LECTURE 3: Review of Linear Algebra and MATLAB ${ }^{\circledR}$

- Vector and matrix notation
- Vectors
- Matrices
- Vector spaces

■ Linear transformations

- Eigenvalues and eigenvectors
- MATLAB ${ }^{\circledR}$ primer

Vector and matrix notation

- A d-dimensional (column) vector x and its transpose are written as:

$$
\mathrm{x}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\mathrm{x}_{\mathrm{d}}
\end{array}\right] \text { and } \mathrm{x}^{\top}=\left[\mathrm{x}_{1} \mathrm{x}_{1} \cdots \mathrm{x}_{\mathrm{d}}\right]
$$

- An $\mathbf{n} \times \mathbf{d}$ (rectangular) matrix and its transpose are written as:

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 d} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & & a_{n d}
\end{array}\right] \text { and } A^{\top}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
a_{13} & a_{23} & \cdots & a_{n 3} \\
\vdots & \vdots & \ddots & \vdots \\
& & & \\
a_{1 d} & a_{2 d} & & a_{n d}
\end{array}\right]
$$

- The product of two matrices is

$$
A B=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 d} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 d} \\
\vdots & \vdots & \vdots & \ddots & \\
a_{m 1} & a_{m 2} & a_{m 3} & & a_{m d}
\end{array}\right]\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
b_{31} & b_{32} & \cdots & b_{3 n} \\
\vdots & \vdots & \ddots & \\
b_{d 1} & b_{d 2} & & b_{d n}
\end{array}\right]=\left[\begin{array}{ccccc}
c_{11} & c_{12} & c_{13} & \cdots & c_{1 n} \\
c_{21} & c_{22} & c_{23} & \cdots & c_{2 n} \\
c_{31} & c_{32} & c_{33} & \cdots & c_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \\
c_{m 1} & c_{m 2} & c_{m 3} & & c_{m n}
\end{array}\right] \text { where } c_{i j}=\sum_{k=1}^{d} a_{i k} b_{k j}
$$

Vectors

- The inner product (a.k.a. dot product or scalar product) of two vectors is defined by

$$
\langle x, y\rangle=x^{\top} y=y^{\top} x=\sum_{k=1}^{d} x_{k} y_{k}
$$

- The magnitude of a vector is

$$
|x|=\sqrt{x^{\top} x}=\left[\sum_{k=1}^{d} x_{k} x_{k}\right]^{1 / 2}
$$

- The orthogonal projection of vector y onto vector x is

$$
\left\langle y^{\top} u_{x}\right\rangle u_{x}
$$

- where vector u_{x} has unit magnitude and the same direction as x
- The angle between vectors \mathbf{x} and \mathbf{y} is

$$
\cos \theta=\frac{\langle x, y\rangle}{|x| \cdot|y|}
$$

- Two vectors x and y are said to be
- orthogonal if $x^{\top} y=0$
- orthonormal if $x^{\top} y=0$ and $|x|=|y|=1$
- A set of vectors $x_{1}, x_{2}, \ldots, x_{n}$ are said to be linearly dependent if there exists a set of coefficients $a_{1}, a_{2}, \ldots, a_{n}$ (at least one different than zero) such that

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots a_{n} x_{n}=0
$$

- Alternatively, a set of vectors $x_{1}, x_{2}, \ldots, x_{n}$ are said to be linearly independent if

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots a_{n} x_{n}=0 \Rightarrow a_{k}=0 \quad \forall k
$$

Matrices

- The determinant of a square matrix $\mathrm{A}_{\mathrm{dxd}}$ is

$$
|A|=\sum_{k=1}^{d} a_{i k} \mid A_{i k}(-1)^{k+i}
$$

- where A_{ik} is the minor matrix formed by removing the $\mathrm{i}^{\text {th }}$ row and the $\mathrm{k}^{\text {th }}$ column of A
- NOTE: the determinant of a square matrix and its transpose is the same: $|A|=\left|A^{\top}\right|$
- The trace of a square matrix $A_{d \times d}$ is the sum of its diagonal elements

$$
\operatorname{tr}(\mathrm{A})=\sum_{\mathrm{k}=1}^{\mathrm{d}} \mathrm{a}_{\mathrm{kk}}
$$

