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LECTURE 2: Review of Probability and Statistics
g Probability 

n Definition of probability
n Axioms and properties
n Conditional probability
n Bayes Theorem

g Random Variables
n Definition of a Random Variable
n Cumulative Distribution Function
n Probability Density Function
n Statistical characterization of Random Variables

g Random Vectors
n Mean vector
n Covariance matrix

g The Gaussian random variable
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Basic probability concepts
g Definitions (informal)

n Probabilities are numbers assigned to events that indicate “how likely” it is that 
the event will occur when a random experiment is performed

n A probability law for a random experiment is a rule that assigns probabilities to
the events in the experiment

n The sample space S of a random experiment is the set of all possible outcomes

g Axioms of probability
n Axiom I:
n Axiom II:
n Axiom III:
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Warming-up exercise
g I come to class with three colored cards

n One BLUE on both sides
n One RED on both sides
n One BLUE on one side, RED on the other

g I shuffle the three cards, then pick one and show you one side only. 
The side visible to you is RED

n Obviously, the card has to be either A or C, right?
g I am willing to bet $1 that the other side of the card has the same color, 

and need someone in the audience to bet another $1 that it is the other 
color

n Obviously, on the average we will end up even, right?
n Let’s try it!

A B C
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More properties of probability
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Conditional probability
g If A and B are two events, the probability of event A when we already 

know that event B has occurred is defined by the relation

g This conditional probability P[A|B] is read:
n the “conditional probability of A conditioned on B”, or simply 
n the “probability of A given B”

g Interpretation
n The new evidence “B has occurred” has the following effects 

g The original sample space S (the whole square) becomes B (the rightmost circle)
g The event A becomes A∩B

n P[B] simply re-normalizes the probability of events that occur jointly with B

0P[B]for
P[B]

B]P[AB]|P[A >=
I

S S

“B has 
occurred”

A A∩B B A A∩B B
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Theorem of total probability
g Let B1, B2, …, BN be mutually exclusive events whose union equals the 

sample space S. We refer to these sets as a partition of S.
g An event A can be represented as:

g Since B1, B2, …, BN are mutually exclusive, then

g and, therefore
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Bayes Theorem
g Given B1, B2, …, BN, a partition of the sample space S. Suppose 

that event A occurs; what is the probability of event Bj?
n Using the definition of conditional probability and the Theorem of total 

probability we obtain
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Rev. Thomas Bayes (1702-1761)

g This is known as Bayes Theorem or 
Bayes Rule, and is (one of) the most 
useful relations in probability and 
statistics

n Bayes Theorem is definitely the 
fundamental relation in Statistical Pattern 
Recognition
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Bayes Theorem and Statistical Pattern Recognition
g For the purpose of pattern classification, Bayes Theorem can be 

expressed as

n where ωj is the ith class and x is the feature vector
g A typical decision rule (class assignment) is to choose the class ωi

with the highest P[ωi|x]
n Intuitively, we will choose the class that is more “likely” given feature vector x

g Each term in the Bayes Theorem has a special name, which you 
should be familiar with

n Prior probability (of class ωi)
n Posterior Probability (of class ωi given the observation x)
n Likelihood (conditional probability of observation x given class ωi)
n A normalization constant that does not affect the decision
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Stretching exercise
g Consider a clinical problem where we need to decide if a patient has a 

particular medical condition on the basis of an imperfect test:
n Someone with the condition may go undetected (false-negative)
n Someone free of the condition may yield a positive result (false-positive)

g Nomenclature
n The true-negative rate P(NEG|¬COND) of a test is called its SPECIFICITY
n The true-positive rate P(POS|COND) of a test is called its SENSITIVITY

g PROBLEM
n Assume a population of 10,000 where 1 out of every 100 people has the condition
n Assume that we design a test with 98% specificity and 90% sensitivity
n Assume you are required to take the test, which then yields a POSITIVE result
n What is the probability that you have the condition?

g SOLUTION A: Fill in the joint frequency table above
g SOLUTION B: Apply Bayes rule

 TEST IS POSITIVE TEST IS NEGATIVE ROW TOTAL 

HAS CONDITION 
True-positive 

P(POS|COND) 
 

False-negative 
P(NEG|COND) 

 

 
 
 

FREE OF CONDITION
False-positive 

P(POS|¬COND) 
 

True-negative 
P(NEG|¬COND) 

 

 
 
 

COLUMN TOTAL    
 



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

10

Stretching exercise
g Consider a clinical problem where we need to decide if a patient has a 

particular medical condition on the basis of an imperfect test:
n Someone with the condition may go undetected (false-negative)
n Someone free of the condition may yield a positive result (false-positive)

g Nomenclature
n The true-negative rate P(NEG|¬COND) of a test is called its SPECIFICITY
n The true-positive rate P(POS|COND) of a test is called its SENSITIVITY

g PROBLEM
n Assume a population of 10,000 where 1 out of every 100 people has the condition
n Assume that we design a test with 98% specificity and 90% sensitivity
n Assume you are required to take the test, which then yields a POSITIVE result
n What is the probability that you have the condition?

