MKM 501 E - HW3

1) Find and graph the inverse transforms of the following four pairs of magnitude and phase responses:

a.

c.
2) Using the multiplication-convolution duality of the Fourier Transform, find an expression for $y(t)$ that does not use the convolution operator *:
a. $y(t)=\operatorname{rect}(\mathrm{t}) * \cos (\pi \mathrm{t})$
b. $\mathcal{F}[y(t)]=\operatorname{sinc}^{2}(\omega / 2)$
3. Look at the graphs of the signals in Figure 1. Can you say whether or not they are low-pass, high-pass or band-pass signals? Reason your answer.

Figure 1:
4. Find the Fourier transform of the following signals, using the tables and FT properties:
(a) For $x(t)=\left[2 \mathrm{e}^{(-1+j 2 \pi) t}+2 \mathrm{e}^{(-1-j 2 \pi) t}\right] u(t)$, find $X(\omega)$.
(b) For $x(t)=1.6 \operatorname{sinc}^{2}(-t) \sin (4 \pi t)$, find $X(f)$
(c) For $x(t)=\mathrm{e}^{-t / 4} u(t) * \sin (2 \pi t)$, find $X(f)$
(d) For $x(t)=\frac{d}{d t}(\operatorname{sinc}(t))$, find $X(\omega)$
(e) For $x(t)=\int_{-\infty}^{t} \operatorname{rect}(\lambda) d \lambda$, find $X(\omega)$.
5. Plot the magnitude and phase spectrum of the following signals (you have to use FT tables and the FT properties in order to compute $X(\omega)$):
(a) $x(t)=\operatorname{sgn}(t)-\operatorname{sgn}(-t)$, where $\operatorname{sgn}(t)$ is the sign function; that is, $\operatorname{sgn}(t)=1$, if $t>0, \operatorname{sgn}(t)=-1$, for $t<0$, and $\operatorname{sgn}(0)=0$.
(b) $x(t)=\int_{-\infty}^{t} \sin (2 \pi \lambda) d \lambda$. Hint: Recall that $\delta(s)$ is a real signal that is zero for $s \neq 0$.
6. Compute the Impulse Response of each of the systems with the Frequency Response given next. Classify each Impulse Response as a low-pass, high-pass or band-pass signal.
(a) $H(j \omega)=10\left[\delta\left(\omega-\frac{1}{2}\right)+\delta\left(\omega+\frac{1}{2}\right)\right]$
(b) $H(j \omega)=-2 \pi \delta(\omega) * j \pi(\delta(\omega-300)-\delta(\omega+300))$
(c) $H(j \omega)=3 \operatorname{sinc}(f) \mathrm{e}^{-j 2 \pi f}$
7. (a) Suppose a system Impulse Response is given by $h(t)=7(u(t)-u(t-20))$. What is the FT of the system response to the signal $x(t)=\mathrm{e}^{-20 t} u(t)$?
(b) Suppose a system Impulse Response is given by $h(t)=\mathrm{e}^{-20 t} u(t)$. What would be the input $x(t)$ we need to apply in order to obtain the output $y(t)=5\left(\mathrm{e}^{10 t}-\mathrm{e}^{-20 t}\right) u(t)$?
8) Figure P5.1-1 shows Fourier spectra of signals $f_{1}(t)$ and $f_{2}(t)$. Determine the Nyquist sampling rates for signals $f_{1}(t), f_{2}(t), f_{1}^{2}(t), f_{2}^{3}(t)$, and $f_{1}(t) f_{2}(t)$.

9) Determine the Nyquist sampling rate and the Nyquist sampling interval for the signals (a) $\operatorname{sinc}^{2}(100 \pi t)$ (b) $0.01 \operatorname{sinc}^{2}(100 \pi t)$ (c) $\operatorname{sinc}(100 \pi t)+3 \operatorname{sinc}^{2}(60 \pi t)$ (d) $\operatorname{sinc}(50 \pi t) \operatorname{sinc}(100 \pi t)$.
10) A signal $f(t)=\operatorname{sinc}(200 \pi t)$ is sampled (using uniformly spaced impulses) at a rate of (a) 150 Hz (b) 200 Hz (c) 300 Hz . For each of the three cases (i) sketch the spectrum of the sampled signal, (ii) explain if you can recover the signal $f(t)$ from the sampled signal, (iii) if the sampled signal is passed through an ideal lowpass filter of bandwidth 100 Hz , sketch the spectrum of the output signal.

