Matrix Calculus

Go to: Introduction, Notation, Index

Contents of Calculus Section

- Notation
- Differentials of Linear, Quadratic and Cubic Products
- Differentials of Inverses, Trace and Determinant
- Hessian matrices

Notation

- j is the square root of -1
- \mathbf{X}^{R} and \mathbf{X}^{I} are the real and imaginary parts of $\mathbf{X}=\mathbf{X}^{R}+j \mathbf{X}^{I}$
- \mathbf{X}^{C} is the complex conjugate of \mathbf{X}
- X: denotes the long column vector formed by concatenating the columns of \mathbf{X} (see vectorization).
- $\mathbf{A} \otimes \mathbf{B}=\mathbf{K R O N}(\mathbf{A}, \mathbf{B})$, the kroneker product
- A•B the Hadamard or elementwise product
- matrices and vectors $\mathbf{A}, \mathbf{B}, \mathbf{C}$ do not depend on \mathbf{X}

Derivatives

In the main part of this page we express results in terms of differentials rather than derivatives for two reasons: they avoid notational disagreements and they cope easily with the complex case. In most cases however, the differentials have been written in the form $d \mathbf{Y}:=d \mathbf{Y} / d \mathbf{X} d \mathbf{X}$: so that the corresponding derivative may be easily extracted.

Derivatives with respect to a real matrix

If \mathbf{X} is $p \# q$ and \mathbf{Y} is $m \# n$, then $d \mathbf{Y}:=d \mathbf{Y} / d \mathbf{X} d \mathbf{X}$: where the derivative $d \mathbf{Y} / d \mathbf{X}$ is a large $m n \# p q$ matrix. If \mathbf{X} and/or \mathbf{Y} are column vectors or scalars, then the vectorization operator : has no effect and may be omitted. $d \mathbf{Y} / d \mathbf{X}$ is also called the Jacobian Matrix of \mathbf{Y} : with respect to \mathbf{X} : and $\operatorname{det}(d \mathbf{Y} / d \mathbf{X})$ is the corresponding Jacobian. The Jacobian occurs when changing variables in an integration:
Integral $(f(\mathbf{Y}) \mathrm{d} \mathbf{Y}:)=\operatorname{Integral}(f(\mathbf{Y}(\mathbf{X})) \operatorname{det}(d \mathbf{Y} / d \mathbf{X}) \mathrm{d} \mathbf{X}:)$.
Although they do not generalise so well, other authors use alternative notations for the cases when \mathbf{X} and \mathbf{Y} are both vectors or when one is a scalar. In particular:

- $d y / d \mathbf{x}$ is sometimes written as a column vector rather than a row vector
- $d \mathbf{y} / d \mathbf{x}$ is sometimes transposed from the above definition or else is sometimes written $d \mathbf{y} / d \mathbf{x}^{T}$ to emphasise the correspondence between the columns of the derivative and those of \mathbf{x}^{T}.
- $d \mathbf{Y} / d x$ and $d y / d \mathbf{X}$ are often written as matrices rather than, as here, a column vector and row vector respectively. The matrix form may be converted to the form used here by appending $:$ or $:^{T}$ respectively.

Derivatives with respect to a complex matrix

If \mathbf{X} is complex then $d \mathbf{Y}:=d \mathbf{Y} / d \mathbf{X} d \mathbf{X}$: can only be true iff $\mathbf{Y}(\mathbf{X})$ is an analytic function which normally implies that $\mathbf{Y}(\mathbf{X})$ does not depend on \mathbf{X}^{C} or \mathbf{X}^{H}.

Even for non-analytic functions we can write uniquely $d \mathbf{Y}:=d \mathbf{Y} / d \mathbf{X} d \mathbf{X}:+d \mathbf{Y} / d \mathbf{X}^{C} d \mathbf{X}^{C}$: provided that is analytic with respect to \mathbf{X} and \mathbf{X}^{C} individually (or equivalently with respect to \mathbf{X}^{R} and \mathbf{X}^{I} individually). $d \mathbf{Y} / d \mathbf{X}$ is the Generalized Complex Derivative and $d \mathbf{Y} / d \mathbf{X}^{C}$ is the Complex Conjugate Derivative [R.4, R.9].