g SOLUTION A: Fill in the joint frequency table above
g SOLUTION B: Apply Bayes rule

 TEST IS POSITIVE TEST IS NEGATIVE ROW TOTAL 

HAS CONDITION 
True-positive 

P(POS|COND) 
100×0.90 

False-negative 
P(NEG|COND) 
100×(1-0.90) 

 
 

100 

FREE OF CONDITION
False-positive 

P(POS|¬COND) 
9,900×(1-0.98) 

True-negative 
P(NEG|¬COND) 

9,900×0.98 

 
 

9,900 
COLUMN TOTAL 288 9,712 10,000 
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Stretching exercise
g SOLUTION B: Apply Bayes theorem
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Random variables
g When we perform a random experiment we are usually interested in

some measurement or numerical attribute of the outcome
n When we sample a population we may be interested in their weights
n When rating the performance of two computers we may be interested in the 

execution time of a benchmark
n When trying to recognize an intruder aircraft, we may want to measure 

parameters that characterize its shape
g These examples lead to the concept of random variable

n A random variable X is a function that assigns a real number X(ζ) to each 
outcome ζ in the sample space of a random experiment
g This function X(ζ) is performing a mapping from all the possible elements in the sample 

space onto the real line (real numbers)
S

ζ

X(ζ)=x

x

 Sx

Real line

n The function that assigns values to each outcome is fixed 
and deterministic

g as in the rule “count the number of heads in three coin tosses”
g the randomness the observed values is due to the underlying 

randomness of the argument of the function X, namely the 
outcome ζ of the experiment

n Random variables can be
g Discrete: the resulting number after rolling a dice
g Continuous: the weight of a sampled individual
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Cumulative distribution function (cdf)
g The cumulative distribution function 

FX(x) of a random variable X is defined 
as the probability of the event {X≤x}

n Intuitively, FX(b) is the long-term proportion 
of times in which X(ζ) ≤b

g Properties of the cdf

+∞<<∞−≤= xforx]P[X(x)FX

)(bFh)(bFlim(b)F

baif(b)F(a)F

0(x)Flim

1(x)Flim

1(x)F0

XX0hX

XX

Xx

Xx

X

+

→

−∞→

∞→

=+=

≤≤

=

=

≤≤

1 2 3 4 5 6

P
(X

<x
)

x
cdf for rolling a dice

1
5/6
4/6
3/6
2/6
1/6

P
(X

<x
)

100 200 300 400 500 x(lb)
cdf for a person’s weight

1



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

14

Probability density function (pdf)
g The probability density function of a continuous 

random variable X, if it exists, is defined as the 
derivative of FX(x)

g For discrete random variables, the equivalent to 
the pdf is the probability mass function:

g Properties
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Probability density function Vs. Probability
• What is the probability of somebody weighting 200 lb?

• According to the pdf, this is about 0.62 
• This number seems reasonable, right?

• Now, what is the probability of somebody weighting 124.876 lb?
• According to the pdf, this is about 0.43
• But, intuitively, we know that the probability should be zero (or 

very, very small)

• How do we explain this paradox?
• The pdf DOES NOT define a probability, but a probability 

DENSITY!
• To obtain the actual probability we must integrate the pdf in an

interval
• So we should have asked the question: what is the probability of

somebody weighting 124.876 lb plus or minus 2 lb?

1 2 3 4 5 6

pm
f

x
pmf for rolling a (fair) dice

1
5/6
4/6
3/6
2/6
1/6

100 200 300 400 500

pd
f

x(lb)
pdf for a person’s weight

1

• The probability mass function is a ‘true’ probability (reason 
why we call it a ‘mass’ as opposed to a ‘density’)

• The pmf is indicating that the probability of any number when 
rolling a fair dice is the same for all numbers, and equal to 1/6, a 
very legitimate answer

• The pmf DOES NOT need to be integrated to obtain the 
probability (it cannot be integrated in the first place)
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Statistical characterization of random variables
g The cdf or the pdf are SUFFICIENT to fully characterize a random

variable, However, a random variable can be PARTIALLY characterized 
with other measures

n Expectation

g The expectation represents the center of mass of a density

n Variance

g The variance represents the spread about the mean

n Standard deviation

g The square root of the variance. It has the same units as the random variable.

