LECTURE 2: Review of Probability and Statistics

= Probability
e Definition of probability
o Axioms and properties
o Conditional probability
o Bayes Theorem
s Random Variables
o Definition of a Random Variable
o Cumulative Distribution Function
o Probability Density Function
o Statistical characterization of Random Variables
= Random Vectors
e Mean vector
o Covariance matrix

m The Gaussian random variable
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Basic probability concepts

s Definitions (informal)

o Probabilities are numbers assigned to events that indicate “how likely” it is that
the event will occur when a random experiment is performed

o A probability law for a random experiment is a rule that assigns probabilities to
the events in the experiment

o The sample space S of a random experiment is the set of all possible outcomes

s

A, A, A, A, event

Sample space

»
!

probability

s Axioms of probability
e Axioml: O0<P[A]
e AxiomlIl: P[S]=1
o Axiom lll: if A,NA, =0, then P[A,UA]=P[A]+P[A ]
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Warming-up exercise

m | come to class with three colored cards
e One BLUE on both sides
e One RED on both sides
e One BLUE on one side, RED on the other

A B C

= | shuffle the three cards, then pick one and show you one side only.
The side visible to you is RED
e Obviously, the card has to be either A or C, right?
= | am willing to bet $1 that the other side of the card has the same color,
and need someone in the audience to bet another $1 that it is the other
color
e Obviously, on the average we will end up even, right?
o Let'stryit!
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More properties of probability

PROPERTY1: P[AC]=1-P[A]

PROPERTY2: P[A]<1

PROPERTY3: P[2]=0

PROPERTY4: given {A,A,...A,} if{ANA =@ Vij| then P[LNJAK] = iP[Ak]

bt =

PROPERTY5: P[A,UA,]=P[A,]+P[A,]-P[A,NA,]

PROPERTY 6: P[LNJAK] = ZN:P[AK]—ZN:P[AJ NAJ+...+ (DOVPIA,NA, NN A]
et =

j<k

PROPERTY7: if A,cA,, then P[A,]<P[A,]
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Conditional probability

= If A and B are two events, the probability of event A when we already
know that event B has occurred is defined by the relation

P[A | B] =%Q]B] for P[B]>0

= This conditional probability P[A|B] is read:
o the “conditional probability of A conditioned on B”, or simply
» the “probability of A given B”

“B has
occurred”

= Interpretation
e The new evidence “B has occurred” has the following effects
m The original sample space S (the whole square) becomes B (the rightmost circle)
m The event A becomes A~B
o P[B] simply re-normalizes the probability of events that occur jointly with B
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Theorem of total probability

= LetB,, B,, ..., By be mutually exclusive events whose union equals the
sample space S. We refer to these sets as a partition of S.

= An event A can be represented as:

A=ANS=AN(B,UB,U..UB,)=(ANB,)UANB,)U..(ANB,)

_ ) >

B, \ l By
B,

= Since B,, B,, ..., By are mutually exclusive, then

P[A]=P[ANB,]+P[ANB,]+...+ P[ANB,]
= and, therefore

P[A]=P[A|B,]P[B,]+...P[A|B\]P[By]= iP[A |BIP[B,]
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Bayes Theorem

= Given B,, B,, ..., By, a partition of the sample space S. Suppose
that event A occurs; what is the probability of event B;?

e Using the definition of conditional probability and the Theorem of total
probability we obtain

5 |4 PANB]__PIAIB]PE]
| PIAL S pia|B,]-PIB,]

m This is known as Bayes Theorem or
Bayes Rule, and is (one of) the most
useful relations in probability and
statistics

e Bayes Theorem is definitely the

fundamental relation in Statistical Pattern
Recognition

Rev. Thomas Bayes (1702-1761)
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Bayes Theorem and Statistical Pattern Recognition

m For the purpose of pattern classification, Bayes Theorem can be
expressed as

Plx|o]-Plo] Plx|e]-Plo]
~ PIX

Plo; [ X]=—
ZP[Xla)k]°P[a)k]

o where ; is the ith class and x is the feature vector
= A typical decision rule (class assignment) is to choose the class o,
with the highest P[o;|x]
o Intuitively, we will choose the class that is more “likely” given feature vector x
s Each term in the Bayes Theorem has a special name, which you
should be familiar with
o Plo] Prior probability (of class ;)
* Plo,|x] Posterior Probability (of class w; given the observation x)
e PIx| a),-] Likelihood (conditional probability of observation x given class ;)
e PI[X] A normalization constant that does not affect the decision
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Stretching exercise

m Consider a clinical problem where we need to decide if a patient has a
particular medical condition on the basis of an imperfect test:
e Someone with the condition may go undetected (false-negative)
e Someone free of the condition may yield a positive result (false-positive)
= Nomenclature
e The true-negative rate P(NEG|"COND) of a test is called its SPECIFICITY
e The true-positive rate P(POS|COND) of a test is called its SENSITIVITY

