can we do better?

Yes (if index isn’t changing too fast).

Sec. 2.3

Augment postings with skip pointers (at

indexing time)

 Why?

 To skip postings that will not figure in the search results.

 How?

 Where do we place skip pointers?

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21

31 11

41 128

Sec. 2.3

Query processing with skip pointers

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21

31 11

41 128

Suppose we’ve stepped through the lists until we

process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so

we can skip ahead past the intervening postings.

Sec. 2.3

Where do we place skips?

 Tradeoff:

 More skips shorter skip spans more likely to skip. But

lots of comparisons to skip pointers.

 Fewer skips few pointer comparison, but then long skip

spans few successful skips.

Sec. 2.3

Placing skips

 Simple heuristic: for postings of length L, use L evenly-

spaced skip pointers.

 This ignores the distribution of query terms.

 Easy if the index is relatively static; harder if L keeps

changing because of updates.

 This definitely used to help; with modern hardware it may

not unless you‟re memory-based

 The I/O cost of loading a bigger postings list can outweigh the

gains from quicker in memory merging!

Sec. 2.3

Phrase queries and positional

indexes

Phrase queries

 Want to be able to answer queries such as “istanbul

university” – as a phrase

 Thus the sentence “I went to university at Istanbul” is not a

match.

 For this, it no longer suffices to store only

 <term : docs> entries

Sec. 2.4

A first attempt: Biword indexes

 Index every consecutive pair of terms in the text as a

phrase

 For example the text “Friends, Romans, Countrymen”

would generate the biwords

 friends romans

 romans countrymen

 Each of these biwords is now a dictionary term

 Two-word phrase query-processing is now immediate.

Sec. 2.4.1

Longer phrase queries

 istanbul university turkey can be broken into the

Boolean query on biwords:

istanbul university AND university turkey

Without the docs, we cannot verify that the docs matching

the above Boolean query do contain the phrase.

Can have false positives!

Sec. 2.4.1

Extended biwords

 Parse the indexed text and perform part-of-speech-tagging
(POST).

 Bucket the terms into (say) Nouns (N) and
articles/prepositions (X).

 Call any string of terms of the form NX*N an extended
biword.

 Each such extended biword is now made a term in the
dictionary.

 Example: catcher in the rye

 N X X N

 Query processing: parse it into N‟s and X‟s

 Segment query into enhanced biwords

 Look up in index: catcher rye

Sec. 2.4.1

Issues for biword indexes

 False positives, as noted before

 Index blowup due to bigger dictionary

 Infeasible for more than biwords, big even for them

 Biword indexes are not the standard solution (for all

biwords) but can be part of a compound strategy

Sec. 2.4.1

Solution 2: Positional indexes

 In the postings, store, for each term the position(s) in

which tokens of it appear:

<term, number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Sec. 2.4.2

Positional index example

 For phrase queries, we use a merge algorithm

recursively at the document level

 But we now need to deal with more than just equality

<be: 993427;

1: 7, 18, 33, 72, 86, 231;

2: 3, 149;

4: 17, 191, 291, 430, 434;

5: 363, 367, …>

Which of docs 1,2,4,5

could contain “to be

or not to be”?

Sec. 2.4.2

Processing a phrase query

 Extract inverted index entries for each distinct term: to,
be, or, not.

 Merge their doc:position lists to enumerate all positions
with “to be or not to be”.

 to:

 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

 be:

 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

 Same general method for proximity searches

Sec. 2.4.2

Proximity queries

 LIMIT! /3 STATUTE /3 FEDERAL /2 TORT

 Again, here, /k means “within k words of”.

 Clearly, positional indexes can be used for such queries;

biword indexes cannot.

Sec. 2.4.2

Positional index size

 You can compress position values/offsets: we‟ll talk about

that later.

 Nevertheless, a positional index expands postings storage

substantially

 Nevertheless, a positional index is now standardly used

because of the power and usefulness of phrase and

proximity queries … whether used explicitly or implicitly

in a ranking retrieval system.

Sec. 2.4.2

Positional index size

 Need an entry for each occurrence, not just once per

document

 Index size depends on average document size

 Average web page has <1000 terms

 books, even some epic poems … easily 100,000 terms

 Consider a term with frequency 0.1%

100 1 100,000

1 1 1000

Positional postings Postings Document size

Sec. 2.4.2

Rules of thumb

 A positional index is 2–4 as large as a non-positional

index

 Positional index size 35–50% of volume of original text

 Caveat: all of this holds for “English-like” languages

Sec. 2.4.2

Combination schemes

 These two approaches can be profitably combined

 For particular phrases (“Michael Jackson”, “Britney

Spears”) it is inefficient to keep on merging positional

postings lists

 Even more so for phrases like “The Who”

Sec. 2.4.3

References

 Introduction to Information Retrieval, chapter 2

 The slides were adapted from the book‟s companion

website:

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html

 Porter‟s stemmer:
http://www.tartarus.org/~martin/PorterStemmer/

http://www.tartarus.org/~martin/PorterStemmer/

