BLG 540E
TEXT RETRIEVAL SYSTEMS

Term Weighting, Scoring and the
Vector Space Model

Arzucan Ozgur

Faculty of Computer and Informatics, Istanbul Techical University
March 11, 2011

Ranked retrieval

» Thus far, our queries have all been Boolean.
Documents either match or don't.
» Good for expert users with precise understanding of
their needs and the collection.

Also good for applications: Applications can easily consume
1000s of results.

» Not good for the majority of users.

Most users incapable of writing Boolean queries (or they are,
but they think it’s too much work).

Most users don’t want to wade through 1000s of results.

This is particularly true of web search.

Problem with Boolean search:
feast or famine

» Boolean queries often result in either too few (=0) or
too many (1000s) results.

» Query |:“flights from istanbul” — 900,000 hits
» Query 2:“flights from istanbul to narita”: | hit

» It takes a lot of skill to come up with a query that
produces a manageable number of hits.

AND gives too few; OR gives too many

Ranked retrieval models

4

Rather than a set of documents satisfying a query
expression, in ranked retrieval models, the system returns
an ordering over the (top) documents in the collection
with respect to a query

Free text queries: Rather than a query language of
operators and expressions, the user’s query is just one or
more words in a2 human language

In principle, there are two separate choices here, but in
practice, ranked retrieval models have normally been
associated with free text queries and vice versa

Feast or famine: not a problem in ranked
retrieval

» When a system produces a ranked result set, large result
sets are not an issue

Indeed, the size of the result set is not an issue
We just show the top k (= 10) results

We don’t overwhelm the user

Premise: the ranking algorithm works

Importance of ranking:

» Viewing abstracts: Users are a lot more likely to read the
abstracts of the top-ranked pages (I, 2, 3, 4) than the
abstracts of the lower ranked pages (7,8, 9, 10).

» Clicking: Distribution is even more skewed for clicking
» In | out of 2 cases, users click on the top-ranked page.

» Even if the top-ranked page is not relevant, 30% of users
will click on it.

» Getting the ranking right is very important.
» Getting the top-ranked page right is most important.

Scoring as the basis of ranked retrieval

» We wish to return in order the documents most likely to
be useful to the searcher

» How can we rank-order the documents in the collection
with respect to a query!

» Assign a score —say in [0, |] — to each document

» This score measures how well document and query
“match”.

Query-document matching scores

» We need a way of assigning a score to a query/document
pair
» Let’s start with a one-term query

» If the query term does not occur in the document: score
should be 0

» The more frequent the query term in the document, the
higher the score (should be)

» We will look at a number of alternatives for this.

Jaccard coefticient

» Recall from Lecture 3: A commonly used measure of
overlap of two sets A and B

» jaccard(A,B) = |[A N B|/]A U B]

» jaccard(AA) = |

» jaccard(A,B) =0ifANB=0

» A and B don’t have to be the same size.

» Always assigns a number between 0 and |.

Jaccard coefficient: Scoring example

» What is the query-document match score that the

Jaccard coefficient computes for each of the two
documents below!?

» Query:ides of march

» Document |: caesar died in march

» Document 2: the long march

[ssues with Jaccard for scoring

» It doesn’t consider term frequency (how many times a
term occurs in a document)

» Rare terms in a collection are more informative than
frequent terms. Jaccard doesn’t consider this information

» We need a more sophisticated way of normalizing for
length

Recall (Lecture 1): Binary term-document
incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus
Caesar
Calpurnia
Cleopatra

mercy

N S S o I N
©O O O kR K, B
P, B O O O O
P P O O Bk B
R — O O +—» O
©O P O O L O

waorser

Each document is represented by a binary vector € {0,1}V!

Term-document count matrices

» Consider the number of occurrences of a term in a

document:;

Antony
Brutus
Caesar
Calpurnia
Cleopatra
mercy

worser

Each documentis a

Antony and Cleopatra

157
4
232
0
57
2
2

count vector

Julius Caesar
73
157
227
10

The Tempest
0

R W O O O O

Hamlet

R O1 O O N B

in NY:a column below

Othello

R O1 O O B+~ O

Macbeth

o r»r O O +—» O

Bag of words model

» Vector representation doesn’t consider the ordering of
words in a document

» John is quicker than Mary and Mary is quicker than John have
the same vectors

» This is called the bag of words model.

Term frequency tf

» The term frequency tf, ; of term t in document d is
defined as the number of times that t occurs in d.

» We want to use tf when computing query-document
match scores. But how!

» Raw term frequency is not what we want:

A document with 10 occurrences of the term is more relevant
than a document with | occurrence of the term.