TEST IS POSITIVE

TEST IS NEGATIVE

ROW TOTAL

HAS CONDITION

True-positive
P(POS|COND)

False-negative
P(NEG|COND)

True-negative
P(NEG|~COND)

False-positive

FREE OF CONDITION | P(POS|"COND)

COLUMN TOTAL

= PROBLEM
e Assume a population of 10,000 where 1 out of every 100 people has the condition
o Assume that we design a test with 98% specificity and 90% sensitivity
o Assume you are required to take the test, which then yields a POSITIVE result

o What is the probability that you have the condition?
s SOLUTION A: Fill in the joint frequency table above
s SOLUTION B: Apply Bayes rule
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Stretching exercise

m Consider a clinical problem where we need to decide if a patient has a
particular medical condition on the basis of an imperfect test:
e Someone with the condition may go undetected (false-negative)
e Someone free of the condition may yield a positive result (false-positive)
= Nomenclature

e The true-negative rate P(NEG|"COND) of a test is called its SPECIFICITY
e The true-positive rate P(POS|COND) of a test is called its SENSITIVITY

TEST IS POSITIVE | TEST IS NEGATIVE ROW TOTAL
True-positive False-negative
HAS CONDITION P(POS|COND) P(NEG|COND)
100%0.90 100%(1-0.90) 100
False-positive True-negative
FREE OF CONDITION P(POS|~COND) P(NEG|"COND)
9,900%(1-0.98) 9,900%0.98 9,900
COLUMN TOTAL 288 9,712 10,000

= PROBLEM
e Assume a population of 10,000 where 1 out of every 100 people has the condition
o Assume that we design a test with 98% specificity and 90% sensitivity
o Assume you are required to take the test, which then yields a POSITIVE result

o What is the probability that you have the condition?
s SOLUTION A: Fill in the joint frequency table above
s SOLUTION B: Apply Bayes rule
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Stretching exercise

= SOLUTION B: Apply Bayes theorem
P[COND |POS] =

_ P[POS |COND]-P[COND]
- P[POS] -

B P[POS | COND]-P[COND] B
P[POS | COND]-P[COND] +P[POS | ~COND]-P[-~COND]

B 0.90-0.01 B
0.90-0.01+(1-0.98)-0.99

=0.3125
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Random variables

= When we perform a random experiment we are usually interested in
some measurement or numerical attribute of the outcome
o When we sample a population we may be interested in their weights
o When rating the performance of two computers we may be interested in the
execution time of a benchmark

e When trying to recognize an intruder aircraft, we may want to measure
parameters that characterize its shape

m These examples lead to the concept of random variable
o A random variable X is a function that assigns a real number X({) to each
outcome ( in the sample space of a random experiment

m This function X(§) is performing a mapping from all the possible elements in the sample
space onto the real line (real numbers)

e The function that assigns values to each outcome is fixed s
and deterministic <
m as in the rule “count the number of heads in three coin tosses”

» the randomness the observed values is due to the underlying
randomness of the argument of the function X, namely the

outcome ( of the experiment X(0)=x
e Random variables can be ool i
eal line
m Discrete: the resulting number after rolling a dice ~ - ~

s Continuous: the weight of a sampled individual
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Cumulative distribution function (cdf)

s The cumulative distribution function
F,(x) of a random variable X is defined
as the probability of the event {X<x}

F (x)=P[X<x] for —oo <X <40

e Intuitively, F(b) is the long-term proportion
of times in which X() <b

= Properties of the cdf
0<F (x)<1

limF, (x) =1

X—»00

lim F, (x)=0

X—>—00

F.(a)<F(b)ifa<b

F(b) = limF, (b +h) =F(b")

P(X<x)

P(X<x)

