
BLG 540E

TEXT RETRIEVAL SYSTEMS

Arzucan Özgür

Web Search and Crawling

Faculty of Computer and Informatics, İstanbul Techical University

April 22, 2011

Brief (non-technical) history

 Early keyword-based engines ca. 1995-1997

 Altavista, Excite, Infoseek, Inktomi, Lycos

 Paid search ranking: Goto (morphed into

Overture.com  Yahoo!)

 Your search ranking depended on how much you

paid

Brief (non-technical) history

 1998+: Link-based ranking pioneered by Google

 Blew away all early engines save Inktomi

 Meanwhile Goto/Overture’s annual revenues were nearing $1 billion

 Result: Google added paid search “ads” to the side,

independent of search results

 Yahoo followed suit, acquiring Overture (for paid placement) and

Inktomi (for search)

Algorithmic results.

Paid

Search Ads

Web search basics

The Web

Ad indexes

Web Results 1 - 10 of about 7,310,000 for miele. (0.12 seconds)

Miele, Inc -- Anything else is a compromise
At the heart of your home, Appliances by Miele. ... USA. to miele.com. Residential Appliances.
Vacuum Cleaners. Dishwashers. Cooking Appliances. Steam Oven. Coffee System ...
www.miele.com/ - 20k - Cached - Similar pages

Miele
Welcome to Miele, the home of the very best appliances and kitchens in the world.
www.miele.co.uk/ - 3k - Cached - Similar pages

Miele - Deutscher Hersteller von Einbaugeräten, Hausgeräten ... - [Translate this

page]
Das Portal zum Thema Essen & Geniessen online unter www.zu-tisch.de. Miele weltweit
...ein Leben lang. ... Wählen Sie die Miele Vertretung Ihres Landes.
www.miele.de/ - 10k - Cached - Similar pages

Herzlich willkommen bei Miele Österreich - [Translate this page]
Herzlich willkommen bei Miele Österreich Wenn Sie nicht automatisch
weitergeleitet werden, klicken Sie bitte hier! HAUSHALTSGERÄTE ...
www.miele.at/ - 3k - Cached - Similar pages

Sponsored Links

CG Appliance Express
Discount Appliances (650) 756-3931
Same Day Certified Installation
www.cgappliance.com
San Francisco-Oakland-San Jose,
CA

Miele Vacuum Cleaners
Miele Vacuums- Complete Selection
Free Shipping!
www.vacuums.com

Miele Vacuum Cleaners
Miele-Free Air shipping!
All models. Helpful advice.
www.best-vacuum.com

Web spider

Indexer

Indexes

Search

User

Sec. 19.4.1

User Needs

 Need [Brod02, RL04]

 Informational – want to learn about something (~40% / 65%)

 Navigational – want to go to that page (~25% / 15%)

 Transactional – want to do something (web-mediated) (~35% / 20%)

 Access a service

 Downloads

 Shop

 Gray areas

 Find a good hub

 Exploratory search “see what’s there”

Low hemoglobin

United Airlines

Seattle weather

Mars surface images

Canon S410

Car rental Brasil

Sec. 19.4.1

How far do people look for results?

(Source: iprospect.com WhitePaper_2006_SearchEngineUserBehavior.pdf)

http://www.iprospect.com/

Users’ empirical evaluation of

results

 Quality of pages varies widely
 Relevance is not enough

 Other desirable qualities (non IR!!)
 Content: Trustworthy, diverse, non-duplicated, well maintained

 Web readability: display correctly & fast

 No annoyances: pop-ups, etc

 Precision vs. recall
 On the web, recall seldom matters

 What matters
 Precision at 1? Precision above the fold?

 Comprehensiveness – must be able to deal with obscure queries
 Recall matters when the number of matches is very small

Users’ empirical evaluation of

engines
 Relevance and validity of results

 UI – Simple, no clutter, error tolerant

 Trust – Results are objective

 Coverage of topics for polysemic queries

 Pre/Post process tools provided
 Mitigate user errors (auto spell check, search assist,…)

 Explicit: Search within results, more like this, refine ...

 Anticipative: related searches

 Deal with idiosyncrasies
 Web specific vocabulary

 Impact on stemming, spell-check, etc

 Web addresses typed in the search box

The Web document collection

 No design/co-ordination

 Distributed content creation, linking,
democratization of publishing

 Content includes truth, lies, obsolete
information, contradictions …

 Unstructured (text, html, …), semi-
structured (XML, annotated photos),
structured (Databases)…

 Scale much larger than previous text
collections …

 Growth – slowed down from initial
“volume doubling every few months” but
still expanding

 Content can be dynamically generated The Web

Sec. 19.2

Spam

 (Search Engine Optimization)

The trouble with paid search ads …

 It costs money. What’s the alternative?