But not 10 times more relevant.

» Relevance does not increase proportionally with term
frequency.

Log-frequency weighting

» The log frequency weight of term tin d is

W — 1+ log,, tf, 4, If tf,, >0
td 0, otherwise

» 0—-0,1l—>1,2—>13,10—>2,1000 — 4, etc.
» Score for a document-query pair: sum over terms t in both g and d:

score = erqmd (1+logtf, ;)

» The score is 0 if none of the query terms is present in the
document.

Document frequency

» Rare terms are more informative than frequent terms

Recall stop words

» Consider a term in the query that is rare in the collection
(e.g., arachnocentric)

» A document containing this term is very likely to be
relevant to the query arachnocentric

» — We want a high weight for rare terms like arachnocentric.

Document frequency, continued

» Frequent terms are less informative than rare terms

» Consider a query term that is frequent in the collection
(e.g., high, increase, line)

» A document containing such a term is more likely to be
relevant than a document that doesn’t

» But it’s not a sure indicator of relevance.

» — For frequent terms, we want high positive weights for
words like high, increase, and line

» But lower weights than for rare terms.

» We will use document frequency (df) to capture this.

idf weight

» df, is the document frequency of t: the number of
documents that contain t

df, is an inverse measure of the informativeness of t

» We define the idf (inverse document frequency) of t by

Idf, =log,, (N/df,)

We use log (N/df)) instead of N/df, to “dampen” the effect of
idf.

Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

calpurnia 1 6
animal 100 4
sunday 1,000 4
fly 10,000 2
under 100,000 1
the 1,000,000 0

idf, =log,, (N/df,)

There is one idf value for each term tin a collection.

Effect of idf on ranking

» Does idf have an effect on ranking for one-term queries,
like
iPhone
» idf has no effect on ranking one term queries

idf affects the ranking of documents for queries with at least
two terms

For the query capricious person, idf weighting makes
occurrences of capricious count for much more in the final
document ranking than occurrences of person.

Collection vs. Document frequency

» The collection frequency of t is the number of
occurrences of t in the collection, counting multiple
occurrences.

» Example:

Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

» Which word is a better search term (and should get a
higher weight)?

tf-idf weighting

» The tf-idf weight of a term is the product of its tf weight
and its idf weight.

W= (1+log tft,d) x l0g,,(N /df,)

» Best known weighting scheme in information retrieval
Note: the “-” in tf-idf is a hyphen, not a minus sign!
Alternative names: tf.idf, tf x idf

» Increases with the number of occurrences within a
document

» Increases with the rarity of the term in the collection

Final ranking of documents for a query

Score(qg,d) = Z ttadf,,

tegnd

Binary — count — weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV

Documents as vectors

» So we have a |V|-dimensional vector space
» Terms are axes of the space
» Documents are points or vectors in this space

» Very high-dimensional: tens of millions of dimensions
when you apply this to a web search engine

» These are very sparse vectors - most entries are zero.

The Vector-space model

. Term 1

* Term 2 Doc 3

Queries as vectors

» Key idea |: Do the same for queries: represent them as
vectors in the space

» Key idea 2: Rank documents according to their proximity
to the query in this space

» proximity = similarity of vectors
» proximity = inverse of distance

» Recall: We do this because we want to get away from the
you’re-either-in-or-out Boolean model.

» Instead: rank more relevant documents higher than less
relevant documents

Formalizing vector space proximity

» First cut: distance between two points

(= distance between the end points of the two vectors)
» Euclidean distance!
» Euclidean distance is a bad idea ...

» ...because Euclidean distance is large for vectors of
different lengths.

Why distance is a bad idea

PO
11

OR

d»: Rich poor gap grows

di: Ranks of starving poets swell

f

Fa lrl"I. l""l.l'"‘i.ul'"ill"?
/ G Poo
A
| L
- |
0

d3: Record baseball salaries in 2010

T RICH The Euclidean distance of

g and ds is large although the distribution of terms in the query g
and the distribution of terms in the document dy are very similar.

Use angle instead of distance

» Thought experiment: take a document d and append it to
itself. Call this document d'.

» “Semantically” d and d' have the same content

» The Euclidean distance between the two documents can
be quite large

» The angle between the two documents is O,
corresponding to maximal similarity.

» Key idea: Rank documents according to angle with query.

From angles to cosines

» The following two notions are equivalent.

Rank documents in decreasing order of the angle between
query and document

Rank documents in increasing order of
cosine(query,document)

» Cosine is a monotonically decreasing function for the
interval [0°, 180°]

From angles to cosines

50 (1] 150 200 250 300 350

-1t

» But how — and why — should we be computing cosines?

