
BLG 540E

TEXT RETRIEVAL SYSTEMS

Arzucan Özgür

Term Weighting, Scoring and the
Vector Space Model

Faculty of Computer and Informatics, İstanbul Techical University

March 11, 2011

Ranked retrieval

 Thus far, our queries have all been Boolean.

 Documents either match or don’t.

 Good for expert users with precise understanding of

their needs and the collection.

 Also good for applications: Applications can easily consume

1000s of results.

 Not good for the majority of users.

 Most users incapable of writing Boolean queries (or they are,

but they think it’s too much work).

 Most users don’t want to wade through 1000s of results.

 This is particularly true of web search.

Ch. 6

Problem with Boolean search:

feast or famine

 Boolean queries often result in either too few (=0) or

too many (1000s) results.

 Query 1: “flights from istanbul” → 900,000 hits

 Query 2: “flights from istanbul to narita”: 1 hit

 It takes a lot of skill to come up with a query that

produces a manageable number of hits.

 AND gives too few; OR gives too many

Ch. 6

Ranked retrieval models

 Rather than a set of documents satisfying a query

expression, in ranked retrieval models, the system returns

an ordering over the (top) documents in the collection

with respect to a query

 Free text queries: Rather than a query language of

operators and expressions, the user’s query is just one or

more words in a human language

 In principle, there are two separate choices here, but in

practice, ranked retrieval models have normally been

associated with free text queries and vice versa

4

Feast or famine: not a problem in ranked

retrieval

 When a system produces a ranked result set, large result

sets are not an issue

 Indeed, the size of the result set is not an issue

 We just show the top k (≈ 10) results

 We don’t overwhelm the user

 Premise: the ranking algorithm works

Ch. 6

Importance of ranking:

 Viewing abstracts: Users are a lot more likely to read the

abstracts of the top-ranked pages (1, 2, 3, 4) than the

abstracts of the lower ranked pages (7, 8, 9, 10).

 Clicking: Distribution is even more skewed for clicking

 In 1 out of 2 cases, users click on the top-ranked page.

 Even if the top-ranked page is not relevant, 30% of users

will click on it.

 Getting the ranking right is very important.

 Getting the top-ranked page right is most important.

Scoring as the basis of ranked retrieval

 We wish to return in order the documents most likely to

be useful to the searcher

 How can we rank-order the documents in the collection

with respect to a query?

 Assign a score – say in [0, 1] – to each document

 This score measures how well document and query

“match”.

Ch. 6

Query-document matching scores

 We need a way of assigning a score to a query/document

pair

 Let’s start with a one-term query

 If the query term does not occur in the document: score

should be 0

 The more frequent the query term in the document, the

higher the score (should be)

 We will look at a number of alternatives for this.

Ch. 6

Jaccard coefficient

 Recall from Lecture 3: A commonly used measure of

overlap of two sets A and B

 jaccard(A,B) = |A ∩ B| / |A ∪ B|

 jaccard(A,A) = 1

 jaccard(A,B) = 0 if A ∩ B = 0

 A and B don’t have to be the same size.

 Always assigns a number between 0 and 1.

Ch. 6

Jaccard coefficient: Scoring example

 What is the query-document match score that the

Jaccard coefficient computes for each of the two

documents below?

 Query: ides of march

 Document 1: caesar died in march

 Document 2: the long march

Ch. 6

Issues with Jaccard for scoring

 It doesn’t consider term frequency (how many times a

term occurs in a document)

 Rare terms in a collection are more informative than

frequent terms. Jaccard doesn’t consider this information

 We need a more sophisticated way of normalizing for

length

Ch. 6

Recall (Lecture 1): Binary term-document

incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}
|V|

Sec. 6.2

Term-document count matrices

 Consider the number of occurrences of a term in a

document:

 Each document is a count vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

Bag of words model

 Vector representation doesn’t consider the ordering of

words in a document

 John is quicker than Mary and Mary is quicker than John have

the same vectors

 This is called the bag of words model.

