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Ranked retrieval 

 Thus far, our queries have all been Boolean. 

 Documents either match or don’t. 

 Good for expert users with precise understanding of 

their needs and the collection. 

 Also good for applications:  Applications can easily consume 

1000s of results. 

 Not good for the majority of users. 

 Most users incapable of writing Boolean queries (or they are, 

but they think it’s too much work). 

 Most users don’t want to wade through 1000s of results. 

 This is particularly true of web search. 
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Problem with Boolean search: 

feast or famine 

 Boolean queries often result in either too few (=0) or 

too many (1000s) results. 

 Query 1: “flights from istanbul” → 900,000 hits 

 Query 2: “flights from istanbul to narita”: 1 hit 

 It takes a lot of skill to come up with a query that 

produces a manageable number of hits. 

 AND gives too few; OR gives too many 
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Ranked retrieval models 

 Rather than a set of documents satisfying a query 

expression, in ranked retrieval models, the system returns 

an ordering over the (top) documents in the collection 

with respect to a query 

 Free text queries: Rather than a query language of 

operators and expressions, the user’s query is just one or 

more words in a human language 

 In principle, there are two separate choices here, but in 

practice, ranked retrieval models have normally been 

associated with free text queries and vice versa 
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Feast or famine: not a problem in ranked 

retrieval 

 When a system produces a ranked result set, large result 

sets are not an issue 

 Indeed, the size of the result set is not an issue 

 We just show the top k ( ≈ 10) results 

 We don’t overwhelm the user 

 

 Premise: the ranking algorithm works 
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Importance of ranking: 

 Viewing abstracts: Users are a lot more likely to read the 

abstracts of the top-ranked pages (1, 2, 3, 4) than the 

abstracts of the lower ranked pages (7, 8, 9, 10). 

 Clicking: Distribution is even more skewed for clicking 

 In 1 out of 2 cases, users click on the top-ranked page. 

 Even if the top-ranked page is not relevant, 30% of users 

will click on it. 

 

 Getting the ranking right is very important. 

 Getting the top-ranked page right is most important. 



Scoring as the basis of ranked retrieval 

 We wish to return in order the documents most likely to 

be useful to the searcher 

 How can we rank-order the documents in the collection 

with respect to a query? 

 Assign a score – say in [0, 1] – to each document 

 This score measures how well document and query 

“match”. 
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Query-document matching scores 

 We need a way of assigning a score to a query/document 

pair 

 Let’s start with a one-term query 

 If the query term does not occur in the document: score 

should be 0 

 The more frequent the query term in the document, the 

higher the score (should be) 

 We will look at a number of alternatives for this. 

Ch. 6 



Jaccard coefficient 

 Recall from Lecture 3:  A commonly used measure of 

overlap of two sets A and B 

 jaccard(A,B) = |A ∩ B| / |A ∪ B| 

 jaccard(A,A) = 1 

 jaccard(A,B) = 0 if A ∩ B = 0 

 A and B don’t have to be the same size. 

 Always assigns a number between 0 and 1. 
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Jaccard coefficient: Scoring example 

 What is the query-document match score that the 

Jaccard coefficient computes for each of the two 

documents below? 

 Query: ides of march 

 Document 1: caesar died in march 

 Document 2: the long march 
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Issues with Jaccard for scoring 

 It doesn’t consider term frequency (how many times a 

term occurs in a document) 

 Rare terms in a collection are more informative than 

frequent terms. Jaccard doesn’t consider this information 

 We need a more sophisticated way of normalizing for 

length 
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Recall (Lecture 1): Binary term-document 

incidence matrix 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}
|V| 
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Term-document count matrices 

 Consider the number of occurrences of a term in a 

document:  

 Each document is a count vector in ℕv: a column below  

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0
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Bag of words model 

 Vector representation doesn’t consider the ordering of 

words in a document 

 John is quicker than Mary and Mary is quicker than John have 

the same vectors 

 This is called the bag of words model. 



Term frequency tf 

 The term frequency tft,d of term t in document d is 

defined as the number of times that t occurs in d. 

 We want to use tf when computing query-document 

match scores. But how? 

 Raw term frequency is not what we want: 

 A document with 10 occurrences of the term is more relevant 

than a document with 1 occurrence of the term. 

 But not 10 times more relevant. 

 Relevance does not increase proportionally with term 

frequency. 



