LECTURE 3: Review of Linear Algebra and MATLAB®

- Vector and matrix notation
- Vectors
- Matrices
- Vector spaces
- Linear transformations
- Eigenvalues and eigenvectors
- MATLAB® primer

Vector and matrix notation

A d-dimensional (column) vector x and its transpose are written as:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_d \end{bmatrix} \text{ and } \mathbf{x}^T = [\mathbf{x}_1 \mathbf{x}_1 \cdots \mathbf{x}_d]$$

■ An n×d (rectangular) matrix and its transpose are written as:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1d} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & & a_{nd} \end{bmatrix} \text{ and } A^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ a_{13} & a_{23} & \cdots & a_{n3} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1d} & a_{2d} & & a_{nd} \end{bmatrix}$$

The product of two matrices is

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1d} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & & a_{md} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ b_{31} & b_{32} & \cdots & b_{3n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{d1} & b_{d2} & & b_{dn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & \cdots & c_{1n} \\ c_{21} & c_{22} & c_{23} & \cdots & c_{2n} \\ c_{31} & c_{32} & c_{33} & \cdots & c_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & c_{m3} & & c_{mn} \end{bmatrix} \text{ where } c_{ij} = \sum_{k=1}^{d} a_{ik} b_{kj}$$

Vectors

The inner product (a.k.a. dot product or scalar product) of two vectors is defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\mathsf{T} \mathbf{y} = \mathbf{y}^\mathsf{T} \mathbf{x} = \sum_{k=1}^d \mathbf{x}_k \mathbf{y}_k$$

The magnitude of a vector is

$$\left| \mathbf{X} \right| = \sqrt{\mathbf{X}^{\mathsf{T}} \mathbf{X}} = \left[\sum_{k=1}^{d} \mathbf{X}_{k} \mathbf{X}_{k} \right]^{1/2}$$

The <u>orthogonal projection</u> of vector y onto vector x is

$$\langle y^T u_x \rangle u_x$$

- where vector u_x has unit magnitude and the same direction as x
- The angle between vectors x and y is

$$\cos\theta = \frac{\left\langle x, y \right\rangle}{\left| x \right| \cdot \left| y \right|}$$

- Two vectors x and y are said to be
 - orthogonal if $x^Ty=0$
 - orthonormal if x^Ty=0 and |x|=|y|=1
- A set of vectors $x_1, x_2, ..., x_n$ are said to be <u>linearly dependent</u> if there exists a set of coefficients $a_1, a_2, ..., a_n$ (at least one different than zero) such that

$$\mathbf{a}_1\mathbf{x}_1 + \mathbf{a}_2\mathbf{x}_2 + \cdots + \mathbf{a}_n\mathbf{x}_n = \mathbf{0}$$

Alternatively, a set of vectors $x_1, x_2, ..., x_n$ are said to be <u>linearly independent</u> if $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0 \Rightarrow a_k = 0 \forall k$

Matrices

■ The <u>determinant</u> of a square matrix A_{d×d} is

$$|A| = \sum_{k=1}^{d} a_{ik} |A_{ik}| (-1)^{k+i}$$

- where Aik is the minor matrix formed by removing the ith row and the kth column of A
- NOTE: the determinant of a square matrix and its transpose is the same: $|A|=|A^T|$
- The <u>trace</u> of a square matrix $A_{d\times d}$ is the sum of its diagonal elements

$$tr(A) = \sum_{k=1}^{d} a_{kk}$$

- The <u>rank</u> of a matrix is the number of linearly independent rows (or columns)
- A square matrix is said to be <u>non-singular</u> if and only if its rank equals the number of rows (or columns)
 - A non-singular matrix has a non-zero determinant
- A square matrix is said to be <u>orthonormal</u> if AA^T=A^TA=I (more on this later)
- For a square matrix A
 - if $x^TAx>0$ for all $x\neq 0$, then A is said to be **positive-definite** (i.e., the covariance matrix)
 - if $x^TAx \ge 0$ for all $x \ne 0$, then A is said to be **positive-semidefinite**
- The inverse of a square matrix A is denoted by A-1 and is such that AA-1 = A-1A=I
 - The inverse A⁻¹ of a matrix A exists <u>if and only if</u> A is non-singular
- The <u>pseudo-inverse</u> matrix A[†] is typically used whenever A⁻¹ does not exist (because A is not square or A is singular):

$$A^{\dagger} = \left[A^{\top}A\right]^{-1}A^{\top} \text{ with } A^{\dagger}A = I \quad \text{ (assuming } A^{\top}A \text{ is non-singular, note that } AA^{\dagger} \neq I \text{ in general)}$$