Term frequency tf

 The term frequency tft,d of term t in document d is

defined as the number of times that t occurs in d.

 We want to use tf when computing query-document

match scores. But how?

 Raw term frequency is not what we want:

 A document with 10 occurrences of the term is more relevant

than a document with 1 occurrence of the term.

 But not 10 times more relevant.

 Relevance does not increase proportionally with term

frequency.

Log-frequency weighting

 The log frequency weight of term t in d is

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

 Score for a document-query pair: sum over terms t in both q and d:

 score

 The score is 0 if none of the query terms is present in the
document.



 


otherwise 0,

0 tfif, tflog 1

10 t,dt,d

t,dw

 


dqt dt) tflog (1 ,

Sec. 6.2

Document frequency

 Rare terms are more informative than frequent terms

 Recall stop words

 Consider a term in the query that is rare in the collection

(e.g., arachnocentric)

 A document containing this term is very likely to be

relevant to the query arachnocentric

 → We want a high weight for rare terms like arachnocentric.

Sec. 6.2.1

Document frequency, continued

 Frequent terms are less informative than rare terms

 Consider a query term that is frequent in the collection

(e.g., high, increase, line)

 A document containing such a term is more likely to be

relevant than a document that doesn’t

 But it’s not a sure indicator of relevance.

 → For frequent terms, we want high positive weights for

words like high, increase, and line

 But lower weights than for rare terms.

 We will use document frequency (df) to capture this.

Sec. 6.2.1

idf weight

 dft is the document frequency of t: the number of

documents that contain t

 dft is an inverse measure of the informativeness of t

 dft  N

 We define the idf (inverse document frequency) of t by

 We use log (N/dft) instead of N/dft to “dampen” the effect of

idf.

)/df(log idf 10 tt N

Will turn out the base of the log is immaterial.

Sec. 6.2.1

idf example, suppose N = 1 million

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 4

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N

Effect of idf on ranking

 Does idf have an effect on ranking for one-term queries,

like

 iPhone

 idf has no effect on ranking one term queries

 idf affects the ranking of documents for queries with at least

two terms

 For the query capricious person, idf weighting makes

occurrences of capricious count for much more in the final

document ranking than occurrences of person.

Collection vs. Document frequency

 The collection frequency of t is the number of
occurrences of t in the collection, counting multiple
occurrences.

 Example:

 Which word is a better search term (and should get a
higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight

and its idf weight.

 Best known weighting scheme in information retrieval

 Note: the “-” in tf-idf is a hyphen, not a minus sign!

 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a

document

 Increases with the rarity of the term in the collection

)df/(log)tflog1(w 10,, tdt N
dt



Sec. 6.2.2

Final ranking of documents for a query



Score(q,d)  tf.idft,d
tqd



Sec. 6.2.2

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued

vector of tf-idf weights ∈ R|V|

Sec. 6.3

Documents as vectors

 So we have a |V|-dimensional vector space

 Terms are axes of the space

 Documents are points or vectors in this space

 Very high-dimensional: tens of millions of dimensions

when you apply this to a web search engine

 These are very sparse vectors - most entries are zero.

Sec. 6.3

The Vector-space model

Term 1

Term 2

Term 3

Doc 1

Doc 2

Doc 3

Queries as vectors

 Key idea 1: Do the same for queries: represent them as

vectors in the space

 Key idea 2: Rank documents according to their proximity

to the query in this space

 proximity = similarity of vectors

 proximity ≈ inverse of distance

 Recall: We do this because we want to get away from the

you’re-either-in-or-out Boolean model.

 Instead: rank more relevant documents higher than less

relevant documents

Sec. 6.3

Formalizing vector space proximity

 First cut: distance between two points

 (= distance between the end points of the two vectors)

 Euclidean distance?

 Euclidean distance is a bad idea . . .

 . . . because Euclidean distance is large for vectors of

different lengths.

Sec. 6.3

Why distance is a bad idea

Sec. 6.3

Use angle instead of distance

 Thought experiment: take a document d and append it to

itself. Call this document d′.