Log-frequency weighting 

 The log frequency weight of term t in d is 

 

 

 

 

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc. 

 Score for a document-query pair: sum over terms t in both q and d: 

 

    score 
 

 

 The score is 0 if none of the query terms is present in the 
document. 
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Document frequency 

 Rare terms are more informative than frequent terms 

 Recall stop words 

 Consider a term in the query that is rare in the collection 

(e.g., arachnocentric) 

 A document containing this term is very likely to be 

relevant to the query arachnocentric 

 → We want a high weight for rare terms like arachnocentric. 
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Document frequency, continued 

 Frequent terms are less informative than rare terms 

 Consider a query term that is frequent in the collection 

(e.g., high, increase, line) 

 A document containing such a term is more likely to be 

relevant than a document that doesn’t 

 But it’s not a sure indicator of relevance. 

 → For frequent terms, we want high positive weights for 

words like high, increase, and line 

 But lower weights than for rare terms. 

 We will use document frequency (df) to capture this. 

 

Sec. 6.2.1 



idf weight 

 dft is the document frequency of t: the number of 

documents that contain t 

 dft is an inverse measure of the informativeness of t 

 dft   N 

 We define the idf (inverse document frequency) of t by 

 

 

 

 We use log (N/dft) instead of N/dft to “dampen” the effect of 

idf. 

)/df( log  idf 10 tt N

Will turn out the base of the log is immaterial. 
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idf example, suppose N = 1 million 

term dft idft 

calpurnia 1 6 

animal 100 4 

sunday 1,000 4 

fly 10,000 2 

under 100,000 1 

the 1,000,000 0 

There is one idf value for each term t in a collection. 
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Effect of idf on ranking 

 Does idf have an effect on ranking for one-term queries, 

like 

 iPhone 

 idf has no effect on ranking one term queries 

 idf affects the ranking of documents for queries with at least 

two terms 

 For the query capricious person, idf weighting makes 

occurrences of capricious count for much more in the final 

document ranking than occurrences of person. 



Collection vs. Document frequency 

 The collection frequency of t is the number of 
occurrences of t in the collection, counting multiple 
occurrences. 

 Example: 

 

 

 

 

 

 

 Which word is a better search term (and should get a 
higher weight)? 

Word Collection frequency Document frequency 

insurance 10440 3997 

try 10422 8760 
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tf-idf weighting 

 The tf-idf weight of a term is the product of its tf weight 

and its idf weight. 

 

 

 Best known weighting scheme in information retrieval 

 Note: the “-” in tf-idf is a hyphen, not a minus sign! 

 Alternative names: tf.idf, tf x idf 

 Increases with the number of occurrences within a 

document 

 Increases with the rarity of the term in the collection 

)df/(log)tflog1(w 10,, tdt N
dt


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Final ranking of documents for a query 



Score(q,d)  tf.idft,d
tqd


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Binary → count → weight matrix 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 

vector of tf-idf weights ∈ R|V| 
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Documents as vectors 

 So we have a |V|-dimensional vector space 

 Terms are axes of the space 

 Documents are points or vectors in this space 

 Very high-dimensional: tens of millions of dimensions 

when you apply this to a web search engine 

 These are very sparse vectors - most entries are zero. 
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The Vector-space model 

Term 1 

Term 2 

Term 3 

Doc 1 

Doc 2 

Doc 3 



Queries as vectors 

 Key idea 1: Do the same for queries: represent them as 

vectors in the space 

 Key idea 2: Rank documents according to their proximity 

to the query in this space 

 proximity = similarity of vectors 

 proximity ≈ inverse of distance 

 Recall:  We do this because we want to get away from the 

you’re-either-in-or-out Boolean model. 

 Instead: rank more relevant documents higher than less 

relevant documents 
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Formalizing vector space proximity 

 First cut: distance between two points 

 ( = distance between the end points of the two vectors) 

 Euclidean distance? 

 Euclidean distance is a bad idea . . . 

 . . . because Euclidean distance is large for vectors of 

different lengths. 
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Why distance is a bad idea 
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Use angle instead of distance 

 Thought experiment: take a document d and append it to 

itself. Call this document d′. 

 “Semantically” d and d′ have the same content 

 The Euclidean distance between the two documents can 

be quite large 

 The angle between the two documents is 0, 

corresponding to maximal similarity. 

 

 Key idea: Rank documents according to angle with query. 
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From angles to cosines 

 The following two notions are equivalent. 