We define the generalized derivatives in terms of partial derivatives with respect to \mathbf{X}^{R} and \mathbf{X}^{I} :

- $d \mathbf{Y} / d \mathbf{X}=1 / 2\left(d \mathbf{Y} / d \mathbf{X}^{R}-\mathrm{j} d \mathbf{Y} / d \mathbf{X}^{I}\right)$
- $d \mathbf{Y} / d \mathbf{X}^{C}=\left(d \mathbf{Y}^{C} / d \mathbf{X}\right)^{C}=1 / 2\left(d \mathbf{Y} / d \mathbf{X}^{R}+\mathrm{j} d \mathbf{Y} / d \mathbf{X}^{I}\right)$

We have the following relationships for both analytic and non-analytic functions $\mathbf{Y}(\mathbf{X})$:

- Cauchy Riemann equations: The following are equivalent:
- $\mathbf{Y}(\mathbf{X})$ is an analytic function of \mathbf{X}
- $d \mathbf{Y}:=d \mathbf{Y} / d \mathbf{X} d \mathbf{X}$:
- $d \mathbf{Y} / d \mathbf{X}^{C}=\mathbf{0}$ for all \mathbf{X}
- $d \mathbf{Y} / d \mathbf{X}^{R}+\mathrm{j} d \mathbf{Y} / d \mathbf{X}^{I}=\mathbf{0}$ for all \mathbf{X}
- $d \mathbf{Y}:=d \mathbf{Y} / d \mathbf{X} d \mathbf{X}:+d \mathbf{Y} / d \mathbf{X}^{C} d \mathbf{X}^{C}$:
- $d \mathbf{Y} / d \mathbf{X}^{R}=d \mathbf{Y} / d \mathbf{X}+d \mathbf{Y} / d \mathbf{X}^{C}$
- $d \mathbf{Y} / d \mathbf{X}^{I}=\mathrm{j}\left(d \mathbf{Y} / d \mathbf{X}-d \mathbf{Y} / d \mathbf{X}^{C}\right)$
- Chain rule: If \mathbf{Z} is a function of \mathbf{Y} which is itself a function of \mathbf{X}, then $d \mathbf{Z} / d \mathbf{X}=d \mathbf{Z} / d \mathbf{Y} d \mathbf{Y} / d \mathbf{X}$. This is the same as for real derivatives.
- Real-valued: If $\mathbf{Y}(\mathbf{X})$ is real for all complex \mathbf{X}, then
- $d \mathbf{Y} / d \mathbf{X}^{C}=(d \mathbf{Y} / d \mathbf{X})^{C}$
- $d \mathbf{Y}:=2(d \mathbf{Y} / d \mathbf{X} d \mathbf{X}:)^{R}$
- If $\mathbf{W}(\mathbf{X})$ is analytic with $\mathbf{W}(\mathbf{X})=\mathbf{Y}(\mathbf{X})$ for all real \mathbf{X}, then $d \mathbf{W} / d \mathbf{X}=2(d \mathbf{Y} / d \mathbf{X})^{R}$ for all real \mathbf{X}
- Example: If $\mathbf{C}=\mathbf{C}^{H}, y(\mathbf{x})=\mathbf{x}^{H} \mathbf{C x}$ and $w(\mathbf{x})=\mathbf{x}^{T} \mathbf{C} \mathbf{x}$, then $\mathrm{d} y / \mathrm{d} \mathbf{x}=\mathbf{x}^{H} \mathbf{C}$ and $\mathrm{d} w / \mathrm{d} \mathbf{x}=2 \mathbf{x}^{T} \mathbf{C}^{R}$

Complex Gradient Vector

If $f(\mathbf{x})$ is a real function of a complex vector then $d f / d \mathbf{x}=(d f / d \mathbf{x})^{C}$ and we can define $\operatorname{grad}(f(\mathbf{x}))=2$ $(d f / d \mathbf{x})^{H}=\left(d f / d \mathbf{x}^{R}+j d f / d \mathbf{x}^{I}\right)^{T}$ as the Complex Gradient Vector [R.9] with the following properties:

- $\operatorname{grad}(f(\mathbf{x}))$ is zero at an extreme value of f.
- $\operatorname{grad}(f(\mathbf{x}))$ points in the direction of steepest slope of $f(\mathbf{x})$
- The magnitude of the steepest slope is equal to $\operatorname{lgrad}(f(\mathbf{x}))$ I. Specifically, if $\mathbf{g}(\mathbf{x})=\operatorname{grad}(f(\mathbf{x}))$, then $\lim _{a->0} a^{-1}(f(\mathbf{x}+a \mathbf{g}(\mathbf{x}))-f(\mathbf{x}))=|\mathbf{g}(\mathbf{x})|^{2}$
- $\operatorname{grad}(f(\mathbf{x}))$ is normal to the surface $f(\mathbf{x})=$ constant which means that it can be used for gradient ascent/descent algorithms.