 “Semantically” d and d′ have the same content

 The Euclidean distance between the two documents can

be quite large

 The angle between the two documents is 0,

corresponding to maximal similarity.

 Key idea: Rank documents according to angle with query.

Sec. 6.3

From angles to cosines

 The following two notions are equivalent.

 Rank documents in decreasing order of the angle between

query and document

 Rank documents in increasing order of

cosine(query,document)

 Cosine is a monotonically decreasing function for the

interval [0o, 180o]

Sec. 6.3

From angles to cosines

 But how – and why – should we be computing cosines?

Sec. 6.3

Length normalization

 A vector can be (length-) normalized by dividing each of

its components by its length – for this we use the L2

norm:

 Dividing a vector by its L2 norm makes it a unit (length)

vector (on surface of unit hypersphere)

 Effect on the two documents d and d′ (d appended to

itself) from earlier slide: they have identical vectors after

length-normalization.

 Long and short documents now have comparable weights


i ixx 2

2



Sec. 6.3

cosine(query,document)











V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(











Dot product Unit vectors

q
i
 is the tf-idf weight of term i in the query

d
i
 is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,

equivalently, the cosine of the angle between q and d.

Sec. 6.3

Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply

the dot product (or scalar product):

 for q, d length-normalized.



cos(q ,d)  q d  qidi
i1

V



Cosine similarity illustrated

37

Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are

the novels

SaS: Sense and

Sensibility (Jane Austen)

PaP: Pride and

Prejudice (Jane Austen),
and

WH: Wuthering

Heights? (Emily
Bronte)

Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.

3 documents example contd.

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈

0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0

≈ 0.94

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Sec. 6.3

Computing cosine scores

Sec. 6.3

tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Sec. 6.4

Weighting may differ in queries vs

documents

 Many search engines allow for different weightings for

queries vs. documents

 SMART Notation: denotes the combination in use in an

engine, with the notation ddd.qqq, using the acronyms

from the previous table

 A very standard weighting scheme is: lnc.ltc

 Document: logarithmic tf (l as first character), no idf and

cosine normalization

 Query: logarithmic tf (l in leftmost column), idf (t in

second column), cosine normalization …

Sec. 6.4

tf-idf example: lnc.ltc

Term Query Document Pro

d

tf-

raw

tf-wt df idf wt n’liz

e

tf-raw tf-wt wt n’liz

e

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance

Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =



12  02 12 1.32 1.92

Sec. 6.4

Summary – vector space ranking

 Represent the query as a weighted tf-idf vector

 Represent each document as a weighted tf-idf vector

 Compute the cosine similarity score for the query vector

and each document vector

 Rank documents with respect to the query by score

 Return the top K (e.g., K = 10) to the user

Computing Scores in a Complete

Search System

Outline

 Speeding up vector space ranking

 Putting together a complete search

system

 Will require learning about a number of

miscellaneous topics and heuristics

Ch. 7

Efficient cosine ranking

 Find the K docs in the collection “nearest” to the

query  K largest query-doc cosines.

 Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the K largest cosine values efficiently.

 Can we do this without computing all N cosines?

Sec. 7.1

Efficient cosine ranking

 What we’re doing in effect: solving the K-nearest neighbor

problem for a query vector

 In general, we do not know how to do this efficiently for

high-dimensional spaces

 But it is solvable for short queries, and standard indexes

support this well

Sec. 7.1

Special case – unweighted queries

 No weighting on query terms

 Assume each query term occurs only once

 Then for ranking, don’t need to normalize query vector

Sec. 7.1

Faster cosine: unweighted query

Sec. 7.1

Computing the K largest cosines: selection

vs. sorting

 Typically we want to retrieve the top K docs (in the

cosine ranking for the query)

 not to totally order all docs in the collection

 Can we pick off docs with K highest cosines?

 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Sec. 7.1

Use heap for selecting top K

 Binary tree in which each node’s value > the values of

children

 Takes 2J operations to construct, then each of K “winners”

read off in 2log J steps.