Length normalization

» A vector can be (length-) normalized by dividing each of
its components by its length — for this we use the L,

norm:
HXH2 - \ Zixiz

» Dividing a vector by its L, norm makes it a unit (length)
vector (on surface of unit hypersphere)

» Effect on the two documents d and d’ (d appended to
itself) from earlier slide: they have identical vectors after
length-normalization.

Long and short documents now have comparable weights

cosine(query,document)

Dot product Unit vectors
Sod 4 d ¥ g
cos(g,d) = Ged _ 4, il

Tl

d

CT‘_\/ V| 2\/ VI 42
i:1CIi Zizldi
q; is the tf-idf weight of term i in the query

d: is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of g and d..
equivalently, the cosine of the angle between 7and 4.

Cosine for length-normalized vectors

» For length-normalized vectors, cosine similarity is simply
the dot product (or scalar product):

COS(@,C_I;) — é ¢ C_Z; — Zi qidz’

for g, d length-normalized.

Cosine similarity illustrated

POOR
11 v(di)
’f H Kgq’) V(d>)
/ S
/L\Q//// \\

37

v(d3)

RICH

Cosine similarity amongst 3 documents

How similar are

the novels

SaS: Sense and
Sensibility (Jane Austen)
PaP: Pride and

Prejudice (Jane Austen),
and

WH: Wuthering

Heights? (Emily
Bronte)

A

affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.

3 documents example contd.

Log frequency weighting After length normalization
_term | Sas | PaP | wH [term | Sas | PaP | WH _
affection 3.06 2.76 2.30 affection 0.789 0.832 0.524
jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) ~

0.789 x 0.832 + 0.515 x 0.555 + 0.335 x 0.0 + 0.0 x 0.0
~ 0.94

cos(SaS,WH) = 0.79

cos(PaP,WH) =~ 0.69

Computing cosine scores

COSINESCORE(q)
1 float Scores[N] =0

float Length|N]

for each query term t

do calculate w; o and fetch postings list for t
for each pair(d,tf;) in postings list
do Scores|[d|+ = w; g X Wt g

Read the array Length

for each d

do Scores|[d| = Scores|d]/Length[d]

return Top K components of Scores|]

O O 00 -1y O B W

—

tf-idf weighting has many variants

Term frequency

Document frequency

MNormalization

n (natural) tfe g n (no) 1 n (none) 1
| (logarithm) 1+ log(tfe q) t (idf) log % c (cosine))
NGz
0.5xtf; 4 - N —df : /
a (augmented) 0.5+ ——==< | p (prob idf) max{0,log t1 | u (pivoted l/u
maxe (Tl q) dfe unique)
b (boolean) L if thed >0 b (byte size) 1/CharLength”
0 otherwise &j -1 ’
L (] 1+log(tfe q)
(log ave) TiTogtavercaliica)

Columns headed ‘n’ are acronyms for weight schemes.

Weighting may differ in queries vs
documents

» Many search engines allow for different weightings for
queries vs. documents

» SMART Notation: denotes the combination in use in an
engine, with the notation ddd.qqq, using the acronyms
from the previous table

» A very standard weighting scheme is: Inc.ltc

» Document: logarithmic tf (I as first character), no idf and
cosine normalization

» Query: logarithmic tf (I in leftmost column), idf (t in
second column), cosine normalization ...

tf-idf example: Inc.ltc

Document: car insurance auto insurance
Query: best car insurance

tf- thwt df idf wt nliz tf-raw tf-wt wit n’'liz
raw e e

auto 0 0O 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 13 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 052 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Exercise: what is N, the number of docs?

Doc length =\1> + 02+ 12 +1.3> ~1.92
Score = 0+0+0.27+0.53 =0.8

Summary — vector space ranking

» Represent the query as a weighted tf-idf vector
» Represent each document as a weighted tf-idf vector

» Compute the cosine similarity score for the query vector
and each document vector

» Rank documents with respect to the query by score
» Return the top K (e.g., K = 10) to the user

Computing Scores in a Complete
Search System

Outline

» Speeding up vector space ranking
» Putting together a complete search
system

Will require learning about a number of
miscellaneous topics and heuristics

Efficient cosine ranking

» Find the K docs in the collection “nearest” to the
query = K largest query-doc cosines.
» Efficient ranking:
Computing a single cosine efficiently.
Choosing the K largest cosine values efficiently.

Can we do this without computing all N cosines?