5/6
4/6
3/6
2/6
1/6

100 200 300 400 500 X(Ib)

cdf for a person’s weight

1.2 3 4 5 6
cdf for rolling a dice

X
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Probability density function (pdf)

m The probability density function of a continuous
random variable X, if it exists, is defined as the

derivative of F,(x) g
dFy (x)
fx (X) —
dx |
100 200 300 400 500 X(Ib)
m For discrete random variables, the equivalent to pdf for a person’s weight
the pdf is the probability mass function:
= Properties fy (X)= APx(x) (%)
AX
f (x)>0 1
b 5/6
Pla < x <b] = [ f,(x)dx 406
. € 306
Fe(x)= [fe(x)dx L
S 1/6
. [TTTT1T
1:jfx(x)dx 1.2 3 4 5 6 X
e pmf for rolling a (fair) dice

fx(x|A):diXFX(x|A) where Fx(x|A):P[{XFf[:3ﬂA] if P[A]>0
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Probability density function Vs. Probability

pdf

100 200 300 400 500 X(Ib)

pdf for a person’s weight

5/6
4/6
3/6
2/6

" [LLLTT

2 3 4 5 6 X
pmf for rolling a (fair) dice

pmf

» What is the probability of somebody weighting 200 Ib?
» According to the pdf, this is about 0.62
» This number seems reasonable, right?

* Now, what is the probability of somebody weighting 124.876 Ib?
» According to the pdf, this is about 0.43
* But, intuitively, we know that the probability should be zero (or
very, very small)

* How do we explain this paradox?
» The pdf DOES NOT define a probability, but a probability
DENSITY!
* To obtain the actual probability we must integrate the pdf in an
interval
» So we should have asked the question: what is the probability of
somebody weighting 124.876 Ib plus or minus 2 Ib?

» The probability mass function is a ‘true’ probability (reason
why we call it a ‘mass’ as opposed to a ‘density’)

» The pmf is indicating that the probability of any number when
rolling a fair dice is the same for all numbers, and equal to 1/6, a
very legitimate answer

» The pmf DOES NOT need to be integrated to obtain the
probability (it cannot be integrated in the first place)
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Statistical characterization of random variables

m The cdf or the pdf are SUFFICIENT to fully characterize a random
variable, However, a random variable can be PARTIALLY characterized
with other measures

o Expectation E[X]=p= Txfx (x)dx
m The expectation represents the c:nter of mass of a density

« Variance VARI[X] = E[(X -E[X])?] = T(x —M)?f, (x)dx
m The variance represents the spread about the mean

« Standard deviation STD[X]=VAR[X]"?

m The square root of the variance. It has the same units as the random variable.

« Nt" moment E[X"]= I xMf, (x)dx
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Random vectors

= The notion of a random vector is an extension to that of a random variable

e A vector random variable X is a function that assigns a vector of real numbers to each
outcome ( in the sample space S

o We will always denote a random vector by a column vector

= The notions of cdf and pdf are replaced by ‘joint cdf’ and ‘joint pdf’
« Given random vector, X =[X, X, ... Xy ] we define

= Joint Cumulative Distribution Function as:

FL((Z): Pg[{x1 <X PO <X LXK < x

= Joint Probability Density Function as:

0"F(x)
fx(x)= .
OX,0X,...0Xy

s The term marginal pdf is used to represent the pdf of a subset of all the random
vector dimensions
e A marginal pdf is obtained by integrating out the variables that are not of interest

e As an example, for a two-dimensional problem with random vector X=[x, x,]7, the marginal
pdf for x,, given the joint pdf f,.,,(X,X,), iS

X2 =+00

fxq(X4) = J-fx1x2 (X4X5)dX,

X2 =—00
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Statistical characterization of random vectors

= A random vector is also fully characterized by its joint cdf or
joint pdf
= Alternatively, we can (partially) describe a random vector with
measures similar to those defined for scalar random variables
o Mean vector

E[X] = [EIX,1EDX, ] EIX 1] = 1Ky by ] =1

e Covariance matrix

COV[X]=X =E[(X-p)(X-n)] )
B[O =X =)l o B[ = )(Xy —Hy)] o1 - Cyy

E[(Xy —H)X =M1 -0 E[(Xy =My ) (X =My )] | Cinoo O'I\ZJ
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Covariance matrix (1)

m The covariance matrix indicates the tendency of each pair of features
(dimensions in a random vector) to vary together, i.e., to co-vary*

m The covariance has several important properties

 If x; and x, tend to increase together, then c; >0

o If x; tends to decrease when x, increases, then ¢, <0

 If x; and x, are uncorrelated, then c; =0

e |cy/<o0,, Where o, is the standard deviation of x;