 Rank documents in decreasing order of the angle between 

query and document 

 Rank documents in increasing order  of 

cosine(query,document) 

 Cosine is a monotonically decreasing function for the 

interval [0o, 180o] 
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From angles to cosines 

 But how – and why – should we be computing cosines? 
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Length normalization 

 A vector can be (length-) normalized by dividing each of 

its components by its length – for this we use the L2 

norm: 

 

 Dividing a vector by its L2 norm makes it a unit (length) 

vector (on surface of unit hypersphere) 

 Effect on the two documents d and d′ (d appended to 

itself) from earlier slide: they have identical vectors after 

length-normalization. 

 Long and short documents now have comparable weights 


i ixx 2

2


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cosine(query,document) 


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q
i
 is the tf-idf weight of term i in the query 

d
i
 is the tf-idf weight of term i in the document 

 

cos(q,d) is the cosine similarity of q and d … or, 

equivalently, the cosine of the angle between q and d. 
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Cosine for length-normalized vectors 

 For length-normalized vectors, cosine similarity is simply 

the dot product (or scalar product): 

 

 

 

 

                                   for q, d length-normalized. 

 



cos(q ,d )  q d  qidi
i1

V





Cosine similarity illustrated 

37 



Cosine similarity amongst 3 documents 

term SaS PaP WH 

affection 115 58  20 

jealous 10 7 11 

gossip 2 0 6 

wuthering 0 0 38 

How similar are 

the novels 

SaS: Sense and 

Sensibility (Jane Austen) 

PaP: Pride and 

Prejudice (Jane Austen), 
and 

WH: Wuthering 

Heights? (Emily 
Bronte) 

Term frequencies (counts) 
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3 documents example contd. 

Log frequency weighting 

term SaS PaP WH 

affection 3.06 2.76 2.30 

jealous 2.00 1.85 2.04 

gossip 1.30 0 1.78 

wuthering 0 0 2.58 

After length normalization 

term SaS PaP WH 

affection 0.789 0.832 0.524 

jealous 0.515 0.555 0.465 

gossip 0.335 0 0.405 

wuthering 0 0 0.588 

cos(SaS,PaP) ≈ 

0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 

≈ 0.94 

cos(SaS,WH) ≈ 0.79 

cos(PaP,WH) ≈ 0.69 

Sec. 6.3 



Computing cosine scores 
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tf-idf weighting has many variants 

Columns headed ‘n’ are acronyms for weight schemes. 
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Weighting may differ in queries vs 

documents 

 Many search engines allow for different weightings for 

queries vs. documents 

 SMART Notation: denotes the combination in use in an 

engine, with the notation ddd.qqq, using the acronyms 

from the previous table 

 A very standard weighting scheme is: lnc.ltc 

 Document: logarithmic tf (l as first character), no idf and 

cosine normalization 

 Query: logarithmic tf (l in leftmost column), idf (t in 

second column), cosine normalization … 
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tf-idf example: lnc.ltc 

Term Query Document Pro

d 

tf-

raw 

tf-wt df idf wt n’liz

e 

tf-raw tf-wt wt n’liz

e 

auto 0 0 5000 2.3  0 0 1 1 1 0.52 0 

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0 

car 1  1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27 

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53 

Document: car insurance auto insurance 

Query: best car insurance 

Exercise: what is N, the number of docs? 

Score = 0+0+0.27+0.53 = 0.8 

Doc length = 



12  02 12 1.32 1.92
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Summary – vector space ranking 

 Represent the query as a weighted tf-idf vector 

 Represent each document as a weighted tf-idf vector 

 Compute the cosine similarity score for the query vector 

and each document vector 

 Rank documents with respect to the query by score 

 Return the top K (e.g., K = 10) to the user 



Computing Scores in a Complete 

Search System 



Outline 

 Speeding up vector space ranking 

 Putting together a complete search 

system 

 Will require learning about  a number of 

miscellaneous topics and heuristics 
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Efficient cosine ranking 

 Find the K docs in the collection “nearest” to the 

query  K largest query-doc cosines. 

 Efficient ranking: 

 Computing a single cosine efficiently. 

 Choosing the K largest cosine values efficiently. 