 Search Engine Optimization:

 “Tuning” your web page to rank highly in the algorithmic

search results for select keywords

 Alternative to paying for placement

 Thus, intrinsically a marketing function

 Performed by companies, webmasters and consultants

(“Search engine optimizers”) for their clients

 Some perfectly legitimate, some very shady

Sec. 19.2.2

Simplest forms

 First generation engines relied heavily on tf/idf
 The top-ranked pages for the query maui resort were the ones

containing the most maui’s and resort’s

 SEOs responded with dense repetitions of chosen terms
 e.g., maui resort maui resort maui resort

 Often, the repetitions would be in the same color as the
background of the web page

 Repeated terms got indexed by crawlers

 But not visible to humans on browsers

Sec. 19.2.2

Variants of keyword stuffing

 Misleading meta-tags, excessive repetition

 Hidden text with colors, style sheet tricks, etc.

Meta-Tags =
“… London hotels, hotel, holiday inn, hilton, discount,
booking, reservation, sex, mp3, britney spears, viagra, …”

Sec. 19.2.2

Cloaking

 Serve fake content to search engine spider

Is this a Search

Engine spider?

Y

N

SPAM

Real

Doc
Cloaking

Sec. 19.2.2

More spam techniques

 Doorway pages
 Pages optimized for a single keyword that re-direct to the

real target page

 Link spamming
 Mutual admiration societies, hidden links, link farms

 Domain flooding: numerous domains that point or re-direct to
a target page

Sec. 19.2.2

The war against spam

 Quality signals - Prefer
authoritative pages based
on:
 Votes from authors (linkage signals)

 Votes from users (usage signals)

 Policing of URL submissions
 Anti robot test

 Limits on meta-keywords

 Robust link analysis
 Ignore statistically implausible

linkage (or text)

 Use link analysis to detect
spammers (guilt by association)

 Spam recognition by
machine learning
 Training set based on known

spam

 Editorial intervention
 Blacklists

 Top queries audited

 Complaints addressed

 Suspect pattern detection

More on spam

 Adversarial IR: the unending (technical) battle between
SEO’s and web search engines

 Research http://airweb.cse.lehigh.edu/

http://airweb.cse.lehigh.edu/

Size of the Web

• The Web is the largest repository of data and it

grows exponentially.

– 320 Million Web pages [Lawrence & Giles 1998]

– 800 Million Web pages, 15 TB [Lawrence & Giles

1999]

– 20 Billion Web pages indexed [now]

• Amount of data

– roughly 200 TB [Lyman et al. 2003]

Size of the web

 Issues

 The web is really infinite

 Dynamic content, e.g., calendar

 Soft 404: www.yahoo.com/<anything> is a valid page,

 Infinite sized – size is whatever can be indexed!

 Static web contains syntactic duplication, mostly due to
mirroring (~30%)

Sec. 19.5

Web Crawling

Basic crawler operation

Begin with known “seed” URLs

 Fetch and parse them

 Extract URLs they point to

 Place the extracted URLs on a queue

 Fetch each URL on the queue and

repeat

Sec. 20.2

Crawling picture

Web

URLs crawled

and parsed

URLs frontier

Unseen Web

Seed

pages

Sec. 20.2

Simple picture – complications

 Web crawling isn’t feasible with one machine

 All of the above steps distributed

 Malicious pages

 Spam pages

 Spider traps

 Even non-malicious pages pose challenges

 Latency/bandwidth to remote servers vary

 Webmasters’ stipulations

 How “deep” should you crawl a site’s URL hierarchy?

 Site mirrors and duplicate pages

 Politeness – don’t hit a server too often

Sec. 20.1.1

What any crawler must do

 Be Polite: Respect implicit and explicit

politeness considerations

 Only crawl allowed pages

 Respect robots.txt (more on this shortly)

 Be Robust: Be immune to spider traps and

other malicious behavior from web servers

Sec. 20.1.1

Robots.txt

 Protocol for giving spiders (“robots”) limited

access to a website, originally from 1994

 www.robotstxt.org/wc/norobots.html

 Website announces its request on what can(not)

be crawled

 For a URL, create a file URL/robots.txt

 This file specifies access restrictions

Sec. 20.2.1

http://www.robotstxt.org/wc/norobots.html

What any crawler should do

 Be capable of distributed operation: designed to

run on multiple distributed machines

 Be scalable: designed to increase the crawl rate by

adding more machines

 Performance/efficiency: permit full use of available

processing and network resources

Sec. 20.1.1

What any crawler should do

 Fetch pages of “higher quality” first

 Continuous operation: Continue fetching

fresh copies of a previously fetched page

 Extensible: Adapt to new data formats,

protocols

Sec. 20.1.1

Updated crawling picture

URLs crawled

and parsed

Unseen Web

Seed

Pages

URL frontier

Crawling thread

Sec. 20.1.1

URL frontier

 Can include multiple pages from the same

host

 Must avoid trying to fetch them all at the

same time

 Must try to keep all crawling threads busy

Sec. 20.2

Explicit and implicit politeness

 Explicit politeness: specifications from

webmasters on what portions of site can be

crawled

 robots.txt

 Implicit politeness: even with no

specification, avoid hitting any site too often

Sec. 20.2

Processing steps in crawling

 Pick a URL from the frontier

 Fetch the document at the URL

 Parse the URL

 Extract links from it to other docs (URLs)

 Check if URL has content already seen

 If not, add to indexes

 For each extracted URL

 Ensure it passes certain URL filter tests

 Check if it is already in the frontier (duplicate URL elimination)

E.g., only crawl .edu, obey

robots.txt, etc.