e C; == VAR(X)
m The covariance terms can be expressed as

2
c; =0, and ¢, = p,0,0

« where p, is called the correlation coefficient

Xy Xy Xy o Xy Xy
O @)
o} o} (o} c
% o %o o0 © o #
h 005 Q 0o0o0 o’
O.3 O0O0 OO O o o rO
ol o) 00 >
Q, o0Q ° R OoO -2
& 0 1o ]
X; X; X; X; X;
Cik=-0i0k Ci=-"200y Ci=0 Ci=t"20i0) Ci=oioi
— -1 — - 1 —
pi=-1 pi=-"2 Pi=0 pi=t+"2 pi=*+1
*from http://www.engr.sjsu.edu/~knapp/HCIRODPR/PR_home.htm 19
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Covariance matrix (2)

m The covariance matrix can be reformulated as*
> =E[(X-p)(X-p) ] =E[XX"]-pp" =S—py'

Elx,x,] ... E[XXx\]
with S=E[XX"]= ..

ElxyXi] ... EXyXy]
e S is called the autocorrelation matrix, and contains the same amount of

information as the covariance matrix

s The covariance matrix can also be expressed as

o, 0 .. O|[1 pyo o pnllo, O .. O
S-rRr=| > % [P |0 o
0 on ] | Pin 1110 o\ |

e A convenient formulation since I" contains the scales of the features and R
retains the essential information of the relationship between the features.

e R is the correlation matrix

m Correlation Vs. Independence
o Two random variables x; and x, are uncorrelated if E[xx,]=E[X]E[X,]
m Uncorrelated variables are also called linearly independent
e Two random variables x; and x, are independent if P[xx,]1=P[x]P[X]

*from [Fukunaga, 1991]

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University




A numerical example

= Given the following samples from a 3-
dimensional distribution
o Compute the covariance matrix

o Generate scatter plots for every pair of variables

= Can you observe any relationships between the
covariance and the scatter plots?

= You may work your solution in the templates
below

Variables
(or

features)
Examples | x4 | X2 | X3
1 212 |4

2 3146

3 51412

4 6|64

v

X2
EARERRE
P | ©n (
@ X | X | X
o RN =X =< =
= | sl 2l x| 2] 2| x| x| 2
S ol B IR R S S AR B 9
i x| R R x| R R 2| XXX XX
1
2
3
4
Average

v
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The Normal or Gaussian distribution

= The multivariate Normal or Gaussian distribution N(u,X)
is defined as

1

fx X)=————7
( ) (2 ﬂ)n/2|Z| /]

exp[—%(X—u)T z%X—u)}

s For a single dimension, this expression is reduced to

0.4

m Gaussian distributions are very popular since
e The parameters (u,X) are sufficient to uniquely characterize the

035

normal distribution oak
o If the x;'s are mutually uncorrelated (c,=0), then they are also nesl-
independent

m  The covariance matrix becomes a diagonal matrix, with the
individual variances in the main diagonal

o Central Limit Theorem o1l
o The marginal and conditional densities are also Gaussian oos|

e Any linear transformation of any N jointly Gaussian rv’s results
in N rv’s that are also Gaussian
= For X=[X, X, ... X|]" jointly Gaussian, and A an NxN invertible
matrix, then Y=AX is also jointly Gaussian »
_KAY)

fY (y) - |A|

015

Lo
|
ol
!

o
a
o
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Central Limit Theorem

= The central limit theorem states that given a distribution with a mean p and
variance o2, the sampling distribution of the mean approaches a normal
distribution with a mean (n) and a variance 6?/N as N, the sample size,
increases.

o No matter what the shape of the original distribution is, the sampling distribution of the mean
approaches a normal distribution

o Keep in mind that N is the sample size for each mean and not the number of samples

m A uniform distribution is used to illustrate the
idea behind the Central Limit Theorem H=1

 Five hundred experiments were performed using O T H T

am uniform distribution I

m For N=1, one sample was drawn from the M= _l_rl—r —|

distribution and its mean was recorded (for each of
the 500 experiments) gy I
o Obviously, the histogram shown a uniform density — ]

m For N=4, 4 samples were drawn from the

distribution and the mean of these 4 samples was —]
recorded (for each of the 500 experiments) = |

» The histogram starts to show a Gaussian shape M=10
= And so on for N=7 and N=10 L] —I_I“

= As N grows, the shape of the histograms resembles
a Normal distribution more closely
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