 Can we do this without computing all N cosines? 
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Efficient cosine ranking 

 What we’re doing in effect: solving the K-nearest neighbor 

problem for a query vector 

 In general, we do not know how to do this  efficiently for 

high-dimensional spaces 

 But it is solvable for short queries, and standard indexes 

support this well 
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Special case – unweighted queries 

 No weighting on query terms 

 Assume each query term occurs only once 

 Then for ranking, don’t need to normalize query vector 
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Faster cosine: unweighted query 
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Computing the K largest cosines: selection 

vs. sorting 

 Typically we want to retrieve the top K docs (in the 

cosine ranking for the query) 

 not to totally order all docs in the collection 

 Can we pick off docs with K highest cosines? 

 Let J = number of docs with nonzero cosines 

 We seek the K best of these J 
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Use heap for selecting top K 

 Binary tree in which each node’s value > the values of 

children 

 Takes 2J operations to construct, then each of K “winners” 

read off in 2log J steps. 

 For J=1M, K=100, this is about 10% of the cost of sorting. 

1 

.9 .3 

.8 .3 

.1 

.1 
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Bottlenecks 

 Primary computational bottleneck in scoring: cosine 

computation 

 Can we avoid all this computation? 

 Yes, but may sometimes get it wrong 

 a doc not in the top K may creep into the list of K 

output docs 

 Is this such a bad thing? 
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Cosine similarity is only a proxy 

 User has a task and a query formulation 

 Cosine matches docs to query 

 Thus cosine is anyway a proxy for user happiness 

 If we get a list of K docs “close” to the top K by cosine 

measure, should be ok 
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Generic approach 

 Find a set A  of contenders, with K < |A| << N 

 A does not necessarily contain the top K, but has many 

docs from among the top K 

 Return the top K docs in A 

 Think of A as pruning non-contenders 

 The same approach is also used for other (non-cosine) 

scoring functions 

 Will look at several schemes following this approach 
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Index elimination 

 Basic algorithm FastCosineScore only considers docs 

containing at least one query term 

 Take this further: 

 Only consider high-idf query terms 

 Only consider docs containing many query terms 
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High-idf query terms only 

 For a query such as catcher in the rye 

 Only accumulate scores from catcher and rye 

 Intuition: in and the contribute little to the scores and so 

don’t alter rank-ordering much 

 Benefit: 

 Postings of low-idf terms have many docs  these (many) docs 

get eliminated from set A of contenders 
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Docs containing many query terms 

 Any doc with at least one query term is a candidate for 

the top K output list 

 For multi-term queries, only compute scores for docs 

containing several of the query terms 

 Say, at least 3 out of 4 

 Easy to implement in postings traversal 
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3 of 4 query terms 

Brutus 

Caesar 

Calpurnia 

1 2 3 5 8 13 21 34 

2 4 8 16 32 64 128 

13 16 

Antony 3 4 8 16 32 64 128 

32 

Scores only computed for docs 8, 16 and 32. 
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Champion lists 

 Precompute for each dictionary term t, the r docs of 

highest weight in t’s postings 

 Call this the champion list for t 

 (aka fancy list or top docs for t) 

 Note that r has to be chosen at index build time 

 Thus, it’s possible that r < K 

 At query time, only compute scores for docs in the 

champion list of some query term 

 Pick the K top-scoring docs from amongst these 
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Static quality scores 

 We want top-ranking documents to be both relevant and 

authoritative 

 Relevance is being modeled by cosine scores 

 Authority is typically a query-independent property of a 

document 

 Examples of authority signals 

 Wikipedia among websites 

 Articles in certain newspapers 

 A paper with many citations 

 (Pagerank) 
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Modeling authority 

 Assign to each document a query-independent quality 

score in [0,1] to each document d 

 Denote this by g(d) 

 Thus, a quantity like the number of citations is scaled into 

[0,1] 
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Net score 

 Consider a simple total score combining cosine relevance 

and authority 

 net-score(q,d) = g(d) + cosine(q,d) 

 Can use some other linear combination than an equal 

weighting 

 Indeed, any function of the two “signals” of user happiness – 

more later 

 Now we seek the top K docs by net score 
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Top K by net score – fast methods 

 First idea: Order all postings by g(d) 

 Key: this is a common ordering for all postings 

 Thus, can concurrently traverse query terms’ postings for 

 Postings intersection 

 Cosine score computation 
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Why order postings by g(d)? 