Efficient cosine ranking

» What we're doing in effect: solving the K-nearest neighbor
problem for a query vector

» In general, we do not know how to do this efficiently for
high-dimensional spaces

» But it is solvable for short queries, and standard indexes
support this well

Special case — unweighted queries

» No weighting on query terms
Assume each query term occurs only once

» Then for ranking, don’t need to normalize query vector

Faster cosine: unweighted query

FASTCOSINESCORE((])

1

O 0o =1 O Ul = W I

[
=

1

float Scores[N] =10

for eachd

do Initialize Length[d] to the length of doc d

for each query termt

do calculate w; ; and fetch postings list for t
for each pair(d, tf; 4) in postings list
do add wt; ; to Scores|d]

Read the array Length[d]

for each d

do Divide Scores[d] by Length[d]

return Top K components of Scores|]

Figure 7.1 A faster algc-ri thim for vector Space scores.

Computing the K largest cosines: selection
Vs. sorting

» Typically we want to retrieve the top K docs (in the
cosine ranking for the query)
not to totally order all docs in the collection
» Can we pick off docs with K highest cosines!?
» Let | = number of docs with nonzero cosines
We seek the K best of these |

Use heap for selecting top K
» Binary tree in which each node’s value > the values of
children

» Takes 2/ operations to construct, then each of K “winners”
read off in 2log | steps.

» For J=IM, K=100, this is about 10% of the cost of sorting.

Bottlenecks

» Primary computational bottleneck in scoring: cosine
computation

» Can we avoid all this computation?
» Yes, but may sometimes get it wrong

a doc not in the top K may creep into the list of K
output docs

Is this such a bad thing!?

Cosine similarity is only a proxy

» User has a task and a query formulation
» Cosine matches docs to query
» Thus cosine is anyway a proxy for user happiness

» If we get a list of K docs “close” to the top K by cosine
measure, should be ok

Generic approach

» Find a set A of contenders, with K < |A| << N

A does not necessarily contain the top K, but has many
docs from among the top K

Return the top K docs in A
» Think of A as pruning non-contenders

» The same approach is also used for other (non-cosine)
scoring functions

» Will look at several schemes following this approach

Index elimination

» Basic algorithm FastCosineScore only considers docs
containing at least one query term
» Take this further:
Only consider high-idf query terms

Only consider docs containing many query terms

High-idf query terms only

» For a query such as catcher in the rye
» Only accumulate scores from catcher and rye

» Intuition:in and the contribute little to the scores and so
don’t alter rank-ordering much
» Benefit:

Postings of low-idf terms have many docs — these (many) docs
get eliminated from set A of contenders

Docs containing many query terms

» Any doc with at least one query term is a candidate for
the top K output list

» For multi-term queries, only compute scores for docs
containing several of the query terms

Say, at least 3 out of 4

» Easy to implement in postings traversal

3 of 4 query terms

Antony| "——> 3] 4 16| 32 64[128

Brutus| ""——>[2 | 4 16| 32! 64128

3

3
Caesar| "——=[1] 2] 31 518 [13[21 34
Calpurnia™—[13]16] 32

Scores only computed for docs 8, 16 and 32.

Champion lists

» Precompute for each dictionary term t, the r docs of
highest weight in t’s postings
Call this the champion list for t

(aka fancy list or top docs for t)

» Note that r has to be chosen at index build time
Thus, it’s possible that r < K
» At query time, only compute scores for docs in the
champion list of some query term

Pick the K top-scoring docs from amongst these

Static quality scores

» We want top-ranking documents to be both relevant and
authoritative

» Relevance is being modeled by cosine scores

» Authority is typically a query-independent property of a
document

» Examples of authority signals
Wikipedia among websites
Articles in certain newspapers
A paper with many citations
(Pagerank)

Modeling authority

» Assign to each document a query-independent quality
score in [0,|] to each document d

Denote this by g(d)

» Thus,a quantity like the number of citations is scaled into

[0,1]

Net score

» Consider a simple total score combining cosine relevance
and authority

» net-score(q,d) = g(d) + cosine(q,d)
Can use some other linear combination than an equal
weighting
Indeed, any function of the two “signals” of user happiness —
more later

» Now we seek the top K docs by net score

Top K by net score — fast methods
» First idea: Order all postings by g(d)

» Key: this is a common ordering for all postings

» Thus, can concurrently traverse query terms’ postings for
Postings intersection

Cosine score computation

Why order postings by g(d)?

» Under g(d)-ordering, top-scoring docs likely to appear
early in postings traversal
» In time-bound applications (say, we have to return
whatever search results we can in 50 ms), this allows us
to stop postings traversal early
Short of computing scores for all docs in postings

High and low lists

» For each term, we maintain two postings lists called high
and low

Think of high as the champion list

» When traversing postings on a query, only traverse high
lists first
If we get more than K docs, select the top K and stop
Else proceed to get docs from the low lists
» Can be used even for simple cosine scores, without global
quality g(d)
» A means for segmenting index into two tiers

Impact-ordered postings

» We only want to compute scores for docs for which wf, 4
is high enough

» We sort each postings list by wf,

» Now: not all postings in a common order!