 For J=1M, K=100, this is about 10% of the cost of sorting.

1

.9 .3

.8 .3

.1

.1

Sec. 7.1

Bottlenecks

 Primary computational bottleneck in scoring: cosine

computation

 Can we avoid all this computation?

 Yes, but may sometimes get it wrong

 a doc not in the top K may creep into the list of K

output docs

 Is this such a bad thing?

Sec. 7.1.1

Cosine similarity is only a proxy

 User has a task and a query formulation

 Cosine matches docs to query

 Thus cosine is anyway a proxy for user happiness

 If we get a list of K docs “close” to the top K by cosine

measure, should be ok

Sec. 7.1.1

Generic approach

 Find a set A of contenders, with K < |A| << N

 A does not necessarily contain the top K, but has many

docs from among the top K

 Return the top K docs in A

 Think of A as pruning non-contenders

 The same approach is also used for other (non-cosine)

scoring functions

 Will look at several schemes following this approach

Sec. 7.1.1

Index elimination

 Basic algorithm FastCosineScore only considers docs

containing at least one query term

 Take this further:

 Only consider high-idf query terms

 Only consider docs containing many query terms

Sec. 7.1.2

High-idf query terms only

 For a query such as catcher in the rye

 Only accumulate scores from catcher and rye

 Intuition: in and the contribute little to the scores and so

don’t alter rank-ordering much

 Benefit:

 Postings of low-idf terms have many docs  these (many) docs

get eliminated from set A of contenders

Sec. 7.1.2

Docs containing many query terms

 Any doc with at least one query term is a candidate for

the top K output list

 For multi-term queries, only compute scores for docs

containing several of the query terms

 Say, at least 3 out of 4

 Easy to implement in postings traversal

Sec. 7.1.2

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

Champion lists

 Precompute for each dictionary term t, the r docs of

highest weight in t’s postings

 Call this the champion list for t

 (aka fancy list or top docs for t)

 Note that r has to be chosen at index build time

 Thus, it’s possible that r < K

 At query time, only compute scores for docs in the

champion list of some query term

 Pick the K top-scoring docs from amongst these

Sec. 7.1.3

Static quality scores

 We want top-ranking documents to be both relevant and

authoritative

 Relevance is being modeled by cosine scores

 Authority is typically a query-independent property of a

document

 Examples of authority signals

 Wikipedia among websites

 Articles in certain newspapers

 A paper with many citations

 (Pagerank)

Sec. 7.1.4

Modeling authority

 Assign to each document a query-independent quality

score in [0,1] to each document d

 Denote this by g(d)

 Thus, a quantity like the number of citations is scaled into

[0,1]

Sec. 7.1.4

Net score

 Consider a simple total score combining cosine relevance

and authority

 net-score(q,d) = g(d) + cosine(q,d)

 Can use some other linear combination than an equal

weighting

 Indeed, any function of the two “signals” of user happiness –

more later

 Now we seek the top K docs by net score

Sec. 7.1.4

Top K by net score – fast methods

 First idea: Order all postings by g(d)

 Key: this is a common ordering for all postings

 Thus, can concurrently traverse query terms’ postings for

 Postings intersection

 Cosine score computation

Sec. 7.1.4

Why order postings by g(d)?

 Under g(d)-ordering, top-scoring docs likely to appear

early in postings traversal

 In time-bound applications (say, we have to return

whatever search results we can in 50 ms), this allows us

to stop postings traversal early

 Short of computing scores for all docs in postings

Sec. 7.1.4

High and low lists

 For each term, we maintain two postings lists called high

and low

 Think of high as the champion list

 When traversing postings on a query, only traverse high

lists first

 If we get more than K docs, select the top K and stop

 Else proceed to get docs from the low lists

 Can be used even for simple cosine scores, without global

quality g(d)

 A means for segmenting index into two tiers

Sec. 7.1.4

Impact-ordered postings

 We only want to compute scores for docs for which wft,d

is high enough

 We sort each postings list by wft,d

 Now: not all postings in a common order!