- The rank of a matrix is the number of linearly independent rows (or columns)
- A square matrix is said to be non-singular if and only if its rank equals the number of rows (or columns)
- A non-singular matrix has a non-zero determinant
- A square matrix is said to be orthonormal if $\mathrm{AA}^{\top}=\mathrm{A}^{\top} \mathrm{A}=1$ (more on this later)
- For a square matrix \mathbf{A}
- if $x^{\top} A x>0$ for all $x \neq 0$, then A is said to be positive-definite (i.e., the covariance matrix)
- if $x^{\top} A x \geq 0$ for all $x \neq 0$, then A is said to be positive-semidefinite
- The inverse of a square matrix A is denoted by A^{-1} and is such that $A A^{-1}=A^{-1} A=1$
- The inverse A^{-1} of a matrix A exists if and only if A is non-singular
- The pseudo-inverse matrix A^{\dagger} is typically used whenever A^{-1} does not exist (because A is not square or A is singular):

$$
A^{\dagger}=\left[A^{\top} A\right]^{-1} A^{\top} \text { with } A^{\dagger} A=1 \quad \text { (assuming } A^{\top} A \text { is non-singular, note that } A A^{\dagger} \neq 1 \text { in general) }
$$

Vector spaces

- The n-dimensional space in which all the n-dimensional vectors reside is called a vector space
- A set of vectors $\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ is said to form a basis for a vector space if any arbitrary vector x can be represented by a linear combination of the $\left\{u_{i}\right\}$

$$
x=a_{1} u_{1}+a_{2} u_{2}+\cdots a_{n} u_{n}
$$

- The coefficients $\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$ are called the components of vector x with respect to the basis $\left\{u_{i}\right\}$
- In order to form a basis, it is necessary and sufficient that the $\left\{u_{i}\right\}$ vectors be linearly independent
- A basis $\left\{u_{i}\right\}$ is said to be orthogonal if

$$
u_{i}^{\top} u_{j}\left\{\begin{array}{cc}
\neq 0 & i=j \\
=0 & i \neq j
\end{array}\right.
$$

- A basis $\left\{u_{i}\right\}$ is said to be orthonormal if $u_{i}^{\top} u_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$
- As an example, the Cartesian coordinate base is an orthonormal base
- Given n linearly independent vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$, we can construct an orthonormal base $\left\{\phi_{1}, \phi_{2}, \ldots \phi_{n}\right\}$ for the vector space spanned by $\left\{x_{i}\right\}$ with the Gram-Schmidt Orthonormalization Procedure
- The distance between two points in a vector space is defined as the magnitude of the vector difference between the points

$$
d_{E}(x, y)=|x-y|=\left[\sum_{k=1}^{d}\left(x_{k}-y_{k}\right)^{2}\right]^{1 / 2}
$$

- This is also called the Euclidean distance

Linear transformations

- A linear transformation is a mapping from a vector space X^{N} onto a vector space Y^{M}, and is represented by a matrix
- Given vector $\mathrm{x} \in \mathrm{X}^{\mathrm{N}}$, the corresponding vector y on Y^{M} is computed as

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{\mathrm{M}}
\end{array}\right]=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 N} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 \mathrm{~N}} \\
\vdots & \vdots & \vdots & \ddots & \\
a_{\mathrm{M} 1} & a_{\mathrm{M} 2} & a_{\mathrm{M} 3} & & a_{\mathrm{MN}}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\\
x_{\mathrm{N}}
\end{array}\right]
$$

- Notice that the dimensionality of the two spaces does not need to be the same.
- For pattern recognition we typically have $M<N$ (project onto a lower-dimensionality space)
- A linear transformation represented by a square matrix A is said to be orthonormal when $A A^{\top}=A^{\top} A=1$
- This implies that $\mathrm{A}^{\top}=\mathrm{A}^{-1}$
- An orthonormal transformation has the property of preserving the magnitude of the vectors:

$$
|y|=\sqrt{y^{\top} y}=\sqrt{(A x)^{\top}(A x)}=\sqrt{x^{\top} A^{\top} A x}=\sqrt{x^{\top} x}=|x|
$$

- An orthonormal matrix can be thought of as a rotation of the reference frame
- The row vectors of an orthonormal transformation form a set of orthonormal basis vectors

$$
\mathrm{y}_{\mathrm{N} \times 1}=\left[\begin{array}{lll}
\leftarrow & \mathrm{a}_{1} & \rightarrow \\
\leftarrow & \mathrm{a}_{2} & \rightarrow \\
\leftarrow & & a_{\mathrm{N}}
\end{array}\right] \mathrm{x}_{\mathrm{N} \times 1} \text { with } \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{a}_{\mathrm{j}}= \begin{cases}0 & \mathrm{i} \neq \mathrm{j} \\
1 & \mathrm{i}=\mathrm{j}\end{cases}
$$

Eigenvectors and eigenvalues

- Given a matrix $A_{N \times N}$, we say that v is an eigenvector* if there exists a scalar λ (the eigenvalue) such that

$$
A v=\lambda v \Leftrightarrow\left\{\begin{array}{l}
v \text { is an eigenvector } \\
\lambda \text { is the corresponding eigenvalue }
\end{array}\right.
$$