Basic Properties

- We may write the following differentials unambiguously without parentheses:
- Transpose: $d \mathbf{Y}^{T}=d\left(\mathbf{Y}^{T}\right)=(d \mathbf{Y})^{T}$
- Hermitian Transpose: $d \mathbf{Y}^{H}=d\left(\mathbf{Y}^{H}\right)=(d \mathbf{Y})^{H}$
- Conjugate: $d \mathbf{Y}^{C}=d\left(\mathbf{Y}^{C}\right)=(d \mathbf{Y})^{C}$
- Linearity: $d(\mathbf{Y}+\mathbf{Z})=d \mathbf{Y}+d \mathbf{Z}$
- Chain Rule: If \mathbf{Z} is a function of \mathbf{Y} which is itself a function of \mathbf{X}, then for both the normal and the generalized complex derivative: $d \mathbf{Z}:=d \mathbf{Z} / d \mathbf{Y} d \mathbf{Y}:=d \mathbf{Z} / d \mathbf{Y} d \mathbf{Y} / d \mathbf{X} d \mathbf{X}$:
- Product Rule: $d(\mathbf{Y Z})=\mathbf{Y} d \mathbf{Z}+d \mathbf{Y} \mathbf{Z}$
$\circ d(\mathbf{Y Z}):=(\mathbf{I} \propto \mathbf{Y}) d \mathbf{Z}:+\left(\mathbf{Z}^{T} \propto \mathbf{I}\right) d \mathbf{Y}:=\left((\mathbf{I} \propto \mathbf{Y}) d \mathbf{Z} / d \mathbf{X}+\left(\mathbf{Z}^{T} \propto \mathbf{I}\right) d \mathbf{Y} / d \mathbf{X}\right) d \mathbf{X}:$
- Hadamard Product: $d(\mathbf{Y} \bullet \mathbf{Z})=\mathbf{Y} \bullet d \mathbf{Z}+d \mathbf{Y} \bullet \mathbf{Z}$
- Kroneker Product: $d(\mathbf{Y} \propto \mathbf{Z})=\mathbf{Y} \propto d \mathbf{Z}+d \mathbf{Y} \propto \mathbf{Z}$

Differentials of Linear Functions

- $d(\mathbf{A x})=d\left(\mathbf{x}^{T} \mathbf{A}\right):=\mathbf{A} d \mathbf{x}$
- $d\left(\mathbf{x}^{T} \mathbf{a}\right)=d\left(\mathbf{a}^{T} \mathbf{x}\right)=\mathbf{a}^{T} d \mathbf{x}$
- $d\left(\mathbf{A}^{T} \mathbf{X B}\right):=\left(\mathbf{A}^{T} d \mathbf{X B}\right):=(\mathbf{B} \propto \mathbf{A})^{T} d \mathbf{X}:$
- $d\left(\mathbf{a}^{T} \mathbf{X} \mathbf{b}\right)=(\mathbf{b} \times \mathbf{a})^{T} d \mathbf{X}:=\left(\mathbf{a b}^{T}\right):^{T} d \mathbf{X}:$
- $d\left(\mathbf{a}^{T} \mathbf{X a}\right)=d\left(\mathbf{a}^{T} \mathbf{X}^{T} \mathbf{a}\right)=\left(\mathbf{a}{ }^{\circ} \mathbf{a}\right)^{T} d \mathbf{X}:=\left(\mathbf{a} \mathbf{a}^{T}\right):^{T} d \mathbf{X}:$

○ $d(\mathbf{X B}):=(d \mathbf{X} \mathbf{B}):=\left(\mathbf{B}^{T} \propto \mathbf{I}\right) d \mathbf{X}:$

- $d\left(\mathbf{x b}^{T}\right):=\left(d \mathbf{x} \mathbf{b}^{T}\right):=(\mathbf{b} \propto \mathbf{I}) d \mathbf{x}$

○ $d\left(\mathbf{a}^{T} \mathbf{X}^{T} \mathbf{b}\right)=(\mathbf{a} \propto \mathbf{b})^{T} d \mathbf{X}:=\left(\mathbf{b a}^{T}\right):^{T} d \mathbf{X}:$