 How do we compute scores in order to pick off top K?

 Two ideas follow

Sec. 7.1.5

1. Early termination

 When traversing t’s postings, stop early after either

 a fixed number of r docs

 wft,d drops below some threshold

 Take the union of the resulting sets of docs

 One from the postings of each query term

 Compute only the scores for docs in this union

Sec. 7.1.5

2. idf-ordered terms

 When considering the postings of query terms

 Look at them in order of decreasing idf

 High idf terms likely to contribute most to score

 As we update score contribution from each query term

 Stop if doc scores relatively unchanged

 Can apply to cosine or some other net scores

Sec. 7.1.5

Cluster pruning: preprocessing

 Pick N docs at random: call these leaders

 For every other doc, pre-compute nearest

leader

 Docs attached to a leader: its followers;

 Likely: each leader has ~ N followers.

Sec. 7.1.6

 Cluster pruning: query processing

 Process a query as follows:

 Given query Q, find its nearest leader L.

 Seek K nearest docs from among L’s

followers.

Sec. 7.1.6

Visualization

Query

Leader Follower

Sec. 7.1.6

Why use random sampling

 Fast

 Leaders reflect data distribution

Sec. 7.1.6

General variants

 Have each follower attached to b1=3 (say) nearest

leaders.

 From query, find b2=4 (say) nearest leaders and their

followers.

Sec. 7.1.6

Parametric and zone indexes

 Thus far, a doc has been a sequence of terms

 In fact documents have multiple parts, some with special

semantics:

 Author

 Title

 Date of publication

 Language

 Format

 etc.

 These constitute the metadata about a document

Sec. 6.1

Fields

 We sometimes wish to search by these metadata

 E.g., find docs authored by William Shakespeare in the year

1601, containing alas poor Yorick

 Year = 1601 is an example of a field

 Also, author last name = shakespeare, etc

 Field or parametric index: postings for each field value

 Sometimes build range trees (e.g., for dates)

 Field query typically treated as conjunction

 (doc must be authored by shakespeare)

Sec. 6.1

Zone

 A zone is a region of the doc that can contain an

arbitrary amount of text e.g.,

 Title

 Abstract

 References …

 Build inverted indexes on zones as well to permit

querying

 E.g., “find docs with merchant in the title zone and

matching the query gentle rain”

Sec. 6.1

Example zone indexes

Encode zones in dictionary vs. postings.

Sec. 6.1

Tiered indexes

 Break postings up into a hierarchy of lists

 Most important

 …

 Least important

 Can be done by g(d) or another measure

 Inverted index thus broken up into tiers of decreasing

importance

 At query time use top tier unless it fails to yield K docs

 If so drop to lower tiers

Sec. 7.2.1

Example tiered index

Sec. 7.2.1

Query term proximity

 Free text queries: just a set of terms typed into the query

box – common on the web

 Users prefer docs in which query terms occur within

close proximity of each other

 Let w be the smallest window in a doc containing all

query terms, e.g.,

 For the query strained mercy the smallest window in the

doc The quality of mercy is not strained is 4 (words)

 Would like scoring function to take this into.

Sec. 7.2.2

Query parsers

 Free text query from user may in fact spawn one or more

queries to the indexes, e.g. query rising interest rates

 Run the query as a phrase query

 If <K docs contain the phrase rising interest rates, run the two

phrase queries rising interest and interest rates

 If we still have <K docs, run the vector space query rising

interest rates

 Rank matching docs by vector space scoring

 This sequence is issued by a query parser

Sec. 7.2.3

Aggregate scores

 We’ve seen that score functions can combine cosine,

static quality, proximity, etc.

 How do we know the best combination?

 Some applications – expert-tuned

 Increasingly common: machine-learned

Sec. 7.2.3

Putting it all together

Sec. 7.2.4

References

 Introduction to Information Retrieval, chapters 6 & 7.

 The slides were adapted from

 the book’s companion website:

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html

Sec. 3.5

http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

