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Nonparametric	EsCmaCon	
�  Parametric	(single	global	model),	semiparametric	(small	
number	of	local	models)	

�  Parametric:	model	parameters	contain	summary	of	the	
informaCon	in	the	dataset	

� Nonparametric:	Similar	inputs	have	similar	outputs	
�  FuncCons	(pdf,	discriminant,	regression)	change	smoothly	
�  Keep	the	training	data;“let	the	data	speak	for	itself”	
� Given	x,	find	a	small	number	of	closest	training	instances	
and	interpolate	from	these	

� Aka	lazy/memory-based/case-based/instance-based	
learning	
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�  Given	the	training	set	X={xt}t	drawn	iid	from	p(x)	
�  Divide	data	into	bins	of	size	h	
� Histogram:	

� Naive	esCmator:	

	or	

Density	EsCmaCon	
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Why not histograms 
very simple but: 
�  The final shape of the density estimate depends on the starting 

position of the bins 
�  For multivariate data, the final shape of the density is also 

affected by the orientation of the bins 
�  The discontinuities of the estimate are not due to the 

underlying density, they are only an artifact of the chosen bin 
locations 

�  These discontinuities make it very difficult, without experience, 
to grasp the structure of the data 

�  A much more serious problem is the curse of dimensionality, 
since the number of bins grows exponentially with the number 
of dimensions 

�  In high dimensions we would require a very large number of 
examples or else most of the bins would be empty 

 



Kernel	EsCmator	
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�  Kernel	funcCon,	e.g.,	Gaussian	kernel:	

�  Kernel	esCmator	(Parzen	windows)	
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Nonparametric Density Estimation 
General Formulation (1) 
�  The probability that a vector x, drawn from a distribution 

p(x), will fall in a given region ℜ of the sample space is 

�  Suppose now that N vectors {x(1, x(2, …, x(N)} are drawn 
from the distribution. The probability that k of these N 
vectors fall in ℜ is given by the binomial distribution 

�  It can be shown (from the properties of the binomial p.m.f.) 
that the mean and variance of the ratio k/N are 

�                                and 
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Nonparametric Density Estimation 
General Formulation(2) 

Therefore, as N→∞, the distribution becomes sharper (the 
variance gets smaller) so we can expect that a good estimate 
of the probability P can be obtained from the mean fraction 
of the points that fall within ℜ 

 
 
 
�  On the other hand, if we assume that ℜ is so small that p(x) 

does not vary appreciably within it, then 

�  where V is the volume enclosed by region ℜ 
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Nonparametric Density Estimation 
General Formulation(3) 
Merging with the previous result we obtain 
 
 
 
 
 
 
This estimate becomes more accurate as we increase the number of 

sample points N and shrink the volume V 
In practice the value of N (the total number of examples) is fixed 
In order to improve the accuracy of the estimate p(x) we could let V 

approach zero but then the region ℜ would then become so small that 
it would enclose no examples 

This means that, in practice, we will have to find a compromise value for 
the volume V 
�  Large enough to include enough examples within ℜ 
�  Small enough to support the assumption that p(x) is constant within ℜ 
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Nonparametric Density Estimation 
General Formulation(4) 
�  When applying this result to practical density estimation 

problems, two basic approaches can be adopted 

�  We can choose a fixed value of the volume V and determine k 
from the data. This leads to methods commonly referred to as 
Kernel Density Estimation (KDE) 

�  We can choose a fixed value of k and determine the 
corresponding volume V from the data. This gives rise to the k 
Nearest Neighbor (kNN) approach  

�  It can be shown that both kNN and KDE converge to the true 
probability density as N→∞, provided that V shrinks with N, and 
k grows with N appropriately. 

 
 
 
 



�  Instead	of	fixing	bin	width	h	and	counCng	the	number	of	
instances,	fix	the	instances	(neighbors)	k	and	check	bin	
width	

	dk(x),	distance	to	kth	closest	instance	to	x	

k-Nearest	Neighbor	EsCmator	
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�  Kernel	density	esCmator	

	MulCvariate	Gaussian	kernel	
	
	spheric	

	
	ellipsoid	

MulCvariate	Data	
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�  EsCmate	p(x|Ci)	and	use	Bayes’	rule	
�  Kernel	esCmator	

	
�  k-NN	esCmator	

Nonparametric	ClassificaCon	
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Condensed	Nearest	Neighbor	

18	

�  Time/space	complexity	of	k-NN	is	O	(N)	
�  Find	a	subset	Z	of	X	that	is	small	and	is	accurate	in	
classifying	X	(Hart,	1968)	

	 ( ) ( ) ZZXXZ λ+= ||' EE
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Voronoi	TessalaCon	



Condensed	Nearest	Neighbor	
�  Incremental	algorithm:	Add	instance	if	needed	
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Nonparametric	Regression	

( )
( )
( )

( )
⎩
⎨
⎧

=

=
∑
∑

=

=

otherwise
		withbin	same	the	in	is		if

where

	

0
1

1

1

xx
xxb

xxb

rxxb
xg

t
t

N

t
t

tN

t
t

,

,

,
ˆ

20	

� Aka	smoothing	models	
�  Regressogram	
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Running	Mean/Kernel	Smoother	
�  Running	mean	smoother	

�  Running	line	smoother	

�  Kernel	smoother	

		
	where	K(	)	is	Gaussian	

�  AddiCve	models	(HasCe	and	
Tibshirani,	1990)		
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How	to	Choose	k	or	h?	
� When	k	or	h	is	small,	single	instances	maker;	bias	is	
small,	variance	is	large	(undersmoothing):	High	
complexity	

� As	k	or	h	increases,	we	average	over	more	instances	and	
variance	decreases	but	bias	increases	(oversmoothing):	
Low	complexity	

�  Cross-validaCon	is	used	to	finetune	k	or	h.	
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Nonparametric	Methods	for		
ClassificaCon/Regression?	
Mostly	used	models:		
�  ClassificaCon	:	knn	
�  Regression:	Parzen	windows	
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