- [x: Complex]
- $d\left(\mathbf{x}^{H} \mathbf{A}\right):=\mathbf{A}^{T} d \mathbf{x}^{C}$
- Writing $\mathbf{I}_{n}=\mathbf{I}_{[n \# n]}$ and $\mathbf{T}_{q, m}=\mathbf{T V E C}(q, m)$,
$\circ d\left(\mathbf{X}_{[m \# n]} \propto \mathbf{A}_{[p \# q]}\right):=\left(\mathbf{I}_{n} \propto \mathbf{T}_{q, m} \propto \mathbf{I}_{p}\right)\left(\mathbf{I}_{m n} \propto \mathbf{A}:\right) d \mathbf{X}:=\left(\mathbf{I}_{n q} \propto \mathbf{T}_{m, p}\right)\left(\mathbf{I}_{n} \propto \mathbf{A}: \propto \mathbf{I}_{m}\right) d \mathbf{X}:$
$\circ d\left(\mathbf{A}_{[p \# q]} \propto \mathbf{X}_{[m \# n]}\right):=\left(\mathbf{I}_{q} \propto \mathbf{T}_{n, p} \propto \mathbf{I}_{m}\right)\left(\mathbf{A}: \propto \mathbf{I}_{m n}\right) d \mathbf{X}:=\left(\mathbf{T}_{m, n} \propto \mathbf{I}_{p q}\right)\left(\mathbf{I}_{n} \propto \mathbf{A}: \propto \mathbf{I}_{m}\right) d \mathbf{X}:$

Differentials of Quadratic Products

$$
\begin{aligned}
& \text { - } d(\mathbf{A x}+\mathbf{b})^{T} \mathbf{C}(\mathbf{D x}+\mathbf{e})=\left((\mathbf{A x}+\mathbf{b})^{T} \mathbf{C D}+(\mathbf{D x}+\mathbf{e})^{T} \mathbf{C}^{T} \mathbf{A}\right) d \mathbf{x} \\
& \text { ○ } d\left(\mathbf{x}^{T} \mathbf{C x}\right)=\mathbf{x}^{T}\left(\mathbf{C}+\mathbf{C}^{T}\right) d \mathbf{x}=\left[\mathbf{C}=\mathbf{C}^{T}\right] 2 \mathbf{x}^{T} \mathbf{C} d \mathbf{x} \\
& \text { - } d\left(\mathbf{x}^{T} \mathbf{x}\right)=2 \mathbf{x}^{T} d \mathbf{x} \\
& \text { - } d(\mathbf{A x}+\mathbf{b})^{T}(\mathbf{D x}+\mathbf{e})=\left((\mathbf{A x}+\mathbf{b})^{T} \mathbf{D}+(\mathbf{D x}+\mathbf{e})^{T} \mathbf{A}\right) d \mathbf{x} \\
& \text { - } d(\mathbf{A x}+\mathbf{b})^{T}(\mathbf{A x}+\mathbf{b})=2(\mathbf{A x}+\mathbf{b})^{T} \mathbf{A} d \mathbf{x} \\
& \text { - } d(\mathbf{A x}+\mathbf{b})^{T} \mathbf{C}(\mathbf{A x}+\mathbf{b})=\left[\mathbf{C}=\mathbf{C}^{T}\right] 2(\mathbf{A x}+\mathbf{b})^{T} \mathbf{C A} d \mathbf{x} \\
& \text { - } d(\mathbf{A x}+\mathbf{b})^{H} \mathbf{C}(\mathbf{D x}+\mathbf{e})=(\mathbf{A x}+\mathbf{b})^{H} \mathbf{C D} d \mathbf{x}+(\mathbf{D} \mathbf{x}+\mathbf{e})^{T} \mathbf{C}^{T} \mathbf{A}^{C} d \mathbf{x}^{C} \\
& \text { ○ } d\left(\mathbf{x}^{H} \mathbf{C x}\right)=\mathbf{x}^{H} \mathbf{C} d \mathbf{x}+\mathrm{x}^{T} \mathbf{C}^{T} d \mathbf{x}^{C}=\left[\mathbf{C}=\mathbf{C}^{H}\right] 2\left(\mathbf{x}^{H} \mathbf{C} d \mathbf{x}\right)^{R} \\
& \text { - } d\left(\mathbf{x}^{H} \mathbf{x}\right)=2\left(\mathbf{x}^{H} d \mathbf{x}\right)^{R} \\
& \text { - } d\left(\mathbf{a}^{T} \mathbf{X}^{T} \mathbf{X b}\right)=\mathbf{X}\left(\mathbf{a b}^{T}+\mathbf{b a}^{T}\right):^{T} d \mathbf{X}: \\
& \text { - } d\left(\mathbf{a}^{T} \mathbf{X}^{T} \mathbf{X a}\right)=2\left(\mathbf{X a a}^{T}\right):^{T} d \mathbf{X}: \\
& \text { - } d\left(\mathbf{a}^{T} \mathbf{X}^{T} \mathbf{C X b}\right)=\left(\mathbf{C}^{T} \mathbf{X a b}^{T}+\mathbf{C X b a}^{T}\right):^{T} d \mathbf{X}: \\
& \circ d\left(\mathbf{a}^{T} \mathbf{X}^{T} \mathbf{C X a}\right)=\left(\left(\mathbf{C}+\mathbf{C}^{T}\right) \mathbf{X a a ^ { T }}\right):^{T} d \mathbf{X}:=\left[\mathbf{C}=\mathbf{C}^{T}\right] \mathbf{2}\left(\mathbf{C X a a}{ }^{T}\right) \mathbf{:}^{T} d \mathbf{X}:
\end{aligned}
$$