n Nth moment
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Random vectors
g The notion of a random vector is an extension to that of a random variable

n A vector random variable X is a function that assigns a vector of real numbers to each 
outcome ζ in the sample space S

n We will always denote a random vector by a column vector
g The notions of cdf and pdf are replaced by ‘joint cdf’ and ‘joint pdf’

n Given random vector,                              we define

g Joint Cumulative Distribution Function as:

g Joint Probability Density Function as:

g The term marginal pdf is used to represent the pdf of a subset of all the random 
vector dimensions

n A marginal pdf is obtained by integrating out the variables that are not of interest
n As an example, for a two-dimensional problem with random vector X=[x1 x2]T, the marginal 

pdf for x1, given the joint pdf fX1X2(x1x2), is

T
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Statistical characterization of random vectors
g A random vector is also fully characterized by its joint cdf or 

joint pdf
g Alternatively, we can (partially) describe a random vector with 

measures similar to those defined for scalar random variables
n Mean vector

n Covariance matrix
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Covariance matrix (1)
g The covariance matrix indicates the tendency of each pair of features 

(dimensions in a random vector) to vary together, i.e., to co-vary*
g The covariance has several important properties

n If xi and xk tend to increase together, then cik>0
n If xi tends to decrease when xk increases, then cik<0
n If xi and xk are uncorrelated, then cik=0
n |cik|≤σiσk, where σi is the standard deviation of xi

n cii = σi
2 = VAR(xi)

g The covariance terms can be expressed as

n where ρik is called the correlation coefficient
kiikik

2
iii candc σσρσ ==

Xi

Xk

Cik=-σiσk
ρik=-1

Xi

Xk

Cik=-½σiσk
ρik=-½

Xi

Xk

Cik=0
ρik=0

Xi

Xk

Cik=+½σiσk
ρik=+½

Xi

Xk

Cik=σiσk
ρik=+1

*from http://www.engr.sjsu.edu/~knapp/HCIRODPR/PR_home.htm
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Covariance matrix (2)
g The covariance matrix can be reformulated as*

n S is called the autocorrelation matrix, and contains the same amount of 
information as the covariance matrix 

g The covariance matrix can also be expressed as

n A convenient formulation since Γ contains the scales of the features and R 
retains the essential information of the relationship between the features. 

n R is the correlation matrix
g Correlation Vs. Independence

n Two random variables xi and xk are uncorrelated if E[xixk]=E[xi]E[xk]
g Uncorrelated variables are also called linearly independent

n Two random variables xi and xk are independent if P[xixk]=P[xi]P[xk]
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A numerical example
g Given the following samples from a 3-

dimensional distribution
n Compute the covariance matrix
n Generate scatter plots for every pair of variables

g Can you observe any relationships between the 
covariance and the scatter plots?

g You may work your solution in the templates 
below

 Variables 
(or 

features) 
Examples x1 x2 x3

1 2 2 4 
2 3 4 6 
3 5 4 2 
4 6 6 4 

 

Ex
am

pl
e 

x 1
 

x 2
 

x 3
 

x 1
-µ

1 

x 2
-µ

2 

x 3
-µ

3 

(x
1-µ

1)
2  

(x
2-µ

2)
 2
 

(x
3-µ

3)
2  

(x
1-µ

1)(
 x

2-µ
2) 

(x
1-µ

1)(
 x

3-µ
3) 

(x
2-µ

2)(
 x

3-µ
3) 

1             
2             
3             
4             

Average             
 

x1

x2

x3

x2

x3

x1
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The Normal or Gaussian distribution
g The multivariate Normal or Gaussian distribution N(µ,Σ) 

is defined as

g For a single dimension, this expression is reduced to

g Gaussian distributions are very popular since
n The parameters (µ,Σ) are sufficient to uniquely characterize the 

normal distribution
n If the xi’s are mutually uncorrelated (cik=0), then they are also 

independent
g The covariance matrix becomes a diagonal matrix, with the 

individual variances in the main diagonal

n Central Limit Theorem
n The marginal and conditional densities are also Gaussian
n Any linear transformation of any N jointly Gaussian rv’s results 

in N rv’s that are also Gaussian
g For X=[X1 X2 ... XN]T jointly Gaussian, and A an N×N invertible 

matrix, then Y=AX is also jointly Gaussian
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Central Limit Theorem
g The central limit theorem states that given a distribution with a mean µ and 

variance σ2, the sampling distribution of the mean approaches a normal 
distribution with a mean (µ) and a variance σ2/N as N, the sample size, 
increases.

n No matter what the shape of the original distribution is, the sampling distribution of the mean 
approaches a normal distribution 

n Keep in mind that N is the sample size for each mean and not the number of samples

g A uniform distribution is used to illustrate the 
idea behind the Central Limit Theorem

n Five hundred experiments were performed using 
am uniform distribution

g For N=1, one sample was drawn from the 
distribution and its mean was recorded (for each of 
the 500 experiments)

n Obviously, the histogram shown a uniform density
g For N=4, 4 samples were drawn from the 

distribution and the mean of these 4 samples was 
recorded (for each of the 500 experiments) 

n The histogram starts to show a Gaussian shape
g And so on for N=7 and N=10
g As N grows, the shape of the histograms resembles 

a Normal distribution more closely