Vector spaces

- The n-dimensional space in which all the n-dimensional vectors reside is called a vector space
- A set of vectors {u₁, u₂, ... uₙ} is said to form a <u>basis</u> for a vector space if any arbitrary vector x can be represented by a linear combination of the {uᵢ}

$$x = a_1 u_1 + a_2 u_2 + \cdots a_n u_n$$

- The coefficients {a₁, a₂, ... a_n} are called the <u>components</u> of vector x with respect to the basis {u_i}
- In order to form a basis, it is necessary and sufficient that the {u_i} vectors be linearly independent

■ A basis
$$\{u_i\}$$
 is said to be orthogonal if $u_i^T u_j \begin{cases} \neq 0 & i = j \\ = 0 & i \neq j \end{cases}$

- A basis $\{u_i\}$ is said to be <u>orthonormal</u> if $u_i^T u_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$
 - As an example, the Cartesian coordinate base is an orthonormal base
- Given n linearly independent vectors $\{x_1, x_2, ... x_n\}$, we can construct an orthonormal base $\{\phi_1, \phi_2, ... \phi_n\}$ for the vector space spanned by $\{x_i\}$ with the <u>Gram-Schmidt</u> Orthonormalization Procedure
- The <u>distance</u> between two points in a vector space is defined as the magnitude of the vector difference between the points

$$d_{E}(x,y) = |x-y| = \left[\sum_{k=1}^{d} (x_{k} - y_{k})^{2}\right]^{1/2}$$

This is also called the Euclidean distance

Linear transformations

- A <u>linear transformation</u> is a mapping from a vector space X^N onto a vector space Y^M, and is represented by a matrix
 - Given vector $x \in X^N$, the corresponding vector y on Y^M is computed as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \\ a_{M1} & a_{M2} & a_{M3} & & a_{MN} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}$$

- Notice that the dimensionality of the two spaces does not need to be the same.
- For pattern recognition we typically have M<N (project onto a lower-dimensionality space)
- A linear transformation represented by a square matrix A is said to be orthonormal when AA^T=A^TA=I
 - This implies that A^T=A⁻¹
 - An orthonormal transformation has the property of preserving the magnitude of the vectors:

$$|y| = \sqrt{y^T y} = \sqrt{(Ax)^T (Ax)} = \sqrt{x^T A^T Ax} = \sqrt{x^T x} = |x|$$

- An orthonormal matrix can be thought of as a rotation of the reference frame
- The row vectors of an orthonormal transformation form a set of orthonormal basis vectors

$$\mathbf{y}_{\mathsf{M} \times \mathsf{1}} = \begin{bmatrix} \leftarrow & \mathsf{a}_{\mathsf{1}} & \rightarrow \\ \leftarrow & \mathsf{a}_{\mathsf{2}} & \rightarrow \\ & & \\ \leftarrow & \mathsf{a}_{\mathsf{N}} & \rightarrow \end{bmatrix} \mathbf{x}_{\mathsf{N} \times \mathsf{1}} \text{ with } \mathbf{a}_{\mathsf{i}}^{\mathsf{T}} \mathbf{a}_{\mathsf{j}} = \begin{cases} \mathsf{0} & \mathsf{i} \neq \mathsf{j} \\ \mathsf{1} & \mathsf{i} = \mathsf{j} \end{cases}$$

Eigenvectors and eigenvalues

• Given a matrix $A_{N\times N}$, we say that v is an <u>eigenvector</u>* if there exists a scalar λ (the <u>eigenvalue</u>) such that

$$Av = \lambda v \Leftrightarrow \begin{cases} v \text{ is an eigenvector} \\ \lambda \text{ is the corresponding eigenvalue} \end{cases}$$