- $d\left((\mathbf{X a + b})^{T} \mathbf{C}(\mathbf{X a + b})\right)=\left(\left(\mathbf{C}+\mathbf{C}^{T}\right)(\mathbf{X a + b}) \mathbf{a}^{T}\right) \mathbf{:}^{T} d \mathbf{X}:$
- $d\left(\mathbf{X}^{2}\right):=(\mathbf{X} d \mathbf{X}+d \mathbf{X} \mathbf{X}):=\left(\mathbf{I} \propto \mathbf{X}+\mathbf{X}^{T} \propto \mathbf{I}\right) d \mathbf{X}:$
- $d\left(\mathbf{X}^{T} \mathbf{C X}\right):=\left(\mathbf{X}^{T} \mathbf{C} d \mathbf{X}\right):+\left(d\left(\mathbf{X}^{T}\right) \mathbf{C X}\right):=\left(\mathbf{I} \propto \mathbf{X}^{T} \mathbf{C}\right) d \mathbf{X}:+\left(\mathbf{X}^{T} \mathbf{C}^{T} \propto \mathbf{I}\right) d \mathbf{X}^{T}:$
- $d\left(\mathbf{X}^{H} \mathbf{C X}\right):=\left(\mathbf{X}^{H} \mathbf{C} d \mathbf{X}\right):+\left(d\left(\mathbf{X}^{H}\right) \mathbf{C X}\right):=\left(\mathbf{I} \propto \mathbf{X}^{H} \mathbf{C}\right) d \mathbf{X}:+\left(\mathbf{X}^{T} \mathbf{C}^{T} \circ \mathbf{I}\right) d \mathbf{X}^{H}$:

Differentials of Cubic Products

- $d\left(\mathbf{x x}^{T} \mathbf{A x}\right)=\left(\mathbf{x} \mathbf{x}^{T}\left(\mathbf{A}+\mathbf{A}^{T}\right)+\mathbf{x}^{T} \mathbf{A} \mathbf{x I}\right) d \mathbf{x}$

Differentials of Inverses

- $d\left(\mathbf{X}^{-1}\right)=-\mathbf{X}^{-1} d \mathbf{X} \mathbf{X}^{-1}$ [2.1]

$$
\circ d\left(\mathbf{X}^{-1}\right):=-\left(\mathbf{X}^{-T} \propto \mathbf{X}^{-1}\right) d \mathbf{X}:
$$

- $d\left(\mathbf{a}^{T} \mathbf{X}^{-1} \mathbf{b}\right)=-\left(\mathbf{X}^{-T} \mathbf{a} \mathbf{b}^{T} \mathbf{X}^{-T}\right):^{T} d \mathbf{X}:=-\left(\mathbf{a b}{ }^{T}\right):^{T}\left(\mathbf{X}^{-T} \propto \mathbf{X}^{-1}\right) d \mathbf{X}:[2.6]$
- $d\left(\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{X}^{-1} \mathbf{B}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{B}^{T} \mathbf{X}^{T} \mathbf{A}\right)\right)=-\left(\mathbf{X}^{-T} \mathbf{A} \mathbf{B}^{T} \mathbf{X}^{-T}\right):^{T} d \mathbf{X}:=-\left(\mathbf{A} \mathbf{B}^{T}\right):^{T}\left(\mathbf{X}^{-T} \propto \mathbf{X}^{-1}\right) d \mathbf{X}$:

Differentials of Trace

Note: matrix dimensions must result in an $n * n$ argument for $\operatorname{tr}()$.

- $d(\operatorname{tr}(\mathbf{Y}))=\operatorname{tr}(d \mathbf{Y})$
- $d(\operatorname{tr}(\mathbf{X}))=d\left(\operatorname{tr}\left(\mathbf{X}^{T}\right)\right)=\mathbf{I}:^{T} d \mathbf{X}: \quad$ [2.4]
- $d\left(\operatorname{tr}\left(\mathbf{X}^{k}\right)\right)=k\left(\mathbf{X}^{k-1}\right)^{T}:^{T} d \mathbf{X}:$
- $d\left(\operatorname{tr}\left(\mathbf{A X}^{k}\right)\right)=\left(\mathbf{S U M} \mathbf{M}_{r=0: k-1}\left(\mathbf{X}^{r} \mathbf{A} \mathbf{X}^{k-r-1}\right)^{T}\right):^{T} d \mathbf{X}$:
- $d\left(\operatorname{tr}\left(\mathbf{A} \mathbf{X}^{-1} \mathbf{B}\right)\right)=-\left(\mathbf{X}^{-1} \mathbf{B} \mathbf{A} \mathbf{X}^{-1}\right)^{T}:^{T} d \mathbf{X}:=-\left(\mathbf{X}^{-T} \mathbf{A}^{T} \mathbf{B}^{T} \mathbf{X}^{-T}\right) \mathbf{:}^{T} d \mathbf{X}: \quad$ 2.5]