Which one?

Sec. 20.2.1

Basic crawl architecture

WWW

DNS

Parse

Content

seen?

Doc

FP’s

Dup

URL

elim

URL

set

URL Frontier

URL

filter

robots

filters

Fetch

Sec. 20.2.1

Parsing: URL normalization

 When a fetched document is parsed, some of the extracted

links are relative URLs

 E.g., at http://en.wikipedia.org/wiki/Main_Page

we have a relative link to /wiki/Wikipedia:General_disclaimer

which is the same as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

 During parsing, must normalize (expand) such relative URLs

Sec. 20.2.1

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

Content seen?

Duplication is widespread on the web

 If the page just fetched is already in the

index, do not further process it

This is verified using document

fingerprints or shingles

 (see Serdar Bağış’s presentation)

Sec. 20.2.1

Duplicate URL elimination

 For a non-continuous (one-shot) crawl, test

to see if an extracted+filtered URL has

already been passed to the frontier

 For a continuous crawl – see details of

frontier implementation

Sec. 20.2.1

Distributing the crawler

 Run multiple crawl threads, under different

processes – potentially at different nodes

 Geographically distributed nodes

 Partition hosts being crawled into nodes

 Hash used for partition

Sec. 20.2.1

URL frontier: two main

considerations

 Politeness: do not hit a web server too frequently

 Freshness: crawl some pages more often than
others

 E.g., pages (such as News sites) whose content
changes often

These goals may conflict each other.

(E.g., simple priority queue fails – many links out of
a page go to its own site, creating a burst of
accesses to that site.)

Sec. 20.2.3

Politeness – challenges

 Even if we restrict only one thread to fetch

from a host, can hit it repeatedly

 Common heuristic: insert time gap between

successive requests to a host that is >>

time for most recent fetch from that host

Sec. 20.2.3

Back queue selector

B back queues

Single host on each

Crawl thread requesting URL

URL frontier: Mercator scheme

Biased front queue selector

Back queue router

Prioritizer

K front queues

URLs

Sec. 20.2.3

Mercator URL frontier

 URLs flow in from the top into the frontier

 Front queues manage prioritization

 Back queues enforce politeness

 Each queue is FIFO

Sec. 20.2.3

Front queues

Prioritizer

1 K

Biased front queue selector

Back queue router

Sec. 20.2.3

Front queues

 Prioritizer assigns to URL an integer priority

between 1 and K

 Appends URL to corresponding queue

 Heuristics for assigning priority

 Refresh rate sampled from previous crawls

 Application-specific (e.g., “crawl news sites more

often”)

Sec. 20.2.3

Biased front queue selector

 When a back queue requests a URL (in a

sequence to be described): picks a front queue

from which to pull a URL

 This choice can be round robin biased to queues

of higher priority, or some more sophisticated

variant

 Can be randomized

Sec. 20.2.3

Back queues

Biased front queue selector

Back queue router

Back queue selector

1 B

Heap

Sec. 20.2.3

Back queue invariants

 Each back queue is kept non-empty while the

crawl is in progress

 Each back queue only contains URLs from a

single host

 Maintain a table from hosts to back queues

Host name Back queue

… 3

1

B

Sec. 20.2.3

Back queue heap

 One entry for each back queue

 The entry is the earliest time te at which the host

corresponding to the back queue can be hit again

 This earliest time is determined from

 Last access to that host

 Any time buffer heuristic we choose

Sec. 20.2.3

Back queue processing

 A crawler thread seeking a URL to crawl:

 Extracts the root of the heap

 Fetches URL at head of corresponding back queue q

(look up from table)

 Checks if queue q is now empty – if so, pulls a URL v

from front queues

 If there’s already a back queue for v’s host, append v to q and

pull another URL from front queues, repeat

 Else add v to q

 When q is non-empty, create heap entry for it

Sec. 20.2.3

Resources

 Introduction to Information Retrieval, chapters 19,20.

 Some slides were adapted from

 Prof. Dragomir Radev’s lectures at the University of Michigan:

 http://clair.si.umich.edu/~radev/teaching.html

 the book’s companion website:

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html

Sec. 3.5

http://clair.si.umich.edu/~radev/teaching.html
http://clair.si.umich.edu/~radev/teaching.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