Computation of the eigenvalues

$$Av = \lambda v \implies Av - \lambda v = 0 \implies (A - \lambda I)v = 0 \implies \begin{cases} v = 0 & \text{trivial solution} \\ (A - \lambda I) = 0 & \text{non-trivial solution} \end{cases}$$

$$(A - \lambda I) = 0 \implies |A - \lambda I| = 0 \implies \underbrace{\lambda^N + a_1 \lambda^{N-1} + \cdots + a_{N-1} \lambda_{N-1} + a_0}_{\text{Obstack in Extraction}}$$

- The matrix formed by the column eigenvectors is called the modal matrix M.
 - Matrix Λ is the canonical form of A: a diagonal matrix with eigenvalues on the main diagonal

Properties

- If A is non-singular
 - All eigenvalues are non-zero
- If A is real and symmetric
 - All eigenvalues are real
 - The eigenvectors associated with distinct eigenvalues are orthogonal
- If A is positive definite
 - All eigenvalues are positive

Interpretation of eigenvectors and eigenvalues (1)

- If we view matrix A as a linear transformation, an eigenvector represents an invariant direction in the vector space
 - When transformed by A, any point lying on the direction defined by v will remain on that direction, and its magnitude will be multiplied by the corresponding eigenvalue λ

• For example, the transformation which rotates 3-d vectors about the Z axis has vector [0 0 1] as its only eigenvector and 1 as the corresponding eigenvalue

Interpretation of eigenvectors and eigenvalues (2)

- Given the covariance matrix Σ of a Gaussian distribution
 - The eigenvectors of Σ are the principal directions of the distribution
 - The eigenvalues are the variances of the corresponding principal directions
- The linear transformation defined by the eigenvectors of Σ leads to vectors that are uncorrelated <u>regardless</u> of the form of the distribution
 - If the distribution happens to be Gaussian, then the transformed vectors will be statistically independent

MATLAB primer

The MATLAB environment

- Starting and exiting MATLAB
- Directory path
- The startup.m file
- The help command
- The toolboxes
- Basic features (help general)
 - Variables
 - Special variables (i, NaN, eps, realmax, realmin, pi, ...)
 - · Arithmetic, relational and logic operations
 - Comments and punctuation (the semicolon shorthand)
 - Math functions (help elfun)
- Arrays and matrices
 - Array construction
 - Manual construction
 - The 1:n shorthand
 - The linspace command
 - Matrix construction
 - Manual construction
 - Concatenating arrays and matrices
 - Array and Matrix indexing (the colon shorthand)
 - Array and matrix operations
 - Matrix and element-by-element operations
 - Standard arrays and matrices (eye, ones and zeros)
 - Array and matrix size (size and length)
 - Character strings (help strfun)
 - String generation
 - The str2mat function
- M-files
 - Script files
 - Function files
- Flow control
 - if..else..end construct
 - for construct
 - while construct
 - switch..case construct

I/O (help iofun)

- Console I/O
 - The fprintf and sprintf commands
 - the input command
- File I/O
 - load and save commands
 - The fopen, fclose, fprintf and fscanf commands
- 2D Graphics (help graph2d)
 - The plot command
 - Customizing plots
 - Line styles, markers and colors
 - Grids, axes and labels
 - Multiple plots and subplots
 - Scatter-plots
 - The legend and zoom commands
- 3D Graphics (help graph3d)
 - Line plots
 - Mesh plots
 - · image and imagesc commands
 - 3D scatter plots
 - the rotate3d command
- Linear Algebra (help matfun)
 - Sets of linear equations
 - The least-squares solution (x = A\b)
 - Eigenvalue problems
- Statistics and Probability
 - Generation
 - Random variables
 - Gaussian distribution: N(0,1) and N(μ,σ)
 - Uniform distribution
 - Random vectors
 - correlated and uncorrelated variables
 - Analysis
 - Max. min and mean
 - Variance and Covariance
 - Histograms