 Under g(d)-ordering, top-scoring docs likely to appear 

early in postings traversal 

 In time-bound applications (say, we have to return 

whatever search results we can in 50 ms), this allows us 

to stop postings traversal early 

 Short of computing scores for all docs in postings 

Sec. 7.1.4 



High and low lists 

 For each term, we maintain two postings lists called high 

and low 

 Think of high as the champion list 

 When traversing postings on a query, only traverse high 

lists first 

 If we get more than K docs, select the top K and stop 

 Else proceed to get docs from the low lists 

 Can be used even for simple cosine scores, without global 

quality g(d) 

 A means for segmenting index into two tiers 
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Impact-ordered postings 

 We only want to compute scores for docs for which wft,d 

is high enough 

 We sort each postings list by wft,d 

 Now: not all postings in a common order! 

 How do we compute scores in order to pick off top K? 

 Two ideas follow 
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1. Early termination 

 When traversing t’s postings, stop early after either 

 a fixed number of r docs 

 wft,d  drops below some threshold 

 Take the union of the resulting sets of docs 

 One from the postings of each query term 

 Compute only the scores for docs in this union 
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2. idf-ordered terms 

 When considering the postings of query terms 

 Look at them in order of decreasing idf 

 High idf terms likely to contribute most to score 

 As we update score contribution from each query term 

 Stop if doc scores relatively unchanged 

 Can apply to cosine or some other net scores 
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Cluster pruning: preprocessing 

 Pick N docs at random: call these leaders 

 For every other doc, pre-compute nearest 

leader 

 Docs attached to a leader: its followers; 

 Likely: each leader has ~ N followers. 
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 Cluster pruning: query processing 

 Process a query as follows: 

 Given query Q, find its nearest leader L. 

 Seek K nearest docs from among L’s 

followers. 
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Visualization 

Query 

Leader Follower 
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Why use random sampling 

 Fast 

 Leaders reflect data distribution 
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General variants 

 Have each follower attached to b1=3 (say) nearest 

leaders. 

 From query, find b2=4 (say) nearest leaders and their 

followers. 
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Parametric and zone indexes 

 Thus far, a doc has been a sequence of terms 

 In fact documents have multiple parts, some with special 

semantics: 

 Author 

 Title 

 Date of publication 

 Language 

 Format 

 etc. 

 These constitute the metadata about a document 
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Fields 

 We sometimes wish to search by these metadata 

 E.g., find docs authored by William Shakespeare in the year 

1601, containing alas poor Yorick 

 Year = 1601 is an example of a field 

 Also, author last name = shakespeare, etc 

 Field or parametric index: postings for each field value 

 Sometimes build range trees (e.g., for dates) 

 Field query typically treated as conjunction 

 (doc must be authored by shakespeare) 
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Zone 

 A zone is a region of the doc that can contain an 

arbitrary amount of text e.g., 

 Title 

 Abstract 

 References … 

 Build inverted indexes on zones as well to permit 

querying 

 E.g., “find docs with merchant in the title zone and 

matching the query gentle rain” 
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Example zone indexes 

Encode zones in dictionary vs. postings. 
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Tiered indexes 

 Break postings up into a hierarchy of lists 

 Most important 

 … 

 Least important 

 Can be done by g(d) or another measure 

 Inverted index thus broken up into tiers of decreasing 

importance 

 At query time use top tier unless it fails to yield K docs 

 If so drop to lower tiers 
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Example tiered index 
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Query term proximity 

 Free text queries: just a set of terms typed into the query 

box – common on the web 

 Users prefer docs in which query terms occur within 

close proximity of each other 

 Let w be the smallest window in a doc containing all 

query terms, e.g., 

 For the query strained mercy the smallest window in the 

doc The quality of mercy is not strained is 4 (words) 

 Would like scoring function to take this into. 
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Query parsers 

 Free text query from user may in fact spawn one or more 

queries to the indexes, e.g. query rising interest rates 

 Run the query as a phrase query  

 If <K docs contain the phrase rising interest rates, run the two 

phrase queries rising interest and interest rates 

 If we still have <K docs, run the vector space query rising 

interest rates 

 Rank matching docs by vector space scoring 

 This sequence is issued by a query parser 

Sec. 7.2.3 



Aggregate scores 

 We’ve seen that score functions can combine cosine, 

static quality, proximity, etc. 

 How do we know the best combination? 

 Some applications – expert-tuned 

 Increasingly common: machine-learned 

Sec. 7.2.3 



Putting it all together 

Sec. 7.2.4 
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 Introduction to Information Retrieval, chapters 6 & 7. 
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