- Computation of the eigenvalues

$$
\begin{aligned}
& A v=\lambda v \Rightarrow A v-\lambda v=0 \Rightarrow(A-\lambda I) v=0 \Rightarrow \begin{cases}v=0 & \text { trivial solution } \\
(A-\lambda I)=0 & \text { non - trivial solution }\end{cases} \\
& (A-\lambda I)=0 \Rightarrow|A-\lambda|=0 \Rightarrow \underbrace{\lambda^{N}+a_{1} \lambda^{N-1}+\cdots a_{N-1} \lambda+a_{0}=0}_{\text {Characteristic Equation }}
\end{aligned}
$$

- The matrix formed by the column eigenvectors is called the modal matrix M.
- Matrix Λ is the canonical form of A : a diagonal matrix with eigenvalues on the main diagonal
- Properties

$$
M=\left[\begin{array}{ccccc}
\uparrow & \uparrow & \uparrow & & \uparrow \\
v_{1} & v_{2} & v_{3} & \cdots & v_{N} \\
\downarrow & \downarrow & \downarrow & & \downarrow
\end{array}\right] \Lambda=\left[\begin{array}{lllll}
\lambda_{1} & & & & \\
& \lambda_{2} & & & \\
& & \ddots & & \\
& & & & \\
& & & & \lambda_{N}
\end{array}\right]
$$

- If A is non-singular
- All eigenvalues are non-zero
- If A is real and symmetric
- All eigenvalues are real
- The eigenvectors associated with distinct eigenvalues are orthogonal
- If A is positive definite
- All eigenvalues are positive

Interpretation of eigenvectors and eigenvalues (1)

- If we view matrix A as a linear transformation, an eigenvector represents an invariant direction in the vector space
- When transformed by A, any point lying on the direction defined by v will remain on that direction, and its magnitude will be multiplied by the corresponding eigenvalue λ

- For example, the transformation which rotates 3-d vectors about the Z axis has vector [001] 0 1] as its only eigenvector and 1 as the corresponding eigenvalue

$$
A=\left[\begin{array}{ccc}
\cos \beta & -\sin \beta & 0 \\
\sin \beta & \cos \beta & 0 \\
0 & 0 & 1
\end{array}\right] \underbrace{\substack{s}}_{x=[001]^{\top}}
$$

Interpretation of eigenvectors and eigenvalues (2)

- Given the covariance matrix Σ of a Gaussian distribution
- The eigenvectors of Σ are the principal directions of the distribution
- The eigenvalues are the variances of the corresponding principal directions
- The linear transformation defined by the eigenvectors of Σ leads to vectors that are uncorrelated regardless of the form of the distribution
- If the distribution happens to be Gaussian, then the transformed vectors will be statistically independent
$f_{x}(x)=\frac{1}{(2 \pi)^{N / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(X-\mu)^{\top} \Sigma^{-1}(X-\mu)\right]$

MATLAB primer

- The MATLAB environment
- Starting and exiting MATLAB
- Directory path
- The startup.m file
- The help command
- The toolboxes
- Basic features (help general)
- Variables
- Special variables (i, NaN, eps, realmax, realmin, pi, ...)
- Arithmetic, relational and logic operations
- Comments and punctuation (the semicolon shorthand)
- Math functions (help elfun)
- Arrays and matrices
- Array construction
- Manual construction
- The 1:n shorthand
- The linspace command
- Matrix construction
- Manual construction
- Concatenating arrays and matrices
- Array and Matrix indexing (the colon shorthand)
- Array and matrix operations
- Matrix and element-by-element operations
- Standard arrays and matrices (eye, ones and zeros)
- Array and matrix size (size and length)
- Character strings (help strfun)
- String generation
- The str2mat function
- M-files
- Script files
- Function files
- Flow control
- if..else..end construct
- for construct
- while construct
- switch..case construct
- I/O (help iofun)
- Console I/O
- The fprintf and sprintf commands
- the input command
- File I/O
- load and save commands
- The fopen, fclose, fprintf and fscanf commands
- 2D Graphics (help graph2d)
- The plot command
- Customizing plots
- Line styles, markers and colors
- Grids, axes and labels
- Multiple plots and subplots
- Scatter-plots
- The legend and zoom commands
- 3D Graphics (help graph3d)
- Line plots
- Mesh plots
- image and imagesc commands
- 3D scatter plots
- the rotate3d command
- Linear Algebra (help matfun)
- Sets of linear equations
- The least-squares solution ($\mathrm{x}=\mathrm{Alb}$)
- Eigenvalue problems
- Statistics and Probability
- Generation
- Random variables
- Gaussian distribution: $\mathrm{N}(0,1)$ and $\mathrm{N}(\mu, \sigma)$
- Uniform distribution
- Random vectors
- correlated and uncorrelated variables
- Analysis
- Max, min and mean
- Variance and Covariance
- Histograms