» How do we compute scores in order to pick off top K?

Two ideas follow

1. Early termination

» When traversing t’s postings, stop early after either
a fixed number of r docs

wf,4 drops below some threshold

» Take the union of the resulting sets of docs

One from the postings of each query term

» Compute only the scores for docs in this union

2. 1df-ordered terms

» When considering the postings of query terms
» Look at them in order of decreasing idf
High idf terms likely to contribute most to score

» As we update score contribution from each query term

Stop if doc scores relatively unchanged

» Can apply to cosine or some other net scores

Cluster pruning: preprocessing

» Pick YN docs at random: call these leaders
» For every other doc, pre-compute nearest
leader
Docs attached to a leader: its followers;
Likely: each leader has ~ VN followers.

Cluster pruning: query processing

» Process a query as follows:
Given query Q, find its nearest leader L.

Seek K nearest docs from among L’s
followers.

Visualization

@ cader

@®Follower

Why use random sampling

» Fast
» Leaders reflect data distribution

General variants

» Have each follower attached to b/=3 (say) nearest
leaders.

» From query, find b2=4 (say) nearest leaders and their
followers.

Parametric and zone indexes

» Thus far, a doc has been a sequence of terms
» In fact documents have multiple parts, some with special
semantics:
Author
Title
Date of publication
Language
Format

etc.

» These constitute the metadata about a document

Fields

» We sometimes wish to search by these metadata

E.g., find docs authored by William Shakespeare in the year
1601, containing alas poor Yorick

» Year = |601 is an example of a field
» Also, author last name = shakespeare, etc

» Field or parametric index: postings for each field value

Sometimes build range trees (e.g., for dates)

» Field query typically treated as conjunction

(doc must be authored by shakespeare)

Zone

» A zone is a region of the doc that can contain an
arbitrary amount of text e.g.,

Title
Abstract
References ...
» Build inverted indexes on zones as well to permit
querying
» E.g.,"find docs with merchant in the title zone and
matching the query gentle rain”

Example zone indexes

william.abstract |—* 11 — 121 — 1441 — 1729
william.title —~ 2 — 4 —* ol —> 16
william.author —+ 2 — 3 — 5 — 8

Fncode zones

william

= 2.author,2.title

@

in dictionary vs. postings.

= 3.author

4 title

v

= 5.author

Tiered indexes

» Break postings up into a hierarchy of lists
Most important

Least important
» Can be done by g(d) or another measure

» Inverted index thus broken up into tiers of decreasing
importance

» At query time use top tier unless it fails to yield K docs
If so drop to lower tiers

Example tiered index

auto » Doc?2
Tier 1 best
car » Doc1 » Doc3
insurance » Doc?2 » Doc3
auto
best » Doc1 » Doc3
Tier 2
car
insurance
auto » Doc1
Tier 3 best
car » Doc?2

insurance

Query term proximity

» Free text queries: just a set of terms typed into the query
box — common on the web

» Users prefer docs in which query terms occur within
close proximity of each other

» Let w be the smallest window in a doc containing all
query terms, e.g.,

» For the query strained mercy the smallest window in the
doc The quality of mercy is not strained is 4 (words)

» Would like scoring function to take this into.

Query parsers

» Free text query from user may in fact spawn one or more
queries to the indexes, e.g. query rising interest rates
Run the query as a phrase query

If <K docs contain the phrase rising interest rates, run the two
phrase queries rising interest and interest rates

If we still have <K docs, run the vector space query rising
interest rates

Rank matching docs by vector space scoring

» This sequence is issued by a query parser

Aggregate scores

» We've seen that score functions can combine cosine,
static quality, proximity, etc.

» How do we know the best combination?
» Some applications — expert-tuned

» Increasingly common: machine-learned

Putting it all together

—
| -

Dc:t:u ment
cache

Parsing

Llngmstlcs

Documents J @

luserquery |

1L

Indexers

Free text query parser g‘_"l>

U

Results

Page

Spell correction

Scoring and ranking |

Metadata in | Inexact : .
Tiered inverted
zone and top K1 ositional index | <87
field indexes | retrieval P
Indexes

I

Scoring
parameters

MLR

References

» Introduction to Information Retrieval, chapters 6 & 7.
» The slides were adapted from

the book’s companion website:

http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