○ $d\left(\operatorname{tr}\left(\mathbf{A X}^{-1}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{X}^{-1} \mathbf{A}\right)\right)=-\left(\mathbf{X}^{-T} \mathbf{A}^{T} \mathbf{X}^{-T}\right):^{T} d \mathbf{X}:$

- $d\left(\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{X} \mathbf{B}^{T}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{B} \mathbf{X}^{T} \mathbf{A}\right)\right)=(\mathbf{A B}):^{T} d \mathbf{X}:$
- $d\left(\operatorname{tr}\left(\mathbf{X} \mathbf{A}^{T}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{X}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{A}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{A} \mathbf{X}^{T}\right)\right)=\mathbf{A}:^{T} d \mathbf{X}:$
$\circ d\left(\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{X}^{-1} \mathbf{B}^{T}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{B} \mathbf{X}^{T} \mathbf{A}\right)\right)=-\left(\mathbf{X}^{-T} \mathbf{A B} \mathbf{X}^{-T}\right):^{T} d \mathbf{X}:=-(\mathbf{A B}):^{T}\left(\mathbf{X}^{-T} \propto \mathbf{X}^{-1}\right) d \mathbf{X}:$
- $d\left(\operatorname{tr}\left(\mathbf{A X B X}{ }^{T} \mathbf{C}\right)\right)=\left(\mathbf{A}^{T} \mathbf{C}^{T} \mathbf{X} \mathbf{B}^{T}+\mathbf{C A X B}\right):^{T} d \mathbf{X}:$
- $d\left(\operatorname{tr}\left(\mathbf{X A X} \mathbf{X}^{T}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{A} \mathbf{X}^{T} \mathbf{X}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X} \mathbf{A}\right)\right)=\left(\mathbf{X}\left(\mathbf{A}+\mathbf{A}^{T}\right)\right):^{T} d \mathbf{X}:$
- $d\left(\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{A X}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{A} \mathbf{X} \mathbf{X}^{T}\right)\right)=d\left(\operatorname{tr}\left(\mathbf{X} \mathbf{X}^{T} \mathbf{A}\right)\right)=\left(\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{X}\right):^{T} d \mathbf{X}:$
- $d(\operatorname{tr}(\mathbf{A X B X}))=\left(\mathbf{A}^{T} \mathbf{X}^{T} \mathbf{B}^{T}+\mathbf{B}^{T} \mathbf{X}^{T} \mathbf{A}^{T}\right):^{T} d \mathbf{X}:$
- $d\left(\operatorname{tr}\left((\mathbf{A X b}+\mathbf{c})(\mathbf{A X b}+\mathbf{c})^{T}\right)=2\left(\mathbf{A}^{T}(\mathbf{A X b}+\mathbf{c}) \mathbf{b}^{T}\right):^{T} d \mathbf{X}:\right.$
- $d\left(\operatorname{tr}\left(\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1} \mathbf{A}\right)=[\mathbf{C}\right.$:symmetric $] d\left(\operatorname{tr}\left(\mathbf{A}\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}\right)=-\left(\left(\mathbf{C X}\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}\right)\left(\mathbf{A}+\mathbf{A}^{T}\right)\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}\right):^{T} d \mathbf{X}\right.$:
- $d\left(\operatorname{tr}\left(\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{B X}\right)\right)=[\mathbf{B}, \mathbf{C}:\right.$ symmetric $] d\left(\operatorname{tr}\left(\left(\mathbf{X}^{T} \mathbf{B X}\right)\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}\right)=\mathbf{2}\left(\mathbf{B X}\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}-\right.\right.$ $\left.\left(\mathbf{C X}\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}\right) \mathbf{X}^{T} \mathbf{B X}\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}\right):^{T} d \mathbf{X}:$

Differentials of Determinant

Note: matrix dimensions must result in an $n \# n$ argument for $\operatorname{det}()$. Some of the expressions below involve inverses: these forms apply only if the quantity being inverted is square and non-singular; alternative
forms involving the adjoint, ADJ() , do not have the non-singular requirement.

- $d(\operatorname{det}(\mathbf{X}))=d\left(\operatorname{det}\left(\mathbf{X}^{T}\right)\right)=\underline{\mathbf{A D J}}\left(\mathbf{X}^{T}\right):^{T} d \mathbf{X}:=\operatorname{det}(\mathbf{X})\left(\mathbf{X}^{-T}\right):^{T} d \mathbf{X}:$ [2.7]
- $d\left(\operatorname{det}\left(\mathbf{A}^{T} \mathbf{X B}\right)\right)=d\left(\operatorname{det}\left(\mathbf{B}^{T} \mathbf{X}^{T} \mathbf{A}\right)\right)=\left(\mathbf{A} \underline{\mathbf{A D J}}\left(\mathbf{A}^{T} \mathbf{X B}\right)^{T} \mathbf{B}^{T}\right):^{T} d \mathbf{X}:=[\mathbf{A}, \mathbf{B}:$ nonsingular $] \operatorname{det}\left(\mathbf{A}^{T} \mathbf{X B}\right) \times$ $\left(\mathbf{X}^{-T}\right) \mathbf{:}^{T} d \mathbf{X}:[\underline{2.8]}$
- $d\left(\ln \left(\operatorname{det}\left(\mathbf{A}^{T} \mathbf{X B}\right)\right)\right)=[\mathbf{A}, \mathbf{B}:$ nonsingular $]\left(\mathbf{X}^{-T}\right):^{T} d \mathbf{X}:[\underline{2.9}]$ - $d(\ln (\operatorname{det}(\mathbf{X})))=\left(\mathbf{X}^{-T}\right):^{T} d \mathbf{X}:$
- $d\left(\operatorname{det}\left(\mathbf{X}^{k}\right)\right)=d\left(\operatorname{det}(\mathbf{X})^{k}\right)=k \times \operatorname{det}\left(\mathbf{X}^{k}\right) \times\left(\mathbf{X}^{-T}\right):^{T} d \mathbf{X}:[\underline{2.10}]$
- $d\left(\ln \left(\operatorname{det}\left(\mathbf{X}^{k}\right)\right)\right)=k \times\left(\mathbf{X}^{-T}\right):^{T} d \mathbf{X}:$
- $d\left(\operatorname{det}\left(\mathbf{X}^{T} \mathbf{C X}\right)\right)=\left[\mathbf{C}=\mathbf{C}^{T}\right] 2 \operatorname{det}\left(\mathbf{X}^{T} \mathbf{C X}\right) \times\left(\mathbf{C X}\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}\right):^{T} d \mathbf{X}:$ [2.11] $\circ=\left[\mathbf{C}=\mathbf{C}^{T}, \mathbf{C X}\right.$: nonsingular $] 2 \operatorname{det}\left(\mathbf{X}^{T} \mathbf{C X}\right) \times\left(\mathbf{X}^{-T}\right):^{T} d \mathbf{X}:$
- $d\left(\ln \left(\operatorname{det}\left(\mathbf{X}^{T} \mathbf{C X}\right)\right)\right)=\left[\mathbf{C}=\mathbf{C}^{T}\right] 2\left(\mathbf{C X}\left(\mathbf{X}^{T} \mathbf{C X}\right)^{-1}\right):^{T} d \mathbf{X}$:
$\circ=\left[\mathbf{C}=\mathbf{C}^{T}, \mathbf{C X}:\right.$ nonsingular $] 2\left(\mathbf{X}^{-T}\right):^{T} d \mathbf{X}:$
- $\left.d\left(\operatorname{det}\left(\mathbf{X}^{H} \mathbf{C X}\right)\right)=\operatorname{det}\left(\mathbf{X}^{H} \mathbf{C X}\right) \times\left(\mathbf{C}^{T} \mathbf{X}^{C}\left(\mathbf{X}^{T} \mathbf{C}^{T} \mathbf{X}^{C}\right)^{-1}\right) d \mathbf{X}: \quad+\left(\mathbf{C X}\left(\mathbf{X}^{H} \mathbf{C X}\right)^{-1}\right):^{T} d \mathbf{X}^{C}:\right)[2.12]$
- $d\left(\ln \left(\operatorname{det}\left(\mathbf{X}^{H} \mathbf{C X}\right)\right)\right)=\left(\mathbf{C}^{T} \mathbf{X}^{C}\left(\mathbf{X}^{T} \mathbf{C}^{T} \mathbf{X}^{C}\right)^{-1}\right):^{T} d \mathbf{X}:+\left(\mathbf{C X}\left(\mathbf{X}^{H} \mathbf{C X}\right)^{-1}\right):^{T} d \mathbf{X}^{C}:$ [2.13]

Jacobian

$d \mathbf{Y} / d \mathbf{X}$ is called the Jacobian Matrix of \mathbf{Y} : with respect to \mathbf{X} : and $J_{\mathbf{X}}(\mathbf{Y})=\operatorname{det}(d \mathbf{Y} / d \mathbf{X})$ is the corresponding Jacobian. The Jacobian occurs when changing variables in an integration: $\operatorname{Integral}(f(\mathbf{Y}) \mathrm{d} \mathbf{Y}:)=\operatorname{Integral}(f(\mathbf{Y}(\mathbf{X})) \operatorname{det}(d \mathbf{Y} / d \mathbf{X}) \mathrm{d} \mathbf{X}:)$.

$$
\text { - } J_{\mathbf{X}}\left(\mathbf{X}_{[n \# n]}{ }^{-1}\right)=(-1)^{n} \operatorname{det}(\mathbf{X})^{-2 n}
$$

Hessian matrix

If f is a real function of \mathbf{x} then the Hermitian matrix $\mathbf{H}_{\mathbf{x}} f=\left(d / d \mathbf{x}(d f / d \mathbf{x})^{H}\right)^{T}$ is the Hessian matrix of $f(\mathbf{x})$. A value of \mathbf{x} for which $\operatorname{grad} f(\mathbf{x})=\mathbf{0}$ corresponds to a minimum, maximum or saddle point according to whether $\mathbf{H}_{\mathbf{x}} f$ is positive definite, negative definite or indefinite.

- [Real] $\mathbf{H}_{\mathbf{x}} f=d / d \mathbf{x}(d f / d \mathbf{x})^{T}$
- $\mathbf{H}_{\mathbf{x}} f$ is symmetric
- $\mathbf{H}_{\mathbf{x}}\left(\mathbf{a}^{T} \mathbf{x}\right)=0$
- $\mathbf{H}_{\mathbf{x}}(\mathbf{A x}+\mathbf{b})^{T} \mathbf{C}(\mathbf{D x}+\mathbf{e})=\mathbf{A}^{T} \mathbf{C D}+\mathbf{D}^{T} \mathbf{C}^{T} \mathbf{A}$
- $\mathbf{H}_{\mathbf{x}}(\mathbf{A x}+\mathbf{b})^{T}(\mathbf{D x}+\mathbf{e})=\mathbf{A}^{T} \mathbf{D}+\mathbf{D}^{T} \mathbf{A}$
- $\mathbf{H}_{\mathbf{x}}(\mathbf{A x}+\mathbf{b})^{T} \mathbf{C}(\mathbf{A x}+\mathbf{b})=\mathbf{A}^{T}\left(\mathbf{C}+\mathbf{C}^{T}\right) \mathbf{A}=\left[\mathbf{C}=\mathbf{C}^{T}\right] 2 \mathbf{A}^{T} \mathbf{C A}$
- $\mathbf{H}_{\mathbf{x}}(\mathbf{A x}+\mathbf{b})^{T}(\mathbf{A x}+\mathbf{b})=2 \mathbf{A}^{T} \mathbf{A}$
- $\mathbf{H}_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{C x}\right)=\mathbf{C}+\mathbf{C}^{T}=\left[\mathbf{C}=\mathbf{C}^{T}\right] 2 \mathbf{C}$
- $\mathbf{H}_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{x}\right)=2 \mathbf{I}$
- [x: Complex] $\mathbf{H}_{\mathbf{x}} f=\left(d / d \mathbf{x}(d f / d \mathbf{x})^{H}\right)^{T}=d / d \mathbf{x}^{C}(d f / d \mathbf{x})^{T}$
- $\mathbf{H}_{\mathbf{x}} f$ is hermitian
- $\mathbf{H}_{\mathbf{x}}(\mathbf{A x}+\mathbf{b})^{H} \mathbf{C}(\mathbf{A x}+\mathbf{b})=\left[\mathbf{C}=\mathbf{C}^{H}\right]\left(\mathbf{A}^{H} \mathbf{C A}\right)^{T}$ [2.14]
- $\mathbf{H}_{\mathbf{x}}\left(\mathbf{x}^{H} \mathbf{C x}\right)=\left[\mathbf{C}=\mathbf{C}^{H}\right] \mathbf{C}^{T}$

This page is part of The Matrix Reference Manual. Copyright © 1998-2005 Mike Brookes, Imperial College, London, UK. See the file gfl.html for copying instructions. Please send any comments or suggestions to "mike.brookes" at "imperial.ac.uk".
Updated: \$Id: calculus.html,v 1.30 2011/01/14 16:28:04 dmb Exp